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Abstract

We focus on the problem of mining object categories from
large datasets like Google Street View images. Mining ob-
ject categories in these unannotated datasets is an impor-
tant and useful step to extract meaningful information. Of-
ten the location and spatial extent of an object in an im-
age is unknown. Mining objects in such a setting is hard.
Recent methods model this problem as learning a separate
classifier for each category. This is computationally expen-
sive since a large number of classifiers are required to be
trained and evaluated, before one can mine a concise set
of meaningful objects. On the other hand, fast and efficient
solutions have been proposed for the retrieval of instances
(same object) from large databases. We borrow, from in-
stance retrieval pipeline, its strengths and adapt it to speed
up category mining. For this, we explore objects which are
“near-instances”.

We mine several near-instance object categories from
images. Using an instance retrieval based solution, we
are able to mine certain categories of near-instance objects
much faster than an Exemplar SVM based solution.

1. Introduction
The retrieval of instances (same objects) [2, 3, 15, 24, 26]

as well as categories (different objects, but same semantics)

[7, 10, 17] are both prominent research directions. There

are well established methods in both areas which solve the

problem to a large extent. Speed, accuracy and scalability
to a large database size is of prime importance. Results ob-

tained in instance retrieval are typically more accurate, and

obtained much faster due to the relatively easy nature of the

problem. Category mining is much harder, as visual cues

are not sufficient to solve the problem. It involves mining

at the level of semantics. One way to solve this problem

is to do clustering at image level which is of O(n2) com-

plexity, n is number of images. Other class of methods are

SVM-based methods [17, 23, 8]. Training and evaluation

of SVM classifiers, however, is computationally expensive

because it involves sliding window over a large number of

windows. These methods are not scalable to big datasets.

Figure 1. On one hand, buildings have been explored as instances

in the Oxford buildings dataset[19] (top-left), while as categories

of architecture on the other [6] (top-right). Several object cate-

gories, such as those shown here (bottom) are much nearer to in-

stances, despite being obtained from different buildings. We are

interested in such near-instance categories.

We bridge the gap between instance retrieval and category

retrieval, and show how the category mining problem can

be solved (to an extent) by efficiently adapting instance re-

trieval. While maintaining accuracy, we are able to greatly

speed up the process of mining categories in unannotated

big datasets.

Recently, Gordo et al.[13] touched on an important issue

in instance retrieval - instance retrieval returns, among the

top ranked images, results which are visually similar, but

not always semantically consistent with the query. To over-

come this issue, they incorporate information from category

level labels while searching for instances. We pose a ques-

tion in the reverse direction - Can instance retrieval be used

to benefit retrieval of object categories?

There has been a recent surge of efforts in retrieving in-

stances of the same object from large databases. The chal-

lenge is to retrieve accurately, albeit from occlusions, mul-

tiple viewpoints and scale variations. The Bag-of-Words
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(BoW) method [24] has been the mainstay of instance re-

trieval techniques for many years. It was initially used to

represent images as a histogram of visual words, obtained

by vector quantizing SIFT descriptors [16] computed at in-

terest points. Coupled with an inverted index, enabling fast

indexing and searching, and tf-idf weighting to downscale

the contribution of frequently occurring visual words, this

method has become the popular instance retrieval pipeline.

To ensure spatial consistency between the query and the

retrieved results obtained by the order-less Bag-of-Words

method, geometric verification was introduced as a post

processing step [24]. Spatial consistency can be enforced

loosely by ensuring that matching visual words are from a

small neighborhood in the retrieved image, or strictly by es-

timating a fundamental matrix from point correspondences

using methods such as RANSAC [12]. The computational

complexity of the geometric verification step motivated re-

search in incorporating it into the retrieval pipeline [26, 15]

itself, rather than being used as a post processing step.

While a plethora of work has been reported in recent past

on retrieving similar instances of an object, the problem of

image-category search, however, did not receive much at-

tention as a retrieval problem. Rather, the latter has been

well received as a learning-based classification problem.

[7, 10]. Since the location and spatial extent of the ob-

ject is unknown, such methods involve an exhaustive eval-

uation of all possible windows, at multiple spatial scales.

This process is computationally expensive. Solutions pro-

posed for solving an unsupervised variant of this problem

employ methods borrowed from the data mining commu-

nity [11, 20, 21, 22, 25]. Even though easily scalable to

millions of transactions, adapting mining methods for solv-

ing computer vision tasks faces several challenges. The un-

certainty in feature representations in images makes it hard

for popular itemset mining schemes, such as Apriori [1] and

FP-Growth [14] to be directly applied.

State-of-the-art methods [7, 10, 17] in object category

retrieval/mining learn a SVM classifier for a set of labeled

objects. This classifier (or filter) is applied to all possible

patches, in a sliding window fashion, at multiple scales.

This number is in the order of millions! The SVM score

determines the presence or absence of the object in the im-

age patch. Despite being accurate, classifier based methods

are computationally expensive when retrieving object cate-

gories from a large data set, which is primarily due to two

reasons. The training time of an SVM for a considerable set

of positive and negative exemplars is high. Previous works

[7, 10] have proposed mining of hard negatives from mil-

lions of negatives exemplars. This improves classification

accuracy, but at the cost of computation time due to mul-

tiple rounds of SVM re-training. [17] proposed a method

of learning a separate classifier for each positive exemplar

in the given set. This compensates the problem of overly-

generic detectors being learnt, and each positive exemplar

is given the appropriate amount of attention. However, the

number of classifiers increase manifold, leading to an in-

crease in testing time.

We propose an instance-retrieval based solution for min-

ing object categories in large, unannotated databases. Using

our method, we perform unsupervised mining, and discover

several near-instance object categories automatically. We

first talk about the popular instance retrieval pipeline in the

next section, which is the base of our approach.

2. Instance Retrieval Pipeline
Given a query image marked by the user, the goal is to

achieve all instances (of the same object) which are present

in the image database. The popular approach to solving this

problem employs the Bag-of-Words method [24]. SIFT de-

scriptors [16], are computed at interest points in the image.

The visual codebook used to assign word ids is obtained

by clustering a random subset of feature descriptors, using

K-means clustering. A visual word identifier is assigned to

each feature descriptor, similar descriptors being assigned

the same word id. Using large vocabulary sizes (1 million

visual words) has shown to give superior performance for

retrieving instances [19].

A standard tf-idf weighting scheme is used to down-

weight the contribution of commonly occurring (and hence

not very descriptive) visual words across the database. Each

image I in the database is represented as a vector V (I) of

visual word occurrences. The similarity between the query

image Iq and a database image Id is defined as the cosine

similarity of the two vectors

V (Iq).V (Id)/(||V (Iq)||||V (Id)|| (1)

A rank list of the database images is obtained by comparing

every database image against the query. Since the database

is already indexed, this step can be done in the order of

milliseconds.

Geometric Verification is used as a post processing step

to incorporate spatial information into an otherwise order-

less Bag-of-Words (BoW) method. The standard method

is to use one of the several variants of the RANSAC algo-

rithm [12] to generate multiple fundamental matrices from

randomly sampled subsets of a given set of point correspon-

dences. Based on the number of consistent “inliers“, one of

the several generated hypotheses is selected. The geomet-

ric verification step is computationally expensive, thereby

limiting its application to only the top few retrieved results.

The instance retrieval pipeline is both fast and robust,

and is proven to be scalable with database size and visual

vocabulary size. Instance of the same object can be re-

trieved in the order of milliseconds from huge data sets con-

taining many thousand images.
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3. Can Instance Retrieval work on Caltech
categories?

We leverage the existing instance-retrieval pipeline to

solve the problem of category retrieval. We propose a sim-

ple solution to re-rank the retrieved list of results using the

HoG feature descriptor [7], and obtain better results on sev-

eral object categories. Our method works well for the cate-

gories, which exhibit several common characteristics, such

as relatively less intra-class variation in visual appearance.

We term these categories as near-instance categories. While

the instance retrieval pipeline accompanied by spatial ver-

ification is able to obtain impressive results for retrieval of

same objects, it is not able to do the same for category re-

trieval. The typical vocabulary size used in category re-

trieval/classification is 4000. Thus, visual words are bet-

ter able to capture the variation across categories. On the

other hand, in instance retrieval we are interested in exact

matches, hence using a much larger vocabulary size (1 mil-

lion visual words). We choose a vocabulary size of 10,000

visual words, which is more suitable for representing “near

instance“ categories.

HoG Post-processing: We propose a HoG-based post

processing method to improve the quality of retrieved re-

sults. HoG feature descriptors [7], with a block spacing

stride of 8 pixels, are obtained for the query as well as re-

trieved images. The retrieved images are re-sized to the size

of the query image, ensuring consistency in the dimensions

of HoG vector representations. The descriptors for each im-

age are concatenated into a 1-dimensional vector. The Eu-

clidean distance between the HoG vector representations of

the query sample and that of the retrieved images is com-

puted. Two retrieved images are compared as

{
Rank(I1) < Rank(I2) if d(I1, q) < d(I2, q)
Rank(I1) > Rank(I2) if d(I1, q) > d(I2, q)

HoG based reranking is employed as a post processing

step to geometric verification. Accurate bounding boxes

around the retrieved object, estimated from the geometric

matches between SIFT key-points can easily be obtained.

Comparison of vector representations of objects contained

in the bounding box compensates for the translation invari-

ant nature of the HoG descriptor. We compare against mul-

tiple baselines. In the first baseline, we use the simple in-

stance retrieval pipeline (without spatial verification) to re-

trieve object categories. As a second baseline, we train a

linear SVM classifier for each query exemplar. HoG de-

scriptor of the query exemplar is used as a positive training

instance. Thousand negative exemplars are obtained from

10 random samples from each class, except the class of pos-

itive exemplar. Each image I in the database is scored as

Score(I) = max(Im,n) (2)

Figure 2. Top retrieved images (from top-left, in row-major form)

for query image of class “Accordion“. The relative similarity in

viewpoint and appearance as compared to other classes makes this

category “near-instances“. The image outlined in red is a false

positive.

where Im,n is the set of all possible HoG windows.

In a separate experiment, we also use the images re-

trieved by our approach for training a linear SVM. The top

20 retrieved images are used as positive samples, instead of

using a single positive exemplar. The rest of the method is

similar to the second baseline.

We test our method on the Caltech 101 dataset [9]. SIFT

descriptors are computed for each image in the database

at interest points obtained using a Difference of Gaussian

(DoG) detector. A random subset of 100,000 SIFT descrip-

tors obtained from the database images is used to create a

vocabulary. The vocabulary size is chosen to be consid-

erable large (10,000). This ensures that only significantly

similar features are captured by each visual word. 5 images

are randomly selected from each class to create the set of

query images.

Table 1 compares the retrieval accuracy of our method

with other baselines. Two measures have been used to re-

port retrieval accuracy. (a) The precision obtained for the

top 10 retrieved samples was computed. The average over

5 randomly chosen queries, known as Mean Precision at 10
has been reported for each category. (b) The average preci-

sion was computed for the complete rank list. The average

over 5 randomly chosen queries Mean Average Precision
has been reported for each category.

Based on the results of our experiments, we are success-

fully able to divide the 101 Object Categories of the Cal-

tech dataset into 3 sets. Images in each of the three sets

exhibit different properties, based on which we infer how

easy/tough it is to retrieve from them. The first set of cate-
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Mean Precision At 10 Mean Average Precision
Class IR IR + HoG 1E-SVM IR+HoG+1E-SVM IR 1E-SVM IR+HoG+1E-SVM

Accordion 0.60 0.82 0.51 0.15 0.17 0.02 0.06

Windsor Chair 0.62 0.68 0.48 0.31 0.36 0.16 0.17

Chair 0.11 0.10 0.12 0.15 0.02 0.06 0.09

Watch 0.11 0.12 0.11 0.00 0.02 0.01 0.02

Schooner 0.11 0.12 0.22 0.00 0.03 0.02 0.007

Electric Guitar 0.11 0.10 0.15 0.00 0.02 0.02 0.005
Table 1. Comparison of Various Methods for Object Category Retrieval. Cells marked in green are object categories which are near-

instances. Cells marked in yellow are neutral categories. Cells marked in red are tough categories. IR = Instance Retrieval, IR + HoG =

Instance Retrieval + HoG-based Re-ranking, 1E-SVM = One Exemplar SVM, 1C-SVM = One Class SVM

gories (highlighted in green in Table 1) are those which are

near-instances. Using an Instance Retrieval based method

accompanied by a HoG-based post processing step gives

much better performance, both in terms of precision at 10

as well as average precision, than an exemplar SVM based

method, as well as the standard instance retrieval pipeline.

Figure 2 shows the top retrieved results for a query of the

class “Accordion“. Even though the images contain differ-

ent models, there is similarity in appearance and viewpoint

across all images, which makes it an ideal candidate for a

“near-instances“ object category.

The second set of categories are neutral categories (high-

lighted in yellow in Table 1). From observing the images

belonging to these classes, we inferred that even though

there is some similarity in visual appearance across images,

it is not sufficient for instance retrieval to work. This obser-

vation is supplemented by the similar retrieval performance

obtained by our method as well as 1-Exemplar SVM for

these categories. The third set are tough categories (high-

lighted in red in Table 1). Images of objects in these classes

exhibit high intra-class variance, due to which standard cat-

egory retrieval methods such as SVM often outperform our

method of retrieving near-instances.

4. Efficient Category Mining
There have been many attempts in the past at adapting

well-established data-mining techniques for unsupervised

mining in images. Quack et al [22] mine clusters containing

similar image content from geo-tagged imagery obtained

from Flickr. The mined clusters are then classified into ob-

jects/events, and text labels, obtained from Wikipedia arti-

cles, are associated with each cluster. Sets of discriminative

patches, termed as Grouplets, were mined for modeling the

interactions between humans and objects in [25].

Classifier based methods apply a SVM classifier to all

possible windows, which is computationally expensive. We

propose an instance-based solution for solving the prob-

lem of discovering near-instance object categories in a large

dataset. We progressively evaluate patches at increasing

spatial scales, all the while rejecting uninteresting patches

at every step. As a result, we are able to quickly discover

a set of semantically meaningful near-instance object cate-

Figure 3. Our mining pipeline: (a) Image is divided into small,

square patches. (b) Each patch is used to retrieve similar patches

from the database. (c) Patch with high Goodness Score (marked in

green), are grown by grouping with nearby patches. (d) Grouped

patches which contain atleast minsupp good patches are used for

further mining/retrieval.

gories.

The given image is first divided into square patches of

fixed size of 25 × 25 pixels. This starting set of patches

constitutes the initial candidate set L0. Each candidate

patch is evaluated and a score assigned to it which signifies

the goodness of the patch as belonging to a larger, seman-

tically meaningful and frequently occurring near-instance

category. The top scoring patches from the candidate set

Lk, based on the “Goodness” score, are used to create the

candidate set Lk+1, where k denotes the level of grouping.

The patches used to create the subsequent candidate sets are

increased in size by incorporating a larger region around the

current patch. Figure 3 gives a step by step overview of our

method. We now talk about the algorithm in detail.

Patch Evaluation: Each patch in the candidate set is

represented using a histogram of visual words. This patch

is now used as a query to retrieve visually similar patches

across the image database. The top few retrieved patches are

re-ranked using a spatial verification step. We fit an affine

transformation with 3 degrees of freedom (dof) between

the query and retrieved patches. Similar to [2, 19], hy-

potheses are generated from single point correspondences,

which speeds up matching. To accommodate matches on
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Figure 4. Figure showing improvement in cluster purity after HoG

Re-ranking for a particular patch (House Numbers) at Level 2 of

mining. The image outlined in black is the initial patch. Two false

positives (outlined in red) appeared after mining (Row 1). These

were rejected after re-ranking using HoG (Row 2).

near-instance categories, we allow large-re-projection er-

rors. Due to the small size of the query patch, the number of

matches to be evaluated is typically small. The retrieved list

of patches is characterized by many false positives. This is

mainly due to (a) using a reasonably large vocabulary size

for matching object categories (not instances), and (b) small

size of the query patch, which results in very small number

of matches from spatial verification. We propose a good-

ness score to measure the quality of the retrieved patches

obtained in the cluster. The Goodness Score of a patch is

computed as

GScore(Ip) =

⎛
⎜⎜⎜⎜⎝

N∑
i=1

d(HoGp, HoGi)

N.A

⎞
⎟⎟⎟⎟⎠

−1

(3)

where d(HoGp, HoGi) is the Euclidean distance between

the HoG vector representations of the query patch Ip and the

ith retrieved patch, N is the number of patches retrieved,

and A is the area of the query patch. The patches are re-

sized to the size of the query before the HoG descriptors

are computed, to ensure consistency in dimension across

HoG vector representations. A larger value of N enforces a

much stricter goodness constraint on each patch, at the cost

of increased computation in calculating the distances be-

tween the HoG vector representations. Normalizing by the

area enables fair comparison between the scores assigned to

patches of varying sizes.

Patch Growing: The patches obtained from candidate

set Lk with a high Goodness Score are grown to create

a similar set Lk+1 for next level of evaluation. A sim-

ple solution for growing the patch can be to select 8-

connected neighboring patches of the current patch. A fun-

damental problem with this is that some parts of the new

patch might be uninteresting, and may not have any se-

mantic association with the object which, if present, we

are trying to discover. Another method of selecting useful

patches is non-maximum suppression (in terms of Good-

ness Score), where a larger image region around each local

Task Time Taken (in sec.)

Similarity Search 0.797

Spatial Verification 0.324

HoG Score Computation 0.468
Table 2. Time taken to evaluate a single patch of size 50 × 50
pixels.

maximum is selected. At the kth level of grouping, we se-

lect (2k + 1) × (2k + 1) square patches, where the size of

each patch is 25 × 25 pixels. The support of this new patch

(Patchk) of increased size is computed as

Supp(Patchk) =
M

(2k + 1).(2k + 1)
(4)

where M is the number of patches in the image region which

are among the top ranked ones based on Goodness Score.

Regions with support value greater than a minimum thresh-

old minsupp are used to create the candidate set Lk+1 for

the next level of evaluation.

Mining Near-Instances: After multiple levels of refin-

ing, we are left with few, reasonably large sized patches.

Similar to the method of patch evaluation, these reasonably

large patches are used to query from the database. We re-

trieve the top 100 results for each query region. A HoG

based post-processing step is employed to refine the clus-

ters of near-instance object categories. The final rank of a

retrieved patch is computed as

Rank = max(RankSIFT , RankHoG) (5)

where RankSIFT is the original rank in retrieved list, and

RankHoG is computed based on the Euclidean distance be-

tween the HoG templates of the query and retrieved image

regions. A lower value of Rank signifies that the result ap-

pears at the top of the rank list.

Our HoG-based re-ranking method suppresses false pos-

itives by pushing them away from the query, while retain-

ing true positives in the top results. This method of push-

ing away false positives retains the ranking information ob-

tained by SIFT matching, which is important for retrieval

of near-instance object categories. Figure 4 visualizes im-

provement in purity of one particular mined cluster (House

Numbers) after rejecting false positives using our method.

4.1. Computational Complexity

Our method is fast. Table 2 gives the time taken by each

module of our approach for evaluating a single patch. The

implementation has been done in MATLAB on a standard

PC with 4 GB RAM. Evaluating multiple patches can eas-

ily be done in parallel since these are independent tasks. An

exact time comparison with previous works for category re-

trieval and mining may not be possible due to the different

settings (data sets, features) employed earlier. We provide
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(a) Text Signs (b) Lamps

(c) Windows (d) Grills

Figure 5. Various near-instance Object Categories which were automatically discovered by our mining method

a theoretical evaluation of the time complexity of our ap-

proach with Exemplar SVM based approach for mining

Mining/Retrieval of Object Categories using Exemplar

SVM comprises of two stages - training and testing. Train-

ing a linear SVM involves maximizing the margin between

the single positive exemplar and millions of negative exem-

plars. For both primal and dual optimization, the complex-

ity is O(max(n, d)min(n, d)2) [5], where n is the number

of training instances (1 Positive + Many Negatives), and d
is the dimension of representation of an exemplar. Both re-

trieval as well as mining are unsupervised methods, and re-

quire no time for training, as opposed to an SVM classifier.

SVM testing scales linearly with the number of positive in-

stances (but not the negatives), since a separate classifier is

learnt for each positive exemplar. For an image (of dimen-

sion H × W ), applying a classifier (at say S spatial scales)

takes O(H × W ) computation (since S << H × W ). We

can evaluate all E Exemplar-SVMs over |D| database im-

ages in O(E × |D| × H × W ).

4.2. Results

We perform both quantitative and qualitative evaluation

of our method. For the discovery of near-instance ob-

ject categories, we use the data set of Google Street View

Images as provided by [8]. The images were obtained

for 12 cities: : Paris, London, Prague, Barcelona, Milan,

New York, Boston, Philadelphia, San Francisco, San Paulo,

Mexico City, and Tokyo. We downloaded 25,278 images

from Google Street View, the dimensions of each image be-

ing 936 × 537 pixels. This gives us 38 × 22 = 836 patches

per image, when the starting patch size is 25× 25 pixels. A

starting set of 100 seed images was used for the purpose of

discovery.

Image Representation: SIFT descriptors [16] are com-

puted at affine-invariant Hessian regions [18]. Each SIFT

descriptor is assigned a visual word id from a visual code-

book. For image representation, we use a vocabulary

trained on the Oxford Buildings data set [19] comprising

of 100,000 visual words. An inverted index is built from

the database images, which enables fast searching. A stan-

dard tf-idf weighting scheme is used, which suppresses

the contribution of frequently occurring visual words. The

Hellinger kernel is used for comparison of image vector rep-

resentations, which has shown superiority over Euclidean

distance in texture classification and image categorization

tasks [4].

Quantitative Evaluation: For Quantitative evaluation,

we compare with Exemplar-SVM method. A linear SVM is

learnt for a single positive exemplar, and all possible win-

dows from database images (other than query image) as the

negative exemplars. We perform 10 iterations of retraining,

and 5 iterations of mining hard negatives in each iteration of

re-training. 100 hard negatives are mined in each iteration

(of re-training) and added to the negative set. The PEGA-

SOS SVM solver in the VLFeat library is used for training.

The bias multiplier is set to 100, and the regularization pa-

rameter λ = 100/N , where N is the number of training

samples. For training, the classifier is run on a subset of
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Instance based Time Exemplar Time
Solution (in s) SVM (in min)

Similarity Search 0.012 Training 22.66

Geometric Verification 0.411 Testing 26.66

HoG Reranking 0.070

Total (in mins) 0.0082 49.32
Table 3. Time taken to evaluate a single patch of size 50 × 50
pixels.

200 database images, at 4 spatial scales. We also perform

retrieval on this subset using the same positive exemplar,

followed by the HoG post-processing method. Table 3 sum-

marizes the computation times for both methods.

Qualitative Evaluation: We perform mining upto 3 lev-

els. The top 20 results were retrieved for each patch upto the

penultimate mining level. Top 100 results were obtained

for visualization at the last level. From the set of 100 seed

images, we discovered several different concepts (at mul-

tiple levels), which fall into the category of near-instance

objects. Figure 5 showcases examples of few near-instance

object categories discovered by our method. The include

balconies, street lamps, windows, and banners containing

text. The type of object category discovered varies with

the level at which we are mining. For example, “House

Signs“ and “Street Lamps“ (Figure 5(b)) were discovered

on the second level of mining, where the patch size is rel-

atively low. As we move higher, the type of near-instance

object categories discovered are those which cover a larger

spatial extent, such as “Windows“ (Figure 5(c)) and “Text

Banners“ (Figure 5(a)).

5. Conclusion
There are several object categories, which are near-

instances. Objects in these categories exhibit less intra-class

variance, which allows for instance retrieval techniques to

be applied on them. We adapt the instance retrieval pipeline

to solve tasks - category retrieval, and category mining, pre-

vious methods for which are computationally expensive. In

both cases, we are successfully able to retrieve/mine near-

instance object categories. Our method, however, is re-

stricted to near-instance categories alone. For other cate-

gories, considerable work needs to be done to bridge the

gap between instance and category retrieval.
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