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Abstract

Medical image search is a significant way to provide sim-
ilar clinical cases for doctors. Text based and content based
image retrieval techniques have been widely investigated in
the last decades. However, handling text-missing images
and large scale medical database is still challenging. Tra-
ditional methods may encounter unsolvable efficiency prob-
lem or storage problem when tackling millions of images
with general computers. In this paper, we employ an effi-
cient PCA hashing based method for mapping raw features
into locality preserving binary code. We focus on investi-
gating the efficiency of PCA hashing while maintaining its
competitive performance in medical image search. Ranking
aggregation is used to achieve fusion of different features or
fusion of retrieval results, which significantly improves sin-
gle feature retrieval rate and thus compensates the overall
accuracy. Without significantly sacrificing the retrieval ac-
curacy, the benefit is a huge gain in physical memory and
runtime efficiency. Experimental results show that hashing
methods achieve far lower memory and far less time con-
suming handling large scale database.

1. Introduction
Last half century has witnessed fast development of

digitalized medical image acquisition techniques, such as,

Computed Tomography (CT), Magnetic Resonance Imag-

ing (MRI) and ultrasound. These various modalities of

medical images provide significant help for diagnosis.

However, as the amount of images is growing explosive-

ly, how to retrieve these images efficiently and effectively is

becoming an urgent issue.

Searching by image content has been extensively inves-

tigated in the past several decades [20, 22, 15]. An amount

of applications appear in medical research and diagnostic-

s [14, 3, 18]. Ranking images by content, i.e., image feature

similarity, we can find candidates from the image reposito-

ry, which are most relevant to the query image. A compre-

hensive overview about the development of medical image

retrieval can be found in [14]. Dina et al. [4] proposed a

supervised method to combine text and image information

for annotation and retrieval. Devrim et al. [24] focused on

extracting efficient features for medical image search. Kim

et al. [10] explored the information of relevant regions in

medical Content Based Image Retrieval (CBIR). Most of

the previous investigations on medical image retrieval are

based on small datasets, in which case, the storage and com-

putational complexity are not major concerns. However,

as database volume and feature dimensionality are increas-

ing, those methods with promising performance in small

datasets become impractical, if both of the time complex-

ity and physical memory are taken into consideration. This

motivates us to design a medical image search framework

which can potentially tackle scalable image database.

Feature similarity measurement lies in the heart of CBIR

and it largely determines the efficiency of image retrieval

systems. To achieve fast similarity search in large scale

dataset, vocabulary tree based methods [2, 15] and hash-

ing based methods [19, 25] are explored to seek a tradeof-

f between search precision and efficiency. Many previous

systems in medical image retrieval are based on the vocab-

ulary tree, while hashing methods haven’t been widely ap-

plied in this area. Hashing methods are effective because

of their lower memory requirement and higher efficiency,

especially when data dimension is high. It has been the-

oretically and experimentally proved that binary code de-

rived from hashing can map similar images to the same en-

try with high probability [17]. A large efficiency gain in

data storage and computation can be achieved by the com-

pact binary code rather than the original feature. One of

the pioneering works [23, 21, 6, 30] of this method is Lo-

cality Sensitive Hashing (LSH) [1, 11], which randomly

projects the data and generates binary code with a random

threshold. Recently, by making use of the data distribution,

many data dependent code learning methods have been pro-

posed [7, 27, 26, 13, 12]. These methods can better preserve

feature similarity compared with data independent hashing

methods, such as LSH, of which compact binary codes are

measured by hamming distance.
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Encouraged by the success of the above mentioned hash-

ing methods in large scale image search, in this paper we

aim to leverage data-dependent hashing-based techniques

to assist scalable medical image search. In our framework,

each image is initially denoted by a high dimensional fea-

ture descriptor. As many other binary coding methods do,

we employ Principal Component Analysis (PCA) first to re-

duce data dimensionality. Furthermore, to get the compact

binary code, we employ a recently proposed optimal rota-
tion based hashing method [7], which minimizes the error

between the principal component features and the derived

binary codes. We finally conduct search experiments on

public scalable medical image database ImageCLEF [9] to

validate the effectiveness of the hashing method with stan-

dard retrieval measurements. Results demonstrate that re-

trieval time and memory are far less than general methods

while precision is little sacrificed.

The rest of the paper is organized as following. Section

2 introduces our medical image retrieval framework dealing

with large image repository. Experiments are conducted in

section 3, comparing hashing results with original feature

results and the rank aggregated result with single feature

results. Section 4 concludes our work according to the ex-

perimental results.

2. Methodology

2.1. Framework
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Figure 1. The workflow of Medical Image Retrieval Framework

consisting the offline storage and online query modules.

Our image query framework is illustrated in Figure 1.

It mainly includes two parts: (1) Off-line database con-

struction. By extracting raw features, such as GIST [16],

HSV and RGB, we obtain visual image features includ-

ing texture, color and illumination. Then features are com-

pressed using our PCA hashing method. The binary codes

representing medical images are stored at feature database.

(2) Online query. Given a pathological query image, the

same feature extraction step is taken and the feature vec-

tor of query image is also translated into binary codes. As

feature fusion techniques can further improve the perfor-

mance [5, 8, 29, 28], after finding Nearest Neighbors (NNs)

from different feature databases, our framework would gen-

erate the query list by aggregating these rank results [5].

This is an efficient way to improve accuracy. Nearest neigh-

bors reflect local topological structure essentially. As long

as the binary codes preserve the local topology, NN is a

canonical and efficient way to depict the similarity.

The online query part is undoubtedly the key factor to

decide retrieval performance. While running the query sys-

tem, the feature database is pre-loaded into PC memory for

efficiency consideration. Since the image number could be

millions, our PCA hashing technology crucially determines

whether the PC memory will overflow. In running time as-

pect, feature extraction, feature encoding and similarity cal-

culation are three time consuming steps. Therefore, we de-

sign and choose most expressive features, develop efficient

algorithm of binary code and implement the rank aggrega-

tion. Figure 2 shows some visual retrieval rankings of med-

ical images.

2.2. PCA and Optimal Rotation based Hashing

Generally, optimization of time complexity and feature

storage comes from the dimensionality reduction of fea-

ture vectors. Karhunen-Loeve Transform (KLT) linearly

projects data into uncorrelated dimensions. Further, the

principal components are picked to remove noise and in-

significant components while preserving most information

of original features. So we search a way linearly project-

ing raw features into orthogonal principal components and

binarizing the reduced features with minimal loss.

PCA based Hashing: Raw features (e.g. GIST, HSV)

are usually hundreds or thousands of float numbers long,

and may be redundant and noisy. Our goal is to map the

primal features into concise but expressive codes. Such

mapping could keep the most information of the original

data. Larger variance reveals more information according

to Shannon’s information theory. In the mean while, from

statistical aspect, redundancy mainly refers to the correla-

tion among feature vectors. For example, two feature vec-

tors have no correlation if they are orthogonal to each other.

Thus, we expect to find a transformation T such that the

new feature vectors maintain the largest variance while they

are orthogonal to each other. The objective function is:

argmax
T

V (T ) = argmax
T

∑
k

E(‖xtk‖22) (1)

Ensembling each feature vector x into a feature matrix X:

V (T ) =
1

n

∑
k

tkX
TXtk =

1

n
tr(TTXTXT ),

TTT = I (2)

From above, actually we take Principal Component Anal-

ysis (PCA) on the feature matrix X . We try to find the

projection matrix T on XTX so that the variance, which
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Figure 2. Visual modality retrieval rankings of Medical images, computed tomography (CT), fluorescence microscopy (FL) and histopathol-

ogy (HX), the first column are query images, the other columns are retrieval images by ranking

are the eigenvalues of XTX , is maximized. If the limit-

ed length of shortened feature is a, we would pick the first

a eigenvalues and their corresponding eigenvectors to form

the projection matrix T . A straightforward way to hash the

reduced feature is binarizing the reduced feature into 0-1

code. However, brute force binarization incurs large quan-

tization error, which cannot preserve the locality of original

features.

Optimal Rotation based PCA Hashing: To solve the

above mentioned problem, we seek to further shrink the fea-

tures while keeping the feature space’s neighborhood struc-

ture. Hashing based method would maintain the neighbor-

hood property by randomized hashing functions. In the

same way, we want to search some mapping function to

keep the neighborhood structure. Getting aid from image

encoding area, quantization is a significant strategy to com-

press the image size. Here if the feature vector is quantized

into binary code, the storage of feature database would de-

crease greatly. Thus, we seek to minimize the binarization

error between the binarized feature matrix Q and the feature

matrix L generated by PCA. However, since Q = sgn(L)
(sign function outputs 1 for positive input, otherwise 0) is

determined with fixed L, it seems the error is a fixed quan-

tization error.

Fortunately, the projection matrix W is not unique. Dif-

ferent W may cause different quantization errors. Actually,

all those W are linearly dependent with each other. The

translation is from one coordinate system to another. E-

quivalently, we could formulate the translation by a rotation

matrix R. If we add such orthogonal rotation matrix R onto

the projection matrix, it still holds the optimality for new

projection matrix TR at PCA step. Thus, our aim is to find

R, such that the quantization error is minimized.

φ(L,R) =argmin
R

‖Q− LR‖2F , Q = sgn(LR) (3)

The quadratic program is hard to solve by optimization

problem solvers because sign function can not be differen-

tiated. We take Frobenius norm measurement during the

optimization process. Intuitively, given two variables, in or-

der to pursue the minimum, we would fix one variable and

minimize the objective function over the other and vice ver-

sa. The basic idea is to alternatively fix R and Q and push

the objective function towards local minima.

(1) If R is fixed, the problem becomes:

φ(L,R) =‖Q‖2F + ‖LR‖2F − 2tr(QTLR) (4)

Since Q is n× t, ‖Q‖2F ≤ na. The R step is:

φ̃(L,R) = argmax tr(QTLR)

= argmax
( n∑

i=1

t∑
j=1

QijPij

)
, P = LR (5)

As Qij = {1,−1}, P and R are fixed, Qij must be posi-

tive 1 if Pij is positive and negative 1 if Pij is negative to

achieve maximum. Thus Qij = Pij .

(2) If Q is fixed from the last step, we want to search

new R to minimize the quantization error. It is actually the

orthogonal Procrustes problem

φ̃(L,R) = argmax tr(RQTL) (6)

= argmax tr(RUΛST )

= argmax tr(ΛSTRU), QTL = UΛST (7)

Equation 6 and Equation 7 hold because diagonal elements

remain the same no matter the order of two matrices mul-

tiplication. Since R and QTL are both a × a matrices, we

consider the SVD decomposition over QTL. Since S, R
and U are all orthogonal matrices, STRU is also an orthog-

onal matrix, whose entries are no greater than 1. In order to
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Algorithm 1 Alternative R&Q optimization.

Input: Initialized random rotation matrix R ∈ Ra×a,

data matrix L after PCA.

Output: Optimized rotation matrix R.

repeat
R step: fix R, Q = sgn(LR)
Q step: fix Q, do SVD on QTL,QTL = UΛST , R =
SUT

until halting criterion is true

meet the maximum, those diagonal entries of STRU must

be 1, and all other entries equal 0. Otherwise the output is

just a portion of the diagonal elements of Λ:

I = STRU ⇔ R = SUT (8)

Though the approach is not guaranteed to reach glob-

al minima, the near-optimal objective value could bring

us good enough retrieval precision but takes milliseconds,

which can be verified from the experiments. The procedure

is summarized in Alg.1.

The stop criterion of Alg.1. can be set as limited iteration

number or two consecutive quantization errors’ gap is with-

in certain fixed margin. Practically both of the two methods

are effective to obtain R and Q.

3. Experiments
3.1. Experimental settings

Our experiments are conducted on the public Image-

CLEF [9] medical database, containing 231k images with

18 different modalities, such as CT, MRI, ultrasound, etc.

The modality information of 137k images from ImageCLE-

F database is manually labeled as the ground truth for e-

valuation. We take the 5 largest volume modalities as

our retrieval tasks, which are graphs(GX), histopatholo-

gy(HX), computed tomography(CT), fluorescence(FL) and

x-ray(XR). Our goal is to demonstrate the effectiveness of

the optimal rotation based PCA hashing technique.

In feature extraction aspect, we use GIST feature, HSV

and RGB color feature. GIST feature depicts texture infor-

mation of images, which is also known as Gabor multi-scale

multi-directional wavelets. In Gabor model with Euclidean

distance measurement, noise is assumed Gaussian and thus

feature difference is l2-norm based. HSV and RGB are typ-

ical color models for feature extraction step.

For different features, we run 545 query images which

are not in the 137k image database. Our main con-

cern is: when features are reduced by PCA, and they

are continuously binarized by PCA hashing, how would

the performance decrease from without such dimension-

ality reduction strategies. Thus we design four main

tasks: (1) original GIST with l2 measurement (GIST),

(2) applying PCA on GIST using l2 measurement(GIST-

PCA), (3) Binarizing the PCA result using hamming

measurement(GIST-PCA-BIN), (4) The hashing method

using hamming measurement(GIST-PCA-SC). Note that

those four tasks are raised on HSV and RGB features in

parallel. In the last step, rank aggregation to combine GIST,

HSV and RGB results is adopted to boost the performance.

3.2. Experimental Results

Figure 3 presents precision-recall curve comparison on

those four step-in methods, GIST, GIST-PCA, GIST-PCA-

BIN and our method GIST-PCA-SC. GIST performs the

best of the four methods, since other methods lose informa-

tion through dimensionality reduction. Using only 32-256

bits, the hashing method shown in red curve, is just slight-

ly worse than the GIST and GIST-PCA methods, but far

above the PCA hashing GIST-PCA-BIN result. The preci-

sion gap between the hashing one and GIST is within 0.1

when code length is 256 bits. As the code length decreases

from 256 to 32 bits, it can be noticed that the precision gap

between GIST-PCA-SC and GIST does not increase signif-

icantly. The gap remains within 0.1 no matter the recall rate

is, which shows that the hashing method is not sensitive to

specific query image. All the evidence reveals that the per-

formance of the hashing method does not drop significantly

when code length varies from 256 to 32 bits.
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Figure 4. Rank aggregation on GIST/HSV/RGB-PCA-SC retrieval

results.

Table 1 compares the other three methods, the hashing

method with 256, 128, 64 and 32 bits and the final Rank ag-

gregation result from GIST, HSV and RGB features. They

are measured based on precision at top 5, 10 retrievals,

mean Average Precision (mAP), query time and memory

cost. Quantitatively, the largest gap between GIST and

GIST-PCA-SC is no larger than 0.1 and again convinced

that the drop of performance due to code length compres-

sion is not striking. Moreover, the final rank aggregated re-

sult performs even better than original GIST method from
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Figure 3. Precision recall curve for the hashing method (GIST-PCA-SC) with 256, 128, 64 and 32 bits binary code, compared with original

GIST feature, applying PCA on GIST (GIST-PCA), binarizing on PCA result (GIST-PCA-BIN).

Table 1. Comparison of GIST, GIST-PCA, GIST-PCA-BIN and GIST-PCA-SC (which is denoted as SC in the table) methods over precision

at 5, 10, mean Average Precision (mAP), query time for one search and memory cost of database 137k images.

GIST GIST GIST SC SC SC SC Rank

PCA PCA,BIN (256 bits) (128 bits) (64 bits) (32 bits) Aggregate

P@5 0.776 0.765 0.532 0.737 0.732 0.713 0.689 0.782

P@10 0.760 0.734 0.492 0.714 0.700 0.679 0.667 0.753

mAP 0.771 0.751 0.527 0.738 0.725 0.700 0.685 0.767

time(ms) 0.998 0.998 0.0172 0.0172 0.0116 0.0041 0.0038 0.0172

memory(bits) 6.2G 1.6G 26M 26M 13M 6.5M 3.2M 26M

Table 1. Though hashing decreases accuracy by losing in-

formation from original features, rank aggregation attempt-

s to combine features from different aspects and improve

the accuracy. The striking improvement is memory. We in-

ferred the GIST memory by its storage on hard disk which is

equivalent in memory as the training data could not be fully

loaded into memory. The statistics reveals that hashing bi-

nary code brings 238 times less memory than original GIST

method based on 256 bits binary code, which makes it pos-

sible to load the whole database into memory. For running

time evaluation, we provide the average time for one search

in the database. Given our 137k dataset, we need 137 sec-

onds to finish the whole query of the dataset by GIST. But

only 2.35 seconds are needed by 256 bits GIST-PCA-SC to

accomplish a query. The case of 32 bits approaches 0.52
seconds to complete a query of 137k dataset, which makes

the query of whole database real time. Figure 4 shows the

result of Rank Aggregation on GIST-PCA-SC, HSV-PCA-

SC and RGB-PCA-SC retrieval results, from which we ob-

tained an obvious enhancement in the final accuracy perfor-

mance, which is a significant improvement of single feature

methods.
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Experimental results demonstrate that the hashing

method achieves better performance than original single

feature methods. Further the feature size shrinks from t-

housands of float numbers to 256 bits, which leads to 238
times less memory consuming than original GIST method.

While the query time decreases from 137 seconds to 0.52

seconds, which is 263 times faster and guarantees instant

query for entire database.

4. Conclusions

In this paper, we employed a PCA hashing based tech-

nique to achieve scalable search in medical image database.

It overcomes fallacies of traditional retrieval methods in

volume and speed aspects. Verified from public database

and standard evaluation, it is able to tackle million-volume

image repository in real time almost without pulling down

performance in accuracy. Low memory cost and real-time

query speed reveal its wide applicability in medical image

field. However, in this paper we only tested on the modal-

ity recognition problem, which is a relatively easy task in

medical image retrieval. Future work includes validation

on challenging clinical use cases.
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