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Abstract

Approaches for cross-pose face recognition can be split
into 2D image based and 3D model based. Many 2D based
methods are reported with promising performance but can
only work for poses same as those in the training set. Al-
though 3D based methods can handle arbitrary poses, only
a small number of approaches are available. Extended from
a latest face reconstruction method using a single 3D refer-
ence model, this study focuses on using the reconstructed
3D face for recognition. The reconstructed 3D face al-
lows the generation of multi-pose samples for recognition.
The recognition performance varies with poses, the closer
the pose to the frontal, the better the performance attained.
Several ways to improve the performance are attempted, in-
cluding different numbers of fiducial points for alignment,
multiple reference models considered in the reconstruction
phase, and both frontal and profile poses available in the
gallery. These attempts make this approach competitive to
the state-of-the-art methods.

1. Introduction

The approaches for face recognition across poses can be
generally split into two categories, one is based on 2D im-
ages [10,15./3], and the other based on 3D models [2./6, 13].
More advancements have been made on the former which
appear to outnumber the latter considerably [12]. However,
most 2D approaches suffer from the limitation that they
only work for poses same as those in the training set. Be-
cause 3D information is considered fundamental for recog-
nition across arbitrary poses, more 3D based methods are
yet to be developed.

In the 2D image based methods, the Eigen Light-Feilds
(ELF)_[5] assumes that the pixel intensities correspond to
the radiance of light emitted from the face along certain
rays in space, and estimates the basis set of the radiance
values at each pose using samples of the same pose in the
training set. The eigen light-field is defined on this basis
set, which allows the gallery and probe faces represented
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in ELF coefficients, and recognition can be performed by
matching these coefficients. It is an effective method deal-
ing with poses, but suffers from the requirements that the
probe images must align with light-field vectors. The Tied
Factor Analysis (TFA) is proposed in_[10] which decom-
poses a face into a latent variable (or factor) in the iden-
tify space, a pose-dependent mapping from identity to ob-
servation, a pose-dependent mean and a noise. Since the
pose-dependent mapping and mean are independent of the
subject, they can be obtained from a training set. Given
a non-frontal face with a known pose, its corresponding
frontal pose can be estimated using the learned frontal pose
mapping and mean, and then matched against those in the
gallery. This method requires manual annotation of local
features for pose-specific alignment. The performance de-
grades, sometimes significantly, when local features fail to
be accurately localized. A stereo matching approach with
epipolar geometry is applied irl [3] to evaluate the similar-
ity between two faces of different poses. Given three or
four corresponding feature points on both faces, two sets of
scanlines with epipolar constraints can be determined, and
a stereo matching cost can be computed and optimized to
reveal how well the two faces match to each other. The
regression-based method in [8] estimates the coefficients of
linear combinations of 2D faces in the training set for ap-
proximating the linear subspaces for 3D face. To reduce
the high variances in the estimated coefficients, the method
exploits the regressors with local Gabor features for bias-
variance balancing. Although these 2D-based methods re-
port performances better than many 3D-based ones, all of
them and many other 2D methods suffer from the limitation
that they only work for poses available in the training set,
making them ineffective in some practical applications.

In 3D model based approaches, the morphable model [2]
uses the prior knowledge, including the 3D face shapes and
textures, collected from hundreds of 3D facial scans to build
a 3D model for a given 2D image. Although considered as
an effective solution for recognition under pose and illu-
mination variations, it is expensive in storage and compu-
tation because of the storage of the hundreds of 3D scans



and the search for the correspondences to the reference
model. A similar approach but modified with automatic
feature localization is given in [6], which reports a satisfac-
tory performance for poses less than 45°, but degrades sig-
nificantly for large poses. Because the conventional PCA
is used after synthesizing the views to match against the
probe, we consider this a baseline for 3D methods in our
performance evaluation. The Heterogeneous Specular and
Diffuse (HSD) [13], one of the latest approaches, allows
both specular and diffuse reflectance coefficients to vary
spatially to better accommodate surface properties of real
faces. A few face images under different lighting conditions
are needed to estimate the 3-D shape and surface reflectiv-
ity using stochastic optimization. The resultant personal-
ized 3-D face model is used to render novel gallery views
of different poses for cross-pose recognition.

Our method extends the latest work on 3D face recon-
struction proposed by Kemelmacher-Shlizerman and Basri
[7] to tackle cross-pose recognition. It is 3D model-based
in nature, but different from [2./6, 13] and others in that it
exploits a single 3D reference model and recovers the 3D
shape of a 2D face image in the gallery. It consists of the
following steps: (1) 3D reconstruction based on the refer-
ence model, (2) model-based synthesis of novel poses, and
(3) pose-oriented feature extraction and matching. The pro-
posed method is a low-cost alternative to many 3D model-
based approaches that require a large number of 3D scans.

The rest of the paper is organized as follows: The prepa-
ration of the 3D reference model and the model-based re-
construction are presented in Se¢.]2. Although the recon-
struction part is mostly based onl_[7], our interpretation
from a different viewpoint can be easier for implementa-
tion. The recognition using the Uniform Local Binary Pat-
tern (ULBP) features extracted from the model-based syn-
thesized novel views is described in Se¢.|3. Se¢.]4 presents
experimental results with three ways for performance im-
provement, including additional fiducial points for pose
alignment, an additional 3D reference model considered
in the reconstruction phase, and the addition of the profile
pose to the gallery set. A performance comparison with
the aforementioned 2D-based and 3D-based methods is also
given in Se¢.]4, followed by a conclusion in Se¢]5.

2. Reconstruction Using A Single Reference
Model

We reformulate the problem as a constrained minimiza-
tion so that the well-known scheme with Lagrange multi-
pliers can be applied. We also make some minor modifica-
tions to the original algorithm in [ 7], making our reconstruc-
tion somewhat different from theirs, although the results
are similar. Nevertheless, the investigations that we have
added to the reconstruction phase include the rendering of
a smooth surface from the noisy data of a 3D face scan for
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the reference model, and the study on different numbers of
fiducial points used for the alignment between the 2D im-
age and 3D reference model. The former is presented in
Sdc.2}1, and the latter in Sc]4 with experimental results.

2.1. Reference Model Surface Rendering and Pa-
rameter Estimation

This step is not described explicitly il [7], but consid-
ered an essential part of the reconstruction when making a
raw 3D face scan good as the reference model. Instead of
using samples from the USF database as the reference mod-
els as in [7], we select samples from the FRGC database [9]
because of its popularity. Each FRGC 3D face scan con-
sists of a range image and a texture image that we can use
to estimate the surface normal 7i,.(z, y) and albedo p,-(z, y),
which are required for the reconstruction of other faces.

We applied the Moving Least Squares (MLS)[1] to
smooth z, o, the raw depth data of the reference model,
so that the measurement noise in z, can be removed and
the smoothed surface 2, can best approximate z,. . Given
a subset of 2, in the form of point clouds, denoted as
P.={pi}i=1. N, the goal is to determine a novel set
of points, Ry={7;}i=1,... n,, on a low-order polynomial
that minimizing the distance between P and Rj. The
smoothed surface z,. can then be obtained from {Ry }vs.
Modified from the MLS reported in | 1] for better efficiency,
our method is composed of the following step,

1. Use Py, to determine a local plane H, with origin g
and normal 77 so that the following weighted sum can
be computed,

Ny,

> (uo(@i, yi) — pio) 6 (15; — doll)

i=1

6]

where ug(z;,y;) is the distance of 7; to Hy with the
location of its projection onto Hy given by (x;,;);
i 0 is the distance of p; to Hy, i.e., f;0 = 7o - (P; —
do); and ¢(-) is a Gaussian function so that the points
closer to gy are weighted more. Assuming that Ry, are
described by a low-order polynomial in terms of the
coordinates (z;,y;) on Hy, i.e., 7; = f(z;,y;|Ao) and
u(wi, yi) = 7o~ (f(xi, yi| Ao) —qo), where f (x4, yi|Ao)
is a polynomial surface with parameter Ag that defines
the local geometry of Ry.

2. Because Hj can be uniquely defined given gy and 7ig,
one can change them to ¢; and 7i; and obtain a novel
plane H;. Given that the order of the polynomial
f(xi, y:|Ao) is fixed (so that the number of parameters
of f(x;,yi|Ao) is fixed), a parameter estimation prob-
lem can be defined as the minimization of the weighted
sum as:
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Figure 1. Work flow of the reference model parameter estimation and face model reconstruction.
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A7k, G, = argmin > (@i ys) — 1) ¢ (15 — dll)
a1
2

The above can be repeated on other subsets {Py, }vy, for es-
timating {Ag, 7k, gk }ve and {Ry}vik. A key issue in this
scheme is the initial estimates of 7y and gy. A few possi-
ble ways are given il [1]; however, from our experiments
we found that the minimum principal component extracted
from Py, offers a good estimate of 77y and the centroid of Py,
can be appropriate as ¢p. To extract the principal compo-
nents, one needs to solve the eigenvectors of the covariance
Ck,

Cr = 3)

| =

k

— — N —\T
E (Pi — qo) - (Pi — do)
=1

where ¢ is the centroid of Py, and considered as the ori-
gin of the initial plane Hy. 77, the normal vector of H,
is given by the eigenvector of C), associated with the low-
est eigenvalue. Following the above approach, the surface
normal 77, can be obtained from the estimated polynomi-
als f(z;,y;|Ax). Given i, and the associated 2D image I,
pr can be estimated using the method presented in the next
section with some simplification, as described at the end of
Sdc.212.

2.2. Irradiance Evaluation using Constrained Min-
imization
The goal in this section is to estimate the 3D shape model
of any given 2D face image I (x, y) using the depth z,.(x, y),
surface normal 7i,.(x,y) and albedo p,.(z,y) of the refer-
ence model. Assuming that the face surface is Lambertian,
I(x,y) can be decomposed as

I(z,y) = pla,y)h(z,y) - il(z,y) = plz,y)R(z,y) @)

where p(z,y) is the surface albedo at the point (z,y),
h(z,y) € R3 is the lighting cast on (z,y) with intensity on
each of the three directions, 7(z, y) is the face surface nor-
mal at (, ), and the reflectance R(z,y) = h(z, y)-fi(z, y).
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For simplicity of notation, the coordinates (x, y) is dropped
in the rest of the paper, and 7i(x, y), for example, is written
as 77. With a few assumptiond [7], the reflectance can be
approximated using spherical harmonics,

R(x,y) = 1Y (i) (5)
where ['is the lighting coefficient vector and Y (7) is the
spherical harmonic vector, which, in the second order ap-
proximation, takes the following form:

—

Y (i)

[co, C11g, €17y, C1N, CoNgy, CoNg T, CoNy M,

ca(n2 — n2) /2, ¢5(3n% — 1)/2\/§}T ©6)

where co = 1/V/4m, c1 = /3/\/4, co = 3v/5/V/12T.

The difference betweer| {4) and {6) is that the lighting
intensity and direction are all merged into h if {(4), separated
from 77, but i (6) they are split into the lighting vector ['and
the spherical harmonics Y (77), which is solely dependent on
the components of 77, namely n, n, and n.

The core problem can now be formulated as the mini-
mization of ||[I — pl - Y (7i)|| over p, I and 7i. The solu-
tion irl_[7] uses the depth z,., the surface normal 7i,. and the
albedo p,. of the reference model for initialization, making
the problem solvable by regularization. Because of a bet-
ter computational efficiency, we choose DoG (Difference of
Gaussian) instead of LoG (Laplacian of Gaussian) adopted
in_|7] in the minimization.

/(I—pf?(ﬁ))Q—f—)\l(Dg*dZ)Q—&—/\Q(Dg*dp)Qd:cdy

@)
where d. = z(z,y) — z(2,y), dp = p(z,y) — pr(z,y),
and D * denotes the convolution with the DoG; A; and A9
are constants. Although this is not described explicitly in
[7], the formulation ir] {7) can be better interpreted as the
minimization of || — pl - Y (7)|| subject to the constraints
Dyx*d, ~ 0and D,*d, ~ 0. Such a formulation allows the
interpretation of \; and Ao as the Lagrange multipliers. As-
suming that [ is aligned to the reference model, the recon-
struction tackles the minimization irf {7) by first solving for

min
L,Z,p



the spherical harmonic coefficients I using the references z,.
and p,, then the depth z(x, y), and then the albedo p(z,y).

The alignment between I and the reference model needs
corresponding fiducial points on both I and the reference
model. We applied the method irl_[4] for automatic detec-
tion of facial features, and adjusted the results manually in
case the method failed to perform ideally. Given a set of
fiducial points that splits / and the reference face into cor-
responding local regions, perspective and affine transforms
are then applied to fit each local region of the reference
model to the corresponding region in /.

The minimizatiof) {7) is also used for computing p,. given
I, and 7. In such a case, there are no constraint terms

in[ {7), and one can use the average of 2D faces in the
gallery as the initial guess of the albedo, p£°>, to solve the
lighting coefficients 119 and search for the desired pr iter-
atively. The overall reference model parameter estimation
and gallery face reconstruction are summarized in the work-

flow in Fig]1.

3. Recognition Across Pose
3.1. Generation of Model-based Training Images

We assume a common scenario that the gallery has one
frontal face image per subject for enrollment, and the probe
set contains face images of other poses for recognition. A
couple issues must be solved for this scenario: the genera-
tion of images good for training from the reconstructed 3D
face, and the estimate of the pose of a given probe so that
its matching to the gallery can be fast. To constrain the
scope of this paper from covering facial feature localiza-
tion, which can be solved by many algorithms, e.g.| [4], we
assume that the fiducial points on a probe can be available
using these algorithms or manual annotation.

Figure 2. (a) 12 fiducial points for piece-wise warping. (b) Recon-
struction with alignment using 3 fiducial points in the upper row,
and 12 fiducial points in the bottom row.

Each frontal face image in the gallery is taken as the
I(z,y) i {7) for making its corresponding 3D face. The
alignment between I(x,y) and the reference model is per-
formed using a set of fiducial points. Our experiments re-
veal that the fiducial-points-based alignment makes a strong
impact on the reconstruction and recognition performance.
Fig.]2 shows the reconstruction using 3 and 12 fiducial
points. This, however, does not imply that more fiducial
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points always lead to better reconstruction. This issue is
discussed along with experimental results in Se¢.]4.
Following the approach presented in Sef.]2, one can ob-
tain a 3D reconstructed face for each gallery image. The
surface smoothing and rendering in Sdc.2]1 is performed on
each reconstructed face to obtain the finalized surface for
each face. A weakly perspective transformation with a rota-
tion matrix R and a translation vector ¢4 specified for pose
Ps is then applied on the 3D facial surface to render its 2D
projection on the image plane as the training image with

pose Ps.
3.2. Pose-Oriented Recognition

Although one can generate training images of arbitrary
poses using the above approach, we consider it a better op-
tion to generate pose-oriented clusters of training images.
Take the pose subset in the CMU PIE database [11] as an
example, which is used in our experiments for performance
evaluation. The pose subset offers 13 poses in total, 9 taken
from horizontal views with yaw angle roughly 22.5° apart
(so the central one corresponding to the frontal), 2 taken
from the vertical views with pitch angle 22.5° up and down,
and the rest 2 taken from surveillance views with yaw angle
67.5° = 3 x 22.5° to both side and pitch angle 22.5° down.
When generating the training set, each of these poses is con-
sidered as the center of a pose-oriented cluster, and four
neighboring poses are synthesized and added to the cluster,
including 10° up and down and 10° to the left and to the
right. Instead of using the PIE original pose tags, such as
c02, c37, ..., we use the approximated pose angle with an
alphabet in the front to denote its direction. For example,
R67.5° refers to 67.5° to the right, U22.5° is 22.5° upward
and D22.5° is 22.5° downward. All synthesized face im-
ages are normalized in size to either the distance between
the eyes and mouth when the poses are primarily caused by
horizontal rotations, or to the distance between both eyes
when the poses are caused by vertical rotations. The ULBP
(Uniform Local Binary Pattern) features are extracted from
each training image, and stored in the associated pose clus-
ter for each subject. Compared with other forms of LBP,
the ULBP gave the most consistent result in our experi-
ments. When extracting the features, each 128 x 128 face
image is split into 4 x 4 blocks, and the 59 dimensional
ULBP vector extractédl! from each block is cascaded into a
4 x 4 x 59 = 944 dimensional feature vector. Following

IThe ULBP is extracted from each pixel with associated histogram ob-
tained as the feature vector from each 32 x 32 block.

10 VYW

Figure 3. Partial masks of different poses.
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Figure 4. Workflow of cross-pose recognition across poses given the reconstructed 3D gallery face.

the above procedure, each person in the gallery can have 13
pose clusters, and each cluster has five synthesized images
with ULBP feature extracted.

Given a probe with fiducial points available for size nor-
malization and pose matching to the pose cluster in the
gallery set, its region of interest is first obtained when im-
posed with a pose-oriented mask and then the ULBP feature
is extracted. The pose-oriented masks, obtained from the
averages of the training face images from the reconstructed
faces, aim at blocking out non-facial region in the probe im-
age. In our experimental setup with PIE, the frontal pose is
used as the gallery and the rest 12 poses as the probe set.
Considering the symmetry of the pose-oriented masks be-
tween 5 pose pairs left to right, 7 pose-oriented masks are
shown in Fi§]3. We use SVM with linear kernel as the clas-
sifier as other kernels have not revealed better performance
in our experiments. The overall workflow is shown in Fig]4.

4. Experiments

All experiments were run on a Linux PC with 2.6GHz
and 4G DDR3. We used OpenCV library for image process-
ing, CLAPACK (http://www.netlib.org/clapack) for solving
optimization and Freeglut (http://freeglut.sourceforge.net)
for handling 3D models of different poses. The Point Cloud
Library (http://pointclouds.org) was used for preprocessing
on both the reference and reconstructed models. The refer-
ence models were taken from the FRGC database and nor-
malized to 250%300 in size. The face images in the training
and testing sets were all scaled to 128 x128. The perfor-
mance was evaluated on the PIE pose subset, which has 68
subjects and 13 poses. The frontal pose of each subject was
used in the gallery for enrollment and the rest poses in the
probe for testing. This protocol is common for 3D-based
methods. Most 2D-based methods need a “pose training
set”, which is often composed of all poses of half of the
subjects, i.e., 34 subjects, for learning the relationship be-
tween the 13 poses. The frontal of the other 34 subjects are
used as the gallery and the rest poses used as the testing set.

Because reconstruction takes most of the processing
time, and the large the given image I, the longer the re-

873

construction takes. A few scales were tested, and although
large scales generally led to better reconstruction and recog-
nition performance, the scale factor 0.3 was selected for a
balance between processing time and performance. Three
issues were studied: additional fiducial points for local cor-
respondences and pose alignment, an additional 3D refer-
ence model considered in the reconstruction phase, and the
addition of profile pose to the gallery set.

Additional Fiducial Points for Pose Alignment

Different numbers of fiducial points yield reconstructed
faces with different details. Four cases with 3, 6, 12, 15 and
23 fiducial points were considered. The fiducial points were
used to split the face into local regions. Perspective trans-
form and affine transform were then applied to fit a gallery
image to the reference model in one region after another. A
case with 12 fiducial points is shown in Fig.]2. We found
that the reconstruction results vary with not just the num-
ber of fiducial points, but also the locations of the fiducial
points. The fiducial points at eye regions were better located
right below the eyes, rather than on the center of the eyes,
as shown in Fig.]2. Although more fiducial points led to
better reconstruction, we found that this was only valid for
cases with less than 12 fiducial points. When the number
exceeded 12, the performance barely improved, and it even
slightly degraded when using 23 fiducial points.

T
EREF1
EmReF2 ||
[ IREF1+2

Recognition Rate (%)

L90° LD67.5° L67.5°

L45° 1225° D225° U22.5° R225° R45° R67.5° RD67.5° R90°

Figure 5. Performance comparison of single and double reference
models.

Additional Reference Model

The default reference model was arbitrarily selected, as
shown in the previous figures. We selected an additional
one with different gender and age. Following the same ap-
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proach, each gallery image had two reconstructed models,
generating an additional set of pose clusters for training.
The comparison between these two cases is shown in Fig]5,
where the case with both REF1 and REF2 models outper-
forms the case with either one alone. Because different ref-
erence models allow different details generated on the re-
constructed face given the same 2D image, each gallery face
with multiple reconstructed faces would improve the overall
recognition performance, especially for large poses.

Addition of Profile Pose in the Gallery

A common scenario in forensic and law enforcement ap-
plications considers both frontal and profile poses available
in the gallery. This scenario was included in our experi-
ments. We compared the proposed methods with the afore-
mentioned settings to several state-of-the-art approaches on
the PIE pose subset. Two reference models were used, one
frontal pose with 12 fiducial points and the other of profile
pose with 9 fiducial points. The recognition performance is
shown in Fif]6, together with the case with only one frontal
pose in the gallery with 12 fiducial points.

Considering the poses less than 67.5°, the best are stereo
matching [3], HSD [13] and the proposed with 12 fiducial
points and with both frontal and profile poses in the gallery.
Although the performance of the proposed with 12 fiducial
points drops at 90°, the case with both frontal and profile
poses available performs exceptionally well, giving an indi-
cation on the further improvement to our method. Because
the 3D reference model can also offer fiducial points on the
profile pose, which has not been considered yet in our study,
it is believed that the proposed method can be further ad-
vanced taking such an advantage.

5. Conclusion

3D-based approaches for cross-pose recognition deserve
special attention as 2D-based ones are mostly limited to the
poses same as those in the training set. This work extends a
latest work ir [7] on 3D face reconstruction to recognition,
and studies the impacts made by multiple reference models,
fiducial points for alignment and others. The smoothed sur-
face rendering, which is an important part for reconstruction
but missing in [7], has been elaborated. Experiments on the
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PIE database show that this method can be competitive to
the state of the art with multiple reference models consid-
ered in the reconstruction phase, an appropriate set of fidu-
cial points selected for pose alignment, and, if allowed, the
addition of profile pose to the gallery.
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