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Abstract

With the advent of huge collection of images from Inter-
net and emerging mobile devices, large-scale image clas-
sification draws amount of research attention in comput-
er vision and AI communities. The advancement of large-
scale image classification largely depends on solutions to
two problems: how to learn good feature representation
from variant scales of pixels, and how to create classifi-
cation models that can discriminate the feature represen-
tation for different semantic meanings of many objects. In
this paper, we tackle the first problem by combining dif-
ferent feature representations via sparse coding and Fish-
er vectors of SIFT and color-based features. To deal with
the second problem, we utilize the Averaged Stochastic Gra-
dient Descent (ASGD) algorithm to enable fast and incre-
mental learning of SVMs and further generate confidence
values to interpret the likelihood of multiple object cate-
gories appearing in the image. We evaluate the proposed
learning framework on the ImageNet, a benchmark dataset
for large-scale image classification. Our results show fa-
vorable performance on a subset of ImageNet containing
196 categories. We also investigate the performance of s-
parse coding by comparing different combination of algo-
rithms in learning a dictionary and sparse representation-
s. Although there is a natural pair of algorithms to learn
a dictionary and sparse representations (e.g., K-SVD with
respect to Orthogonal Matching Pursuit), breaking such a
pair and rematching are found to result in even better per-
formance. Moreover, detailed comparison indicates that �1-
regularized solver to sparse representation mainly benefit
the classification accuracy, regardless of the choice of dic-
tionaries.

1. Introduction
Image classification is one of major focuses in computer

vision research. It maps pixel inputs to the semantic mean-

ings of objects. There have been extensive research effort-

s on developing effective image classification/recognition

systems for various benchmark datasets, such as MNIST

[18], NORB[19], CIFAR-10[15], Caltech-101[9], Caltech

256 [12], PASCAL VOC [8] etc. Recently, there is an

increasing need to build general-purpose learning systems

that are able to recognize a large number of object classes,

which can be very useful for automatic image tagging and

content-based image retrieval.

ImageNet [6] is the first and unique image database to

serve the purpose of large-scale recognition, who provides

an access to 15M labeled images belonging to 22K objec-

t categories. Since 2010, a subset of ImageNet with 1000

categories is extracted to establish an annual competition

called the ImageNet Large-Scale Visual Recognition Chal-

lenge (ILSVRC), where the progress has been made main-

ly in following aspects. One is with regards to learn fea-

ture representation via coding and pooling of local image

descriptors, such as SIFT [23], HoG [5], LBP [35], etc.

The well-known coding schemes include vector quantiza-

tion (VQ), sparse coding (SC) [37], locality-constrained lin-

ear coding (LCC) [34, 22] and Fisher vectors (FV) [31]. Ex-

amples of effective pooling methods are the Bags-of-Words

(BoW) model [10] and its multi-scale alternative called S-

patial Pyramid Matching (SPM) [17, 37, 31]. Another ma-

jor achievement in ILSVRC is to design classification algo-

rithms that scale up the recognition problem without com-

promising performance. For an example of SVM, learning

algorithms of Stochastic Gradient Descent (SGD) [2, 31]

and Averaged SGD [22] are developed to train one-against-

all SVMs incrementally and in parallel for a large amount of

data. More recently, Krizhevsky et al., 2012 [16] extended

the convolutional neural networks [19, 33] to a deep fash-

ion with GPU implementation and achieved state-of-the-art

performance in ILSVRC-2012.

Aforementioned sparse coding (SC) is one of the most

popular approaches to learn the feature representation via

an unsupervised generative approach using a linear combi-

nation of over-complete bases with the sparse coefficients.

Amount of research work assume a known dictionary of

bases (also called codebook or weight matrix) and learn s-

parse representation (also called codes or coefficients) by

greedy approximation to �0-based problem (e.g., Match-

ing Pursuit (MP) [25], Orthogonal Matching Pursuit (OM-

P) [28]) or using a convex optimization for �1-regularized

problem (e.g. Basis Pursuit (BP) [3], FOCUSS [11] and

Lasso [32]). Another line of sparse coding research aim-
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Figure 1. The overview of proposed learning system for image classification.

s to learn a dictionary of bases, rather than use predefined

ones. Well-known examples include the pioneering work of

Olshausen and Field 1997 [26] to model neuronal respons-

es in the V1 area of the brain, K-SVD of Elad and Aharon

2006 [1], Online Sparse Coding of Mairial et al. 2010 [24]

and others [7, 21, 20, 14, 13]. Each dictionary learning al-

gorithm naturally contains a sparse representation solver for

an alternating minimization.

To go beyond the sparse coding that is based on a soft

quantization of dictionary elements, amount of research

work have been proposed to include higher order statistics

to model the dictionary distribution. A famous example is

the Fisher Kernel framework [29], which adopts Gaussian

Mixture Model (GMM) as a generative process of feature

elements and shows high accuracy in various tasks when

combining linear SVM classifiers [30, 31].

In this paper, we take advantage of state-of-the-art ap-

proaches in previous work. We deployed two feature cod-

ing schemes (i.e. sparse coding and Fisher vectors) to en-

code two grid-based dense feature descriptors (i.e., SIFT

and color statistics) respectively. The delivered four feature

representations are fused at two stages, first in a representa-

tion stage via catenation and second in a classification stage

using prediction confidence as a fusion weight. The pro-

posed framework showed a boosted classification accuracy

on a subset of ImageNet dataset when compared to respec-

tive feature representation and classification models without

fusion.

As discussed above, a large number of sparse coding

algorithms are available and can be split into two stream-

s: one for dictionary/codebook learning and the other for

sparse representation/coefficients/codes development. We

investigated the performance of sparse coding by compar-

ing the contribution of state-of-the-art algorithms in learn-

ing dictionaries and sparse representations. Although there

is a natural choice of sparse representation algorithm to pair

with dictionary learning (e.g., Orthogonal Matching Pursuit

with respect to K-SVD ), breaking such a pair and rematch-

ing is found to result in even better performance. Such

a decoupling scheme was previously conducted by Coates

and Ng 2011 [4] to investigate the importance of encoder-

s vs. sparse coding solutions for small and medium-scale

object recognition datasets. Here we are focused on explor-

ing optimal solvers within the sparse coding framework to

deal with large-scale object recognition problems. The re-

sults indicate that: (1) Regardless of choice of dictionaries,

learning algorithms for sparse representation mainly result

in performance variance. (2) In particular to our problem,

�1-regularized optimization algorithms in average perform

better than greedy approximating algorithms given �0-based

sparsity. (3) Even using a dictionary with random descrip-

tors (without training), the performance is surprisingly com-

parable to those using the trained dictionaries.

2. Learning Framework
The proposed system architecture for image classifica-

tions is shown in Fig. 1. Given an input image, the system

first extracts dense local descriptors, SIFT or color statistics

[30]. Then, each local descriptor is coded either using s-

parse coding or Fisher vectors (FVs), leading to 4 different

types of local feature codes. The feature codes are further

passed to the pooling with spatial pyramid matching (SPM)

to form a single vector for each image. We concatenate t-

wo SPM vectors from sparse coding channel and the other

two from Fisher vector channel. The concatenated vector of

each channel is fed into scalable SVMs for the object clas-

sification on large-scale ImageNet dataset. A final decision

is made given a fusion of class prediction confidence from

the two coding channels.

In what follows, we will describe the learning framework

with each computational component at each subsection.

2.1. Feature Extraction

We first use a simpler and faster version of SIFT algorith-

m, called dense SIFT to extract features, where the location,

scale and orientation of each keypoint are predefined rather

than extracted from a scale-space extrema. In our experi-

ments, 16×16 pixel patches are densely sampled from each

image on a grid, such that the center of each patch is con-

sidered as the keypoint. This yields a representation of the

image as a set of 128-dimensional (8 orientations× 16 his-

tograms) descriptors, with one descriptor representing each

patch in the grid.

We also consider color statistics as another type for fea-

ture descriptors, where we subdivide a 16× 16 image patch

into 4 × 4 subregions. In each sub-region, the mean and

standard deviation is computed for the R, G and B chan-

nels respectively. This yields a representation of the image

as a set of 96-dimensional (16 subregions × 3 colors × 2
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statistical measurements) vectors.

Given a training set containing a number of images

X = {X1,X2, ...,XN}, we have a corresponding train-

ing set with extracted feature descriptors (either SIFT or

color statistics), i.e., Y = {Y1,Y2, ...,YN}. Each Yi =

[y
(1)
i ,y

(2)
i ...,y

(P )
i ] represents a matrix containing each fea-

ture descriptor as a column vector, where P is the number

of feature descriptors for each image.

2.2. Sparse Coding

For the SIFT or the color descriptors among al-

l the images, we randomly choose K descriptors, i.e.,

{y(1),y(2)...,y(K)} to learn a dictionary D via sparse cod-

ing, such that

min
D,a(k)

1

K

K∑
k=1

{
1

2
||y(k) −Da(k)||22 + λΩ(a(k))

}
(1)

where Ω(a) is a function to enforce a vector sparsity, with a

controlled parameter λ. In this case, the dictionary learning

algorithm requires a matching sparse representation solver

to minimize the objective function in an alternating manner,

first with respect to a and then to D.

We utilized three different dictionary learning algorithms

in this paper:

1. K-SVD: K-SVD is a simple but an efficient dictionary

learning algorithm developed by Aharon et al. 2006

[1]. K-SVD solves Eq. 1 with regard to the sparse

vector first, where aforementioned Orthogonal Match-

ing Pursuit is used to approximate the solution to the

non-convex �0-regularized sparse problem. Second,

the dictionary is learned via a batch of input samples,

where only one column of D is updated at a time using

the singular value decomposition (SVD).

2. Lagrange dual: This is an efficient dictionary learning

algorithm proposed by Lee et al, 2006 [20], who devel-

oped a sign-search algorithm to solve �1-regularized

least squares problem with respect to a sparse vector

a. Then a Lagrange dual method is used to solve the

�2-constrained least squares problem with respect to a

dictionary D. Both problems above are known convex

with global minima.

3. SPAMS: SPAMS is a SPArse Modeling Software con-

taining an optimization toolbox for various sparse es-

timation problems. We used its dictionary learning

solver based on the paper published by Mairial et al,

2010 [24], where a Cholesky-based implementation of

the LARS-Lasso algorithm [27] is utilized to solve �1-

regularized sparse coding problem with respect to a s-

parse vector and a new online optimization algorith-

m based on stochastic approximations is developed to

learn a dictionary.

We use the trained dictionary to code every descriptor

and generate the sparse feature representation via an opti-

mization step as below,

∀y ∈ Y, min
a

1

2
||y −Da||22 + λΩ(a) (2)

Note that only sparse vector a is learned here, with a fixed

D. Each sparse vector a ∈ R
1024×1 represents one local

descriptor in an image.

We applied three different learning algorithms to com-

pute sparse representation in Eq. 2: (1) Orthogonal Match-

ing Pursuit [28]; (2) Sign-search optimization [20]; (3) a

variant of LARS-Lasso algorithm [27]. In fact, each learn-

ing algorithm here for sparse representation is used in one of

the dictionary learning algorithm above, but we found that

the natural choice of sparse representation algorithm that

matches the dictionary learning (e.g., Orthogonal Match-

ing Pursuit with respect to K-SVD) is not optimal to pro-

vide favorable feature representation for classification per-

formance. In other words, when the sparse representation

solver (in Eq. 2) mismatches the one in dictionary learn-

ing (in Eq. 1), we may surprisingly achieve more favorable

results.

2.3. Fisher Vector

Unlike the sparse coding based on a soft quantization

(zero-order statistics) of dictionary elements, Fisher vectors

encode the image descriptors assigned to each dictionary el-

ement via higher-order statistics [31]. Given a set of local

descriptors Yi = [y
(1)
i ,y

(2)
i ...,y

(P )
i ] for an image, uλ is

a Gaussian density function with a parameter set λ which

models a generative process of local descriptors for an im-

age, such that

uλ(y) =
M∑

m=1

wmum(y) (3)

where λ is a set of parameters {wm, μm, δm}(m =
1, 2...,M), respectively denoting the mixture weight, and

mean and variance of Gaussian um.

Let γi(m) be the soft assignment of descriptor y(p) to

the m-th Gaussian

γk(m) =
wmum(y(p))∑M

m=1 wmum(y(p))
, (4)

such that the Fisher vector Gy
λ is computed as the concate-

nation following two vectors:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Gy
μ,m =

1

T
√
wi

N∑
i=1

γi(k)

(
yi − μm

δm

)

Gy
δ,m =

1

T
√
wi

N∑
i=1

γi(k)

[
(yi − μm)2

δ2m
− 1

] (5)
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The parameter space uλ can be trained using the maxi-

mum likelihood estimation (MLE), and the final Fisher Vec-

tor is in dimension 2 × D × M , where D is the dimen-

sionality of the local descriptors, and M is the number of

Gaussians.

2.4. Spatial Pyramid Matching

As size of images varies in the training set, the number of

coded feature vectors varies as well for each image. Thus,

we need to further compute representations with an identi-

cal dimension in order to feed into a classification model.

Given a set of coded feature vectors for each image, a pop-

ular choice is to quantize the feature vectors and then com-

pute a histogram representation. This procedure is called a

Bag-of-Words (BoW) model [9], where the spatial order of

local feature codes is discarded.

In a more sophisticated SPM approach [17], we partition

an image into multiple segments, and max-pool the coded

feature vectors within each of the segments. The spatial or-

der of the feature codes is maintained across the segments,

and pooled vectors from various segments are then concate-

nated to form a spatial pyramid representation of an image.

For the sparse coding channel in our paper, each SPM

representation (either for SIFT feature or color statistics)

has 21504 (=1024 number of dictionary elements× 21 seg-

ments) dimensions. We catenated the two SPM representa-

tions and fed it into SVM for classification.

For the FV coding channel, each SPM representation has

dimension 2 × D × M × 8 (segments) given Eq. 5. We

conducted Principal Component Analysis (PCA) to reduce

both SIFT and color features to 64 dimensions, such that

D = 64 to compute FV. The number of Gaussians is set to

256. Catenation of the two SPM representations leads to a

single representation in dimension 524,288, which is further

fed into SVM for classification.

These high-dimensional image representations are

shown important to deal with large-scale image recogni-

tion problems. However, the high memory cost and I/O

latency to store/read/write such high-dimensional represen-

tations (especially for FVs) make the learning difficult or

even infeasible. As suggested by Sánchez et al. 2011 [31],

we compress the catenated SPM representation of FVs us-

ing the product quantization.

2.5. Classification Model

Given the training data {(Xi, ci)}, i = 1, 2, ...N , where

Xi is an image input and ci ∈ C = {1, 2, ..., L} is the cor-

responding class label of this image. Through each coding

channel in Fig. 1, each image Xi is finally represented as

a catenated SPM representation si. We used a one-against-

all strategy to train L binary linear SVMs, each solving the

convex optimization problem as follows

min
w,ξ,b

{
1

2
‖wl‖2 + C

n∑
i=1

ξi

}
(6)

s.t. f(ci)(wl · si − bl) ≥ 1− ξi, ξi ≥ 0

where f(ci)= 1 if ci = l, otherwise f(ci) = −1 (l =
1, 2, ..., L).

There have been amount of SVM solvers available, but

most of them are not feasible for such huge training data.

We use an incremental learning algorithm called Averaged

Stochastic Gradient Descent (ASGD) [22] to train a decom-

pressed image presentation per time, without a need to load

the whole training set. This important property of ASGD

makes the learning scalable for such a large-scale problem.

Rather than a maximum operation to predict a class label

of a testing sample, we further estimate a confidence score

for each SVM prediction [36], such that the output of a test-

ing sample is a distribution of confidence likelihood. A final

class prediction is based on an averaging of the confidence

outputs respectively from sparse coding and FV channels.

3. Experimental Results
In the experiments, we evaluated the learning framework

on the ImageNet dataset [6]. ImageNet is a first and unique

image database containing 15M labeled images belonging

to 22K object categories, which are organized according

to the WordNet hierarchy of meaningful concepts. About

1000 images are included in each concept meaning/label in

the ImageNet, and some of them are human-annotated for

object detection purpose. A subset of ImageNet with 1000

categorise (most of which are from leaf nodes in the seman-

tic hierarchy) is extracted from the ImageNet to establish an

annual competition called the ImageNet Large-Scale Visual

Recognition Challenge (ILSVRC) since 2010. There are in

total of 1.2M training images, 50K validation images, and

150K testing images for the challenge.

We selected 196 categories with their images from

ILSVRC-2012 dataset to conduct visual object recognition

using the described learning system. We preprocessed al-

l the images such that when a shorter size of the image is

larger than 256, we re-scaled the images by a certain ratio

such that the shorter size of the image is equivalent to 256.

3.1. Sparse Coding Performance

We first invetigate the performance of sparse coding by

comparing different pairs of algorithms in learning a dictio-

nary and sparse representations. As discussed in Secs. 2.2

and 2.3, three dictionary learning algorithms, i.e., K-SVD,

Lagrange dual (LD) and SPAMS and three sparse represen-

tation algorithms, i.e., Sign-search, LARS-Lasso and OMP

are included in this experiment, those of which represent

state-of-the-art approaches at the current time.
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Table 1. Top-5 accuracy rate of sparse coding channel (%).

K-SVD LD SPAMS Random
Sign Search

84.62 84.43 84.31 84.28
(λ = 0.15)

LARS
84.24 84.47 84.20 84.02

(λ = 0.15)

LARS
83.86 84.11 84.32 83.43

(λ = 0.3)

OMP
83.14 82.42 83.03 82.07

(L = 10)

OMP
79.68 78.57 79.36 77.94

(L = 100)

Table 1 shows how the classification accuracy varies giv-

en several choice of parameters, as well as different pairs of

learning algorithms. The number in each cell presents a top-

5 accuracy rate – the fraction of testing images for which the

correct label is among the five labels considered most prob-

able by the model. The top-5 rate is a useful measurement

for the ImageNet dataset, where each image may contain

more than one object (presumingly up to 5). Note that we

did not explore the parameter space with all possible values,

but referred empirical studies about favorable settings of s-

parse coding parameters in visual recognition tasks [37][4].
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Figure 2. Mean and standard deviation of top-5 accuracy rates with

respect to (a) the dictionary learning algorithms across different

sparse representations. (b) the sparse representation algorithms

(given various parameters) across different dictionaries.

From Table 1, we can observe that: (1) When learn-

ing sparse representations, �1-regularized optimization al-

gorithms (the first three rows) in average perform better than

greedy approximation algorithms given �0-based sparsity

(the last two rows). (2) Regardless of a dictionary choice,

learning algorithms for sparse representation mainly result

in performance variance, as indicated in Fig. 2. (3) Even us-

ing a dictionary with random SIFT or color patches (without

training), the performance is yet comparable to those using

the trained dictionaries (see the last column in Table 1).

The results in Table 1 also indicate that a natural choice

of sparse representation algorithm that matches the dictio-

nary learning (e.g., Orthogonal Matching Pursuit with re-

spect to K-SVD) may not be optimal to provide favorable

feature representation for classification performance. Fi-

nally, we selected the best-performed K-SVD algorithm for

dictionary learning and Sign-search algorithm for the sparse

representation in the learning system.

3.2. Overall Classification Results
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Figure 3. Top-5 accuracy rate per class for ImageNet-196.

Fig. 3 shows the top-5 accuracy rate per class for

ImageNet-196, using both sparse and Fisher vectors for fea-

ture representation and with fusion of classification results.

The proposed learning system reached 90.64% overall ac-

curacy rate for the top-5 prediction.

As discussed in Sec. 2.5, we estimate confidence likeli-

hood for SVM prediction of output classes. In Fig. 5, we

plot some examples of testing images, along with their pre-

dicted confidence outputs. Each confidence output is nor-

malized with respect to the top-5 classes. The left column il-

lustrates some easy cases (with high confidence regarding a

particular class that is correctly predicted) and the right col-

umn illustrates some tough cases of the same class, showing

very different distribution patterns (with uncertainness and

incorrectness about the ground truth). Fig. 4 plots the mean

of normalized confidence outputs for testing images within

4 selected classes, i.e., “tiger cat”, “race car”, “snowmobile”

and “stinkhorn”. It also shows the most “confusing” classes

(with comparatively high probability) for each of the select-

ed classes, e.g., “lynx” and “snow leopard” with respect to

“tiger cat”. The interpretation of these correlated classes

can help the system target on difficult case for a fine-tuned

classification to further boost system performance.

The top-5 accuracy for each class varies in ImageNet-

196. We illustrated several examples for object classes that
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Figure 4. Mean of normalized confidence outputs for testing images within 4 selected classes, whose label names are displayed in red. In

the meanwhile, the most “confusing” (“correlated”) classes for each of the selected class are displayed in cyan.

delivered the worst performances, as shown in Fig. 6. As

we can see, examples within each class are highly variant

(e.g., different object forms, backgrounds, poses, sizes, col-

ors, occlusions, and light conditions, etc.), indicating the

challenge of these object categories per se.

4. Conclusion

In this paper, we integrated two feature coding schemes

(i.e. sparse coding and Fisher vector coding) to respectively

encode two grid-based dense feature descriptors (i.e., SIFT

and color statistics). The delivered four feature representa-

tions are fused in two stages, first in a representation stage

and second in an SVM classification stage. We used the

Averaged Stochastic Gradient Descent (ASGD) algorithm

to enable fast and incremental learning for SVMs and uti-

lized confidence outputs to interpret the likelihood of each

object class. The likelihood values are further used as con-

tribution weights to combine classification results. The pro-

posed learning system led to 90.64% top-5 accuracy rate on

a subset of ImageNet (∼ 200, 000 images for 196 classes).

We further investigated the pairs of algorithms for dictio-

nary learning and sparse representation development. The

results show that the algorithms for sparse representation

Syringe

Ladle

Knot

Drum stick

Paintbrush

Figure 6. Examples of object classes that deliver the lowest top-5

accuracy in ImageNet-196.

mainly determined the classification accuracy, regardless of

the choice of dictionaries. Matching the sparse represen-

tation algorithm with the one included in each dictionary

learning does not guarantee to deliver a better performance.
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(a) (b)
Figure 5. Examples of testing images and predicted likelihood outputs for class “ostrich”, “bulbul” and “barn spider”. Each row denotes

one class, where the left example shows an easy case and the right one shows a hard case.

Instead, the choice of sparsity itself plays a key role, where

optimization of the �1-regularized sparse problem in gen-

eral is superior to greedy approximation to the �0-based s-

parse problem in our task. In fact, even using an unlearned

dictionary with imprinted random patches, once we choose

suitable algorithms for sparse representation, the perfor-

mance is still comparable to those with expensive trained

dictionaries.

Future work will be focused on scaling up the current

framework to handle more classes in the ImageNet. As our

learning framework provides confidence likelihood regard-

ing each class, a hierarchical decision model that assesses

the distribution of confidence outputs and targets on diffi-

cult case for further fine-tuned classification is promising to

boost the performance.
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