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Abstract

Face recognition is becoming a widely used technique
to organize and tag photos. Whether searching, viewing,
or organizing photos on the web or in personal photo al-
bums, there is a growing demand to index real-world pho-
tos by the subjects in them. Even consumer platforms such
as Google Picasa, Microsoft Photo Gallery, and social net-
work sites such as Facebook have integrated forms of auto-
mated face tagging and recognition; furthermore, a num-
ber of libraries and cloud-based APIs that perform face
recognition have become available. With such a plethora of
choices, comparisons of recent advances become more im-
portant to gauge the state of progress in the field. This paper
evaluates face identification in the context of not only re-
search algorithms, but also considers consumer photo prod-
ucts, client-side libraries, and cloud-based APIs on a new,
large-scale dataset derived from PubFig83 and LFW in a
realistic open-universe scenario.

1. Introduction
Face recognition, a popular topic of research for sev-

eral decades, has matured significantly in recent years, es-

pecially in real-world applications where realistic, uncon-

trolled faces must be robustly identified. Increasingly bet-

ter and less expensive consumer hardware, especially cam-

eras, computers, storage, and Internet speeds, have spurred

growth in personal photo collections. Furthermore, the

amount of video has grown significantly as well, both home

videos stored on the computer or uploaded to the Internet,

and the availability of movies, security camera videos, and

webstreams. As the amount of photo and video content

grows, organizing and searching for photos becomes an in-

creasingly difficult task. Face recognition offers a way to

tag photos automatically by the people they contain, allow-

ing easier indexing and searching by people of interest.

In fact, recently, face recognition has become mature

enough to be increasingly integrated into consumer prod-

ucts. Apple and Google first released face recognition en-

(a) (b)

Figure 1. In many real-world applications, face recognition con-

sists of identifying faces from a set of classes in a training gallery

(e.g. George Clooney and Angelina Jolie) while ignoring all other

background (or distractor) faces. In this case, face identification

algorithms must output not only an identity, but a confidence as

well; thus, distractor faces can be rejected and only faces belong-

ing to a predefined set of identities recognized.

gines built into their respective products iPhoto and Picasa

Web in 2008, and were later followed by deployments from

Facebook and Microsoft in 2010. New cloud-based APIs,

first popularized by face.com (later bought by Facebook),

offer very easy to use server-side solutions for monthly sub-

scriptions. Moreover, face recognition is being increasingly

integrated into more specialized devices such as smart-

phones, game consoles, and other gadgets, like the new An-

droid Face Unlock authentification feature.

Currently, there exists several standard benchmarks and

datasets (e.g. Ext. Yale B [6], AR [7], and FERET [10]) for

evaluating face recognition variations in illumination, pose,

expression, etc. However, performance on these datasets

has become relatively saturated. In uncontrolled environ-

ments, there are comparisons in face verification, where the

task is to determine similarity between two face images,

and in face identification, where the task is to determine the

identity of a face. However, few of these comparisons and

datasets consider realistic usage scenarios or compare to a

wider range of available face recognition solutions.
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This paper introduces a new, open-universe dataset

that combines two existing datasets (PubFig83 [12] and

LFW [3]) to simulate the far more realistic context for face

recognition, where the goal is identifying specific celebri-

ties in crowded environments while rejecting (i.e. not label-

ing) background faces. The key contribution is the eval-

uation of not just other research algorithms published in

computer vision and biometrics venues [8,9,13,15–18], but

an exploration of open-universe face identification perfor-

mance across multiple segments of the field. Furthermore,

unlike vendor tests like the Face Recognition Vendor Test

(FRVT) [11], a wide variety of solutions, not just those that

voluntarily enroll, are considered.

In this paper, we perform a shallow, but wide prelim-

inary survey of face recognition, using the realistic, web-

based challenge of identifying only particular celebrities in

web photos as a basis for evaluating the state of the field.

Aimed primarily as a benchmarking paper, we target four

different segments of face recognition: research algorithms,

client-side libraries, cloud-based APIs, and consumer appli-

cations. Section 2 begins by providing a short background

on face recognition and introduces the dataset we use for

real-world face identification in an open-universe scenario.

Section 3 provides an overview of the software, methods,

and evaluations used in this paper. Section 4 shows results

on the introduced dataset across a wide segment of face

recognition approaches. As this is only a preliminary study,

Section 5 ends with a summary, key-insights, and ideas for

future work to more fully evaluate face recognition.

2. Background & Dataset
In this section, we outline three general approaches to

face recognition and introduce a new dataset based on

the Public Figures [5] and Labeled Faces in the Wild [3]

datasets.

2.1. Closed-Universe Face Recognition

Face recognition has long been a popular research topic

in academia, starting with the landmark Eigenfaces ap-

proach of Turk et al. [14]. At the start, faces were

drawn from constrained environments where pose, illumi-

nation, etc. were highly controlled amongst a limited num-

ber of people. Most papers assumed a closed-universe,

where the sole goal of face recognition was to provide the

identity of a test face only drawn from the set of known

identities in the training gallery. In this scenario, there is

no concept of an impostor or distractor face representing

an individual not in the training gallery. However, closed-

universe face recognition is of limited use because for most

real-world applications, there are many faces of identities

that the algorithm encounters that it should ignore. For in-

stance, Pinto et al.’s [12] introduction and evaluation of the

PubFig83 dataset assumes that all faces presented to the

algorithm will have an identity contained in the 83 train-

ing gallery individuals. For applications such as finding

pictures of celebrities on the web or identifying actors in

movies, such an assumption is unreasonable as there will be

a great deal of faces of random people in the background.

2.2. Open-Universe Face Verification

In an effort to facilitate the development of face recog-

nition algorithms designed for real-world photos where the

pose, illumination, etc. is not controlled, Labeled Faces in

the Wild (LFW) was introduced in [3]. Going back to the

foundations of face recognition, they posed the task as de-

termining if two faces represent the same individual (or

identity). This dataset and concept has been a catalyst for

the move from limited, artificial datasets to more natural,

realistic faces and has resulted in an intense focus on more

robust algorithms. Because many of these methods focus on

comparing two images and determining if they are the same

or not same, some non-straightforward modifications would

need to be made to these sets of algorithms to robustly per-

form face identification, which would most likely result in

additional computational overhead.

2.3. Open-Universe Face Identification

In contrast to closed-universe face recognition, which

seeks to only provide an identity given a face, and open-

universe face verification, which only provides same/not

same predictions for pairs of images, open-universe face

identification seeks to identify a set of individuals it has

been trained on while ignoring faces from all other individ-

uals. For instance, consider the task of finding celebrities

and other public figures on the web: many, if not most of

the faces encountered on the Internet are not of a particular

set of celebrities and should be ignored, i.e. not labeled by

the algorithm. In essence, open-universe face identification

must perform closed-universe face recognition with one im-

portant distinction: in addition to providing a prediction of

the identity of the face, the algorithm must also provide a

confidence of the prediction. By setting a threshold on this

confidence, background faces can be rejected.

2.4. Open-Universe PubFig83+LW Dataset

Pinto et al. [12] introduced a new dataset PubFig83 for

face identification research that is a modified subset of the

Public Figures [5] dataset originally intended for applica-

tion to face verification. They removed duplicate and near-

duplicate photos, cleaned up the database, and removed in-

dividuals with few photos. Similar to [9], we introduce a

new, open-universe dataset that is suited for manual eval-

uation as well as automatic evaluation. The new dataset

combines the PubFig83 and LFW datasets, where the 83 in-

dividuals from PubFig represent the test images and train-

ing gallery, and all the remaining individuals from the LFW
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dataset represent the distractor gallery or background faces.

To create the PubFig83+LFW dataset, we randomly di-

vided all the faces from each individual in PubFig83 into

two thirds training faces and one third testing faces. We

then removed any overlapping individuals from LFW and

added them as distractors to PubFig83. Face images were

resized to 250x250, following LFW conventions and ensur-

ing photos would not be too small for consumer applications

to scan for faces. To improve the chances that all the faces

would be suitable for a wide variety of face detection and

analysis algorithms, we ran all the face images through the

SHORE, PittPatt, Google Picasa, Microsoft Photo Gallery,

and Apple iPhoto face detectors and only kept faces that

were detected by every software package. It is likely there

are faces still present that will pose analysis problems for a

particular algorithm, but hopefully this chance is reduced.

The resulting PubFig83+LFW dataset has 83 individu-

als with 8,720 faces for training and 4,282 faces for testing

and over 5,000 individuals from LFW with 12,066 faces for

background and distractor faces that algorithms should re-

ject. The PubFig83+LFW dataset will be released to the au-

thor’s website (http://pubfig83lfw.briancbecker.com) in its

entirety, including raw images, aligned images, feature rep-

resentations, and source code for analyzing algorithm per-

formance. A sample subset is shown in Figure 2.

3. Methods & Evaluation
In this section, we overview four different segments or

domains of face recognition: Research, Client-Side, Con-

sumer, and Cloud-Based, which is a non-exhaustive, but

representative list of common face identification platforms.

We also describe evaluation metrics so face recognition ap-

proaches are reasonably comparable.

3.1. Research Algorithms

A very large number of face recognition algorithms have

been described over the years in research papers; in fact, a

comprehensive survey would require much more space than

is available here in this paper. Hence, we focus on a select

subset of popular and recently introduced face identifica-

tion algorithms. Recently, using linear combinations of the

training gallery to represent test faces has gained popular-

ity, thus many of the methods we test with are derivatives of

this robust approach. We omit face verification algorithms,

such as those popular on the LFW dataset, because taking

the classification of pairwise faces as same/not same and

applying it to open-universe identification is still an open

question not well addressed by current literature.

3.1.1 Face Preprocessing

For a fair comparison between all face identification ap-

proaches and to keep classification results comparable, we

Figure 2. Example face photos from the PubFig83+LFW dataset.

The top three rows are sample faces from training individu-

als from PubFig83: George Clooney, Angelina Jolie, and Ehud

Olmert. The bottom row contains distractors from the LFW

dataset that serve as background faces that face identification algo-

rithms should reject as not being part of the 83 people to recognize.

apply a consistent set of preprocessing techniques to all im-

ages. All images are first aligned with a similarity trans-

form using the eye-positions reported by the PittPatt SDK.

Images are cropped and illumination-compensated by ap-

plying a plane normalization and histogram normalization.

Finally, a standard set of features (raw pixels, HOG, Ga-

bor, and LBP) were extracted and concatenated to form a

8,846 length feature vector. Features are unit normalized

and reduced to 1,024 dimensions with PCA. Given a face

detection with eye positions, the process of aligning, nor-

malizing, and extracting features takes 30-50 ms per face.

3.1.2 Research Methods

For the purposes of this paper, we focus on algorithms of

historical importance (nearest neighbor and SVMs) and new

linear representation-based algorithms such as SRC and

least-squares that have been shown to be robust.

Nearest Neighbor (NN) is perhaps the simplest of all

approaches, selecting the identity of a test face by find-

ing the identity of the closest training sample in Euclidian

space. Confidence is measured as the distance magnitude.

Support Vector Machines (SVMs) is a binary classi-

fication technique that calculates a separating hyperplane

between a positive and negative class. We use the fast,
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large-scale LIBLINEAR [2] SVM training library to gen-

erate one-vs-all models using a linear kernel in high dimen-

sional space. Distance from the best separating hyperplane

is used as the confidence.

Sparse Representation-Based Classification (SRC)
in [17] presented the principle that a given test image can be

represented by a linear combination of images from a large

dictionary of faces. The key concept is enforcing sparsity,

since a test face can be reconstructed best from a small sub-

set of the dictionary, i.e. training faces of the same class.

Class residuals or a sparsity concentration index (SCI) can

be used as a metric for linear combination algorithms.

Least Squares (L2), following SRC, in [13] claimed that

a test face can be represented by a linear combination of the

training gallery, however the strict sparsity constraint is un-

necessary and finds the coefficient vector by least-squares.

LLC [15], similar to the least-squares method, loosened

the sparsity constraint emphasizing that locality is more im-

portant than sparsity. Wang et al. discovered such a co-

efficient vector via a constrained (weighted) least-squares

approximation with good results on controlled datasets.

K-Nearest Neighbor-SRC (KNN-SRC) in [8] aims

to reduce the computational complexity inherent in �1-

minimization by first approximating relevant dictionary el-

ements using K-nearest neighbor to a much smaller dictio-

nary and then running �1-minimization.

Linearly Approximated SRC (LASRC) in [9] focuses

on vastly speeding up the popular SRC face recognition al-

gorithm while retaining high accuracy and robustness. They

found that in web-scale, open-universe face identification,

the magnitude of the coefficients representing the least-

squares solution are highly correlated to the sparse (non-

zero) coefficients returned by sparse �1-minimization so-

lutions. They showed that since zero coefficients have no

effect on the minimization process to derive a sparse solu-

tion, zero coefficients can be discarded from the minimiza-

tion if they are known a-priori. Thus, they use least squares

to approximate the solution very rapidly to obtain a set of

candidate coefficients and then perform a more robust �1-

minimization on only a small fraction of all training faces.

3.2. Client-Side Libraries

A wide variety of client-side face recognition libraries

are available for integration into one’s own custom soft-

ware or as an add-on to existing software; in fact, so many

exist that evaluating them all is beyond the scope of this

paper. Instead, we evaluate two open-source libraries and

a commercial software package developed by a company

later bought by Google.

OpenCV (version 2.4.2) is a popular and long-standing

open-source computer vision library that has recently added

a face recognition module (cv::FaceRecognizer). Although

it has traditional algorithms such as Eigenfaces and Fish-

erfaces, we use the more powerful recognition algorithm

originally introduced as Circular Local Binary Pattern His-

tograms (LBPH) [1]. The output of the OpenCV API pro-

vides both a best guess for identity and a confidence.

OpenBR (version 0.2.0) is a new open-source biometrics

library in beta based on the algorithm described in Klare et
al. [4]. It performs face verification pair-matching between

two faces, i.e. given two faces, it aligns them, extracts fea-

tures, and provides a similarity score. Because obtaining a

similarity score is very fast, each new test face is compared

to every training face and the score recorded. We experi-

mented with several methods of using pair-wise similarity

scores to determine a best-guess identity and confidence.

Unfortunately, OpenBR seems to return many high similar-

ity scores, making a best-match approach infeasible. The

method that worked the best for determining identity was

to calculate the number of high-match scores per class as a

percentage and use that as a confidence as well.

Pittsburgh Pattern Recognition (PitPatt) (last avail-

able version) produced a commercial software library SDK

before they were bought by Google that provides many

capabilities in face detection, analysis, and recognition.

Again, they use pair-wise scores, but unlike OpenBR, we

found that selecting the highest similarity-score in the train-

ing gallery yielded the best results, with performance higher

than calculating the mean or median score per class. The

highest score was used also used as the confidence. The au-

thors would like to thank Pittsburgh Pattern Recognition for

providing their software library for research purposes.

3.3. Cloud-Based APIs

With social media sites such as Facebook adding face

recognition to their online service, the demand for web-

based face recognition services has grown. Such cloud-

based APIs provide the ability to detect faces, associate tags

to faces, train, and recognize newly detected faces - with all

processing and storage being hosted on a remote server. The

company face.com was a predominate leader in the field

before being bought by Facebook, but other services have

sprung up in its place.

LambdaLabs (www.lambdal.com), one of the first re-

placements of face.com as a cloud-based API for face

recognition, has a limit of 50 identities for training up the

face recognizer. Since there are 83 individuals in the Pub-

Fig83+LFW dataset, LambdaLabs is too limited in its cur-

rent beta to be useful in this paper.

ReKognition (www.rekognition.com) is a cloud API

that performs face, scene, and other computer vision analy-

sis. Currently, it claims to have three algorithms developed,

but they state only the simplest (and presumably fastest) one

is currently being exposed to the user.

SkyBiometry (www.skybiometry.com), another a

cloud-based API that has a drop-in replacement for the
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face.com API, does not have a limit on identities, but does

limit to a total of 1,000 total training faces. Since this was

a hard limitation of the system, we trained 12 randomly

selected faces per identity for a total of 996 training faces.

3.4. Consumer Applications

In the past few years, major vendors of consumer photo

gallery applications have integrated face recognition func-

tionality into their software to provide easy and semi-

automated ways to tag, organize, and search photos by faces

of labeled individuals. To test these applications, we orga-

nized the test and training faces into folders per individual

and put all of the distractor faces into a single folder for

easier importing and labeling. Although there is no pro-

grammatic interface to most consumer applications render-

ing a full evaluation impossible, in the case where the ap-

plication offered options for changing recognition thresh-

olds/strictness, we hand-evaluated the test sequence several

times. To avoid bias, all faces are left raw and unaligned.

We consider three popular photo gallery applications and

describe how we trained and evaluated them:

Microsoft Photo Gallery (version 2012) is the built-in

Windows Live photo gallery software from Microsoft. All

training photos were added to the software and batch tag-

ging was performed by selecting a range of faces via the first

and last image for each individual and assigning an identity

for each of the 83 classes. Evaluation is performed by load-

ing the parent directory of all the identity folders, and for

each class filtering both the top level folder of all test faces

and the identities folder to get false + true positives and true

positives, respectively. We then load in the distractors and

filter by each class to obtain the false positives from back-

ground faces.

Apple iPhoto (version ’11) is a popular OS X photo

gallery application. While it includes face recognition soft-

ware, the user interface is significantly limited compared

to Microsoft Photo Gallery and Google Picasa. While the

latter allow batch tagging of multiple faces, iPhoto only al-

lows single-face tagging or partial batch tagging based on

suggestions it gives. Furthermore, for evaluation, iPhoto

appears to lack a way to filter a folder or photo collection

by a given individual. Given the limited user interface op-

tions for bulk labeling/evaluation, we omit this application.

Google Picasa (version 3.9.0) is a Windows photo or-

ganization application that focuses on search. For training,

we added all training faces to the application and swapped

to the Unnamed Faces section of the app. To label each

identity of the 83 classes, we searched for each individual

by name, which brought up unnamed faces in the train-

ing folder for the individual. A batch name operation for

all faces in the individual’s folder was performed once per

class. For evaluation, we imported the test folders and faces

and allowed recognition to run. We then filtered per individ-

Algorithm Representation Accuracy (%)

SVM V1-like-Plus 75.6 ± 0.3

SVM HT-L3-1st 87.1 ± 0.6
face.com Proprietary 82.1 ± 0.5

SVM HOG+LBP+Gabor 85.9 ± 0.5

LASRC HOG+LBP+Gabor 83.6 ± 1.3

Table 1. Closed-universe results for various algorithms on the Pub-

Fig83 dataset following the experimental setup described in [12].

ual and recorded the number of unnamed faces, number of

faces falsely identified, and number of faces correctly iden-

tified. We also imported the distractor faces and recorded

how many were falsely identified.

4. Results

In this section, we describe results across multiple seg-

ments of face recognition algorithms in an open-universe

scenario of finding public figures while rejecting back-

ground figures, using the PubFig83+LFW dataset.

4.1. Closed-Universe Accuracy on PubFig83

We believe that closed-universe accuracy is not a very

representative way to measure real-world performance, es-

pecially since, in our experience, high closed-universe ac-

curacy is not necessarily indicative of high precision and

recall. In other words, the ability to reject background and

distractor faces is correlated, but not directly tied to the

closed-universe performance of an algorithm. However, it

is useful to compare to existing work, so we include closed-

universe accuracy metrics. Using the same experimental

setup described in [12], we select 10 random faces from

each individual in PubFig83 as testing and use the remain-

ing as training, repeated 5 times. The averages for the fea-

tures and algorithms listed in Section 3.1.2 along with SVM

and LASRC algorithms run on our features (pixels, HOG,

Gabor, and LBP) are shown in Table 1.

[12] achieves the highest accuracy with a linear SVM

trained using the biologically-inspired HT-L3-1st feature

representation. We achieve similar performance (2% less

accuracy) with fast, standard, easy-to-extract features com-

pared to HT-L3-1st representations, while using 50X less

data (HT-L3-1st uses 200 KB per face at 51,200 dimen-

sions, whereas LASRC uses only 4 KB at 1,024 dimen-

sions). Although LASRC takes an additional 2% drop in

accuracy, it performs better than an SVM with baseline

features (V1-like-Plus) and the commercial software from

face.com. More importantly, we have found better closed-

universe performance does not always translate into better

rejection of distractors in an open-universe scenario, as we

will examine.
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4.2. Open-Universe Evaluation Metrics

Since accuracy only compares performance on the test

set and does not report how well an algorithm rejects back-

ground and distractor faces, another more representative

metric for evaluation is required to capture performance.

Comparison of open-universe performance, where distrac-

tor faces must be rejected, is often done with precision and

recall (PR) curves. Recall is defined as the percentage of

known faces labeled by a given method with a particular

threshold; thus 100% recall means all known faces in the

test set have been assigned a label, regardless of whether

that label is correct or not. Precision is the number of faces

that were correctly identified dived by the number of total

faces that were assigned a label (distractor faces not being

assigned a label do not count towards precision). Intuitively,

one can think of this definition of precision and recall as

precision representing the accuracy achieved while labeling

some percentage of the known faces (recall).

To summarize precision/recall curves into two numbers

that are most useful for real-world operation, we report both

the Average Precision (AP) and Recall at 95% Precision.

AP represents the overall goodness of the classification and

rejection of distractors across a range of operating configu-

rations. Because consumer applications typically value high

precision (fewer mistakes) over recall (more tags, possibly

incorrectly identified), recall at 95% precision is a partic-

ularly good metric. It shows how much of the total test

gallery can be labeled while maintaining an accuracy of

only 1 mistake out of 20 assigned labels.

To avoid the messiness and clutter of putting all evalu-

ations on a single PR graph, we instead divide them into

categories. In each category, we include the top-performing

research method, LASRC, for comparison. We will release

the PR curves on our website so researchers can run com-

parisons against any subset of algorithms, or their own.

4.3. Research Algorithms

The precision and recall curve for research algorithms

is shown in Fig. 3 with Table 2 showing recall at 95%

precision and the average precision for each algorithm.

The results of evaluating research algorithms on the Pub-

Fig83+LFW dataset are similar to the ones presented in [9],

although it is interesting to note that despite having fewer

individuals to identify, the PubFig83+LFW dataset is more

challenging. This is likely due to the pruning of duplicate

and near duplicate images by Pinto et al. [12] and having

a greater percentage of distractor faces with fewer individ-

uals in the gallery. Algorithms requiring an approximation

parameter (KNN-SRC, LLC, and LASRC) used a value of

K = 64. All algorithms classify in real-time (>30 Hz).

Sparse Representation-based Classification (SRC) is very

slow for large datasets, so we omitted it as being unsuit-

able for web-scale tasks, and used fast approximations in-
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Figure 3. Research algorithm performance in open-universe on

PubFig83+LFW: NN, LLC, KNN-SRC, L2, SVM, and LASRC.

Algorithm Recall (%) AP (%)

Nearest Neighbor (NN) 25.6 65.9

LLC 54.4 80.2

KNN-SRC 57.5 81.6

L2 49.4 77.9

SVM 41.8 77.6

LASRC 64.9 84.4

Table 2. Recall at 95% precision and average precision (AP) for

research algorithms.

stead (KNN-SRC and LASRC). We expect SRC to perform

slightly better than LASRC.

Overall, LASRC outperforms SVMs and other recently

introduced algorithms based on linear representations be-

cause its approximation using linear regression is more cor-

related than nearest neighbors (e.g. KNN-SRC and LLC). It

is particularly interesting to note that SVMs perform best in

closed-universe scenarios (Table 1) while in realistic, open-

universe scenarios, LASRC’s ability to reject distractors re-

sults in higher performance than SVM (Table 2). We hy-

pothesize the sparsity concentration index (SCI) metric of

SRC provides a good measure of class confidence.

4.4. Client-Side Libraries

The precision and recall curve for client-side libraries

is shown in Fig. 4 with Table 3 listing recall at 95%

precision and the average precision for each algorithm.

Since OpenCV does not do internal alignment like OpenBR

and PittPatt, we include both unaligned and aligned (with

PittPatt fiducials) results. It is interesting that simple eye-

alignment provides a substantial 12.5% boost in recall.

OpenBR handles alignment internally, but still performs

poorly, perhaps because it is very new, beta software that is

primarily setup to handle face verification tasks (determin-
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Figure 4. Client-side algorithm performance in open-universe:

OpenCV, OpenBR, and PittPatt compared to LASRC. OpenCV is

reported both without alignment and with the same alignment as

in the research section using PittPatt fiducial locations.

Algorithm Recall (%) AP (%)

OpenCV (Unaligned) 4.0 41.6

OpenCV (Aligned) 16.5 57.4

OpenBR 0.1 32.9

PittPatt 50.1 85.5
LASRC 64.9 84.4

Table 3. Recall at 95% precision and average precision (AP) for

client-side libraries and LASRC.

ing if two faces are same/not same) rather than identifying

faces with a confidence. The proprietary PittPatt face recog-

nition system outperforms all others including LASRC in

average precision, but suffers at high precision, with recall

trailing LASRC by 14.8% at 95% precision. So depend-

ing on if precision or recall is preferred, LASRC or PittPatt

serve different needs, with LASRC providing high confi-

dence in identity predictions, but making relatively fewer

predictions than PittPatt.

4.5. Cloud-Based APIs

The precision and recall curve for cloud-based APIs is

shown in Fig. 5 with Table 4 listing recall at 95% precision

and the average precision for each algorithm. It is notewor-

thy that SkyBiometry and ReKognition have significantly

worse performance than many other algorithms. In fact, as

a test, we ran nearest neighbor and SVM with our standard

Pixels+HOG+LBP+Gabor features without any alignment
and found similar or better performance than cloud-based

APIs. In other words, face identification using standard fea-

tures and machine learning algorithms without any align-

ment performs better than SkyBiometry and ReKognition.

We hypothesize that the newness of SkyBiometry, the fo-
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Figure 5. Cloud-based API performance in open-universe of com-

pared to LASRC and simple, unaligned nearest neighbor and SVM

algorithms with local features (HOG+LBP+Gabor).

Algorithm Recall (%) AP (%)

NN (Unaligned) 11.1 47.5

SVM (Unaligned) 31.6 72.6

SkyBiometry - 36.3

ReKognition 9.2 52.6

LASRC 64.9 84.4

Table 4. Recall at 95% precision and average precision (AP) for

cloud APIs compared to LASRC and simple, unaligned nearest

neighbor and SVM techniques that do not use sophisticated align-

ment.

cus on smaller datasets, and the limitation of only allowing

only 1,000 faces to be used for training (e.g. only 1/8 of the

training faces used by all other algorithms) may all be con-

tributing factors. ReKognition uses all training images and

does better, although exhibits a step-wise PR curve because

the returned confidences are limited to two significant fig-

ures. However, it is still only on par with nearest neighbor

without alignment. One hypothesis is that online APIs are

designed to be lightweight, preferring speed over accuracy.

4.6. Consumer Applications

Fig. 6 shows distinct points on a PR curve for con-

sumer applications that correspond to individual face recog-

nition settings. For Microsoft Photo Gallery, we used a reg-

istry setting to change the recognition between three values:

stringent, normal, and loose. Google Picasa was tested with

a suggestion threshold of 0.85, 0.80, 0.70, and 0.5. Upon

evaluating Google Picasa, we noticed an interesting phe-

nomena: if test faces and distractors were imported into Pi-

casa individually, the results differed markedly compared to

if both test faces and distractors were imported at the same

time. If each individual face was being classified separately
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Figure 6. Consumer application performance in open-universe

compared to LASRC on PubFig83+LFW, where each data point

represents an individual setting and straight lines are drawn be-

tween these settings to give an outline of the PR curve.

and individually in Picasa, the results should be very simi-

lar. The surprising difference between these two scenarios

indicates that Google Picasa is most likely modeling and ap-

plying probability distributions of labeled faces to incoming

images. Thus, adding the test faces and distractor faces si-

multaneously allows Picasa to reason more globally about

the distribution of identities instead of considering only one

individual face at a time. Compared to consumer appli-

cations, LASRC outperforms Microsoft Photo Gallery and

Google Picasa (Separate), but trails behind Google Picasa

(Combined), indicating more global reasoning about identi-

ties may be useful in such real-world scenarios.

5. Conclusion

We have investigated the state of face recognition across

a broad segment of the field, from research algorithms to

consumer products to cloud-based solutions. The findings

of our experimentation have lead to the following key in-

sights: (a) Research algorithms are often difficult to get

running properly, but offer the greatest flexibility and high

performance; (b) There is a lot of variability in both client-

side software and consumer applications, although off-the-

shelf SDKs and software can do quite well (e.g. PittPatt

and Google Picasa); (c) Cloud-based APIs off-load CPU

and storage requirements for easy integration, but may be

less powerful because of training, storage, and usage limits.

Finally, we demonstrated the importance of evaluating in

open-universe scenarios with real-world databases to mea-

sure face recognition performance on the web. Future work

should focus on expanding the scope to include a more com-

prehensive benchmark for face identification systems.
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