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Abstract

Translation symmetry is one of the most important pat-
tern characteristics in natural and man-made environments.
Detecting translation symmetry is a grand challenge in
computer vision. This has a large spectrum of real-world
applications from industrial settings to design, arts, enter-
tainment and eduction. This paper describes the algorith-
m we have submitted for the Symmetry Detection Competi-
tion 2013. We introduce two new concepts in our symmetric
repetitive pattern detection algorithm. The first concept is
the bottom-up detection-inference approach. This extends
the versatility of current detection methods to a higher lev-
el segmentation. The second concept is the framework of
a new theoretical analysis of invariant repetitive patterns.
This is crucial in symmetry/non-symmetry structure extrac-
tion but has less coverage in the previous literature on pat-
tern detection and classification.

1. Introduction
This paper discusses the algorithm we submitted to the

translation symmetry detection contest in Symmetry Detec-

tion Competition. Translation symmetry detection is widely

used in the analysis of higher-level visual structures, such

as buildings, cloth and fabric patterns, and crystal-structure

materials as well as in the analysis of bio-medical imaging.

The detection technique is applied to applications such as

image retrieval, shape reconstruction, and texture rendering.

Traditional translation symmetry detection is often mod-

eled as a top-down matching process. A global deformable

template is defined, and is then continuously tuned until the

shape of template can align the features from the target im-

age. The top-down approach is fast and efficient, but have

limitations in versatility and robustness.

From top-down to bottom-up. Unlike the traditional

methods, we try to propose a bottom-up detection approach.

The bottom-up approach starts without a prior template. It

collects a subset of repetitive patterns from a given image,

and assigns a meaningful structure to describe the spatial

organization of the repetitive patches in the image. The in-

ference is based on the relative locations of the patterns.

The bottom-up approach requires additional time in

structure inference, but extend the detection of symmetry

types. The structure inference is possible to analyze more

than one symmetry type in the current image. For example,

the inference is allowed to extract both translation symme-

try and rotation symmetry simultaneously. In this paper, for

the purpose of algorithm evaluation, the inference is simpli-

fied and limited to translation symmetry structure only.

Invariant repetitive pattern. Another main ingredient

of our detection algorithm is the analysis of invariant repet-

itive pattern. A set of local image patches are considered as

repetitive patterns if they share the same image content.

In our algorithm, we use deformable quadrilaterals to

represent repetitive patterns. The shapes of the quadrilat-

erals are determined by the joint registration of all repet-

itive patches. The invariant component extracted from the

aligned patches can serve as image templates to detect more

repetitive patterns in the same image or others.

Interactive pattern detection. We introduce user-

interactions in our algorithm. The interactive idea is in-

spired by interactive image segmentation, i.e. the graph-

cut method. Our algorithm allows the user to draw a small

set (at least one) of local image patches on the input image

as initial repetitive patterns. The algorithm then aligns the

patches and obtains an invariant patch template for detec-

tion. The template can be incrementally updated when new

repetitive patterns are detected and aligned.

2. Related work
Baseline algorithm. The main baseline algorithm used

for evaluation is Park’s deformed lattice detection method

[3]. Park’s method used deformed lattice as a global tem-

plate and KLT features for grouping and alignment. The

result of the detection method is a lattice structure, which

encodes the location of the extracted features and spec-

ifies dimensions of the lattice grid. The Park’s method

was later improved as a interactive detection method using

SIFT/SURF features [4]. In contrast, our algorithm does
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Figure 1. The overview of the proposed repetitive pattern detection and bottom-up structure inference algorithm in this paper.

not provide a valid lattice structure. The results obtained

from our algorithm is a set of quadrilateral patches and their

pairwise connections (i.e. adjacent matrix). We manual-

ly convert our results to the lattice structure formats using

the Lattice Editor 1. The other algorithm that can be used

for evaluation is Wu’s frieze-like pattern detection [5]. It is

specified for detecting repeated patterns in building scenes.

Particularly, in the symmetry detection for the front-view of

a building, Zhao et al [6] has proposed a solution using an

image segmentation technique which is similar to our algo-

rithm output. But these methods are difficult to extend to

highly deformed patterns.

Our algorithm is based on our previous work published

in [2] [1] with slight modifications. In this paper, we in-

troduce the HOG descriptor in our registration model and

simplify the structure inference to lattice structure only.

3. Algorithm overview
The overall algorithm is an iterative propagation and up-

date process, it continuously detects the perspective new

repeated patterns and aligns the involved patches to main-

tain the invariant representation. The complete algorithm is

shown in Figure 1 and is described in the following steps:

Initialization: The user draws a small number of quadri-

lateral patches (one or more than one patches) as initial

repetitive patches. The algorithm exploits the joint align-

ment model in Section 4 in order to align the patches and

extracts the initial pattern template. If only one patch is pro-

vided, this patch will be directly assigned as the template.

Detection: For each repetitive patch detected, we deform

the invariant template to align with the detected patch. We

then perform a normalized cross-correlation (NCC) around

the local area of the particular detected patch, detecting new

patches which share the content and shape of the deformed

invariant template.

Alignment: For all the detected patches, we apply a joint

registration (congealing) as described in Section 4. By tun-

ing the shapes of the quadrilateral patches, all patches are

1http://vision.cse.psu.edu/research/latticeEditor/latticeEditor.shtml

deformed and aligned. After all the patches are matched,

we can update the invariant template.

Validation and inference: If there are new patches de-

tected during the detection stage, we go back to the de-

tection phase again in order to perform the invariant tem-

plate alignment. Otherwise, we go to the structure inference

phase. The inference estimates the local connection orien-

tations using the filtering of beamlet functions. The ori-

entations of the beamlets are determined by the NCC map

obtained in the detection stage. Only two major orientations

are considered for translation symmetry detection.

4. Detection and joint alignment method
For an image I : Ω → R, Ip : Ω → R

d(p) is a vector-

valued function which represents the local patch centered

at p ∈ Ω. d(p) is the number of pixels in Ip which solely

depends on the shape of Ip. Ip is free-form quadrilateral.

Let Gp be the affine transform that warps an m × m
regular square patch to quadrilateral Ip, such that Ip ◦G−1

p

is an m ×m square. Our first assumption is the generative

assumption. There exists an m × m invariant template T
that satisfies

||T− Ip ◦G−1
p ||2 < ε (1)

for p in the image area with ε sufficiently small. Gp can be

written as a 3× 3 matrix obtained by exponential map:

Gp =

6∑
k=1

Exp(akpEk) (2)

as Ek for k = 1, . . . , 6 are the matrix basis for the tangent

space [2]. Another assumption is repetition assumption. If

Ip and Iq are repetitive patterns where p �= q, we will have

||Ip ◦G−1
p − Iq ◦G−1

q ||2 < ε (3)

The joint alignment model. If both the generative and

repetition assumptions hold, given a set of patches {Ip}p∈Λ,

we can deform Ip by tuning parameters {ak}1,...,6 in (2).

For each p ∈ Λ, we can formulate the joint registration as

the minimization of the following functional:
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Figure 2. The structure inference algorithm.

Fp(ap) =
∑

q∈N(p)

||φ(Ip)− φ(̃Iq(ap))||2

+
∑

q∈N(p)

||φ(Ip)− φ(T̃(ap))||2 +
∑

q∈N(p)

||LAp||2F (4)

where φ is a dense image feature descriptor, i.e., HOG de-

scriptor. ap = (a1p, a
2
p, . . . , a

6
p) is used as parametriza-

tion for representing T̃(ap) = T ◦ Gp(ap) and Ĩq(ap) =
Iq ◦G−1

q ◦Gp(ap). LAp is the Laplacian of Ap = Log(Gp)
over the matrix space spanned by E1, . . . , E6.

The detection model. For the current repetitive patch

set {Ip}p∈Λ, we can obtain the corresponding deformation

set {Gp}p∈Λ using joint alignment (4). By the generative

assumption, we can generate deformed a template set {T ◦
Gp}p∈Λ. Using these deformed templates, we can calculate

the NCC correlation in local image area near positions in Λ.

The new repetitive patterns can thus be detected and their

patch centers are added to Λ. In other word, the repetitive

set {Ip}p∈Λ propagates as new positions are involved after

each detection stage.

5. Structure inference
The structure inference is based on the NCC map ob-

tained during the detection phase. The goal of structure in-

ference is to recover the pairwise connections between the

detected patches. Shape information of the set {Ip}p∈Λ is

also used for analyzing the oriented connections. The main

steps in the structure inference are illustrated in Figure 2.

Principal orientation extraction. We first extract the

dominant local orientations. Denote the NCC map as R.

For each Ip, the corresponding quadrilateral is superim-

posed on p in R, producing local patch Rp. As all patch-

es are aligned already, the peak positions enclosed in each

quadrilateral are aligned accordingly. This indicates that

the relative positions of the local neighbors also satisfy our

generative assumption. We then rectify all superimposed

quadrilaterals over R back to m × m regular patches, and

obtain the set {Rp ◦G−1
p }p∈Λ. We can have

R =
1

|Λ|
∑
p∈Λ

Rp ◦G−1
p . (5)

By using the Radon transform, one can easily extract the

top two orientations, θ1 and θ2 in patch R. This leads to

two beamlet functions b1 and b2. Each beamlet function is

a 2D function defined on [−m/2,m/2]2 where there is a

line segment crossing the origin with orientation θ1 and θ2
respectively. The beamlet is required to have non-zero val-

ues on the line segment and zeros elsewhere. The beamlet

is normalized so that
∫
b1(x)dx =

∫
b2(x)dx = 1.

Beamlet filtering. For position set Λ over R, we can

have {b1◦Gp}p∈Λ and {b2◦Gp}p∈Λ. In order to extract the

first orientation of a translation symmetry structure, one can

take {b1 ◦ Gp}p∈Λ as local deformed templates to conduct

local filtering over R. For each p, we let b1 ◦Gp as filter to

convolute the image area around Ip. By simply adding all

the local filter response, one can have the first orientation

of the desired lattice structure. Similarly, by substituting

b1◦Gp with b2◦Gp, the second orientation can be obtained.

Both orientations form a global lattice-like structure, which

represents the desired translation symmetry structure.

6. Algorithm evaluation

The proposed algorithm is tested using the dataset pro-

vided by the Symmetry Detection Competition 2013. Our

results are manually converted to the lattice format using

the Lattice Editor, with the points in a lattice are validat-

ed by our pairwise patch connections. The runtime of our

algorithm depends on the number of repeated patches de-

tected. The average runtime on a 2.7GHz dual-core parallel

computing environment is 5 min. Some images in the urban

scenes category take longer than 30 min due to the large

number (≥ 800) of repetitive patterns detected.

6.1. Comparison with baseline algorithm

We compare our method with the suggested baseline al-

gorithm [3]. As the baseline algorithm is an automatic

method, we also point out some extreme cases for the com-

pleteness of our discussion.

Frieze patterns. The frieze pattern images contain a

large number of repetitive patterns in most affine translation

symmetry structure. For images in this category, one input
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Figure 3. The selected results of frieze pattern test images. Left to

right: the detected repetitive patterns of our algorithm, the inferred

symmetry structures, and the results of the baseline algorithm.

patch, i.e. an initial regular patch drawn by user, is often e-

nough for detection. A number of selected results are shown

in Figure 3. Because a large number of images in this cat-

egory do not fit the deformed lattice structure, the baseline

algorithm could be affected by the lack of lattice features.

Our patch-based algorithm can pass the non-lattice cases.

General wallpaper test images. The wallpaper pattern

images include patterns that can form smooth surface ge-

ometries. For most cases, our algorithm can successfully

reconstruct the spatial organizations as the baseline algo-

rithm. However, because the baseline algorithm is fully au-

tomatic, it might be trapped in the detection of less signif-

icant structures in an image and would fail consequently.

Selected results are presented in Figure 4.

Fence-like wallpaper test images. The fence-like pat-

tern images contain look-through lattice structures. Our al-

gorithm requires additional input patches (3 to 5 patches) in

order to extract a stable template. Our algorithm can still in-

fer the correct lattice structures in most cases. However, for

this image category, the structure inference is more difficult

than other categories. The repetitive patches in fence-like

wallpaper images have very high variety in their contents, it

is then more difficult for the alignment model to group the

quadrilaterals. The selected results can be seen in Figure 5.

Urban scene test images. The images in urban scene

category contain often contain large number of repetitive

patterns as shown in Figure 6. This costs our algorith-

m longer time in computing the patch alignment, but this

Figure 4. Selected results of general wallpaper pattern images. Our

detection and inference method (1st and 2nd column) can detec-

t highly distorted geometric scenes and have better performance

than the baseline algorithm (3rd column).

alignment allows us to analyze structures that suffer from

large distortions. In addition, our interactive initialization

allows user to select the desired structures he/she may be

interested in as urban scene images often contain multiple

structures. By combining separated user-initialized infer-

ence results, it is easy to generalize the single structure in-

ference to multiple structure inference.

6.2. Test on multi-structure detection

For images contain multiple translation symmetry struc-

tures, a multi-structure grouping is needed. We compare our

method with the perceptual grouping method [4] in multi-

structure detection.

The extension of our method from single structure infer-

ence to multiple structure inference is straightforward. We

draw different input patches for individual structure in an

image, and let the detection and inference be conduct sep-

arately. The resulting multiple structures are obtained by
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Figure 5. Selected results of fence-like pattern test images. Our

detection and inference method (1st and 2nd column) suffer from

the high variations of the patch contents, but can still infer the cor-

rect pairwise connections in most cases. The baseline algorithm

(3rd column) is affected by the same problem.

simply combing all separately inferred structures. A test

result is shown in Figure 7. The further tests with compar-

ison to Park’s perceptual grouping method can be found in

Figure 8.

7. Conclusions
We proposed a translation symmetry detection method

based on the analysis of invariant repetitive patterns. Un-

like the popular top-down matching method, our method

provides a bottom-up inference approach for estimating the

translation symmetry structure. The algorithm has better

detection performance in highly curved or distorted sym-

metry structures than the traditional ones.
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