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Abstract

Any facial feature localization algorithm needs to incor-
porate two sources of information: 1) prior shape knowl-
edge, and 2) image observations. Existing methods have
primarily focused on different ways of representing and in-
corporating the image observations into the problem so-
lution. Prior shape knowledge, on the other hand, has
been mostly modeled using parametrized shape models.
Parametrized shape models have relatively few parameters
to control the shape variations, and hence their represen-
tation power is limited with the examples provided in the
training data.

In this paper, we propose a novel method for modeling
the prior shape knowledge. Rather than using a holistic
approach, as in the case for parametrized shape models,
we model the prior shape knowledge as a set of local com-
patibility potentials. This “distributed” approach provides
a greater representation power as it allows for individual
landmarks to move more freely. The prior shape knowl-
edge is incorporated with local image observations in a
probabilistic graphical model framework, where the infer-
ence is achieved through nonparametric belief propagation.
Through qualitative and quantitative experiments, the pro-
posed approach is shown to outperform the state-of-the-art
methods in terms of localization accuracy.

1. Introduction

Facial feature localization is a crucial initial step in a
wide variety of computer vision and human-computer inter-
action applications. Many algorithms require accurate fea-
ture locations as an input, and fail significantly once these
features are slightly off. This heavy dependency on accu-
racy, combined with the evolving complexity of the inter-
ested applications, makes facial feature localization a pop-
ular and an important computer vision problem.

With more demanding applications, it becomes apparent
that the current state-of-the-art solutions for facial feature

Image credit: http://www.freshfaceclinic.com.au/

Figure 1. Example demonstrating the flexibility, generalization,
and the accuracy of the proposed approach. The above result is
obtained by fitting a single face model to the input image after
automatic initialization. The local nature of the proposed method
provides a great level of flexibility and fits both sides of the image
equally well (best viewed in color and high-resolution).

localization are insufficient and need to be improved. Facial
expression analysis is a good example. State-of-the-art fea-
ture localization algorithms perform adequately in the case
of recognizing posed expressions, but they fell short in ac-
curacy in the case of spontaneous expression recognition,
where the feature dynamics are more subtle.

In this paper we propose a novel solution to the facial
feature localization problem. Unlike most of the existing
methods, we model the prior shape knowledge as a set of
compatibility potentials, in a probabilistic graphical model.
Local image observations are incorporated into this model
as observation potentials at each node (i.e. landmark). The
graph topology is determined automatically using training
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(a) AAM-based. (b) CLM-based. (c) PGM-based (proposed).

Figure 2. Comparison of feature localization approaches in terms of how the prior shape knowledge and the image observations are modeled
and incorporated. Empty nodes represent the landmark locations (and shape parameters), filled nodes represent the observations. The figure
highlights the holistic nature of AAM- and CLM-based approaches vs. the local nature of the proposed PGM-based approach (note that
AAM- and CLM-based approaches are illustrated as “graphical models” even though they are not PGM-based approaches).

data. Facial feature localization, or inference on the graph,
is then achieved through nonparametric belief propagation.
The result is a very flexible and easily expandable proba-
bilistic framework for facial feature localization.

The paper is organized as follows: in Section 2 the re-
lated work is reviewed. Section 3 first provides the re-
quired technical background, and then introduces the pro-
posed approach. Experimental results, comparing the pro-
posed method to the state-of-the-art methods, are presented
in Section 4. The paper is concluded with a discussion and
mention of future work in Section 5.

2. Related Work
Majority of facial feature localization (or “model fit-

ting”) algorithms employ a parametrized shape model [5, 4,
7, 20, 27, 23]. Cootes and Taylor [5] coined the term “Point
Distribution Model (PDM)” for this. PDM models the non-
rigid shape variations of an object linearly and composes it
with a global similarity transform:

xi = sR(x̄i + Φiq) + t (1)

where xi denotes the 2D-location of the PDM’s ith land-
mark, and p = {s,R, t, q} are the PDM parameters consist-
ing of a global scaling s, a rotation R, a translation t, and
a set of non-rigid shape parameters q. Here, x̄i is the mean
location of the ith landmark, and Φ is the matrix of basis
variations (i.e. “shape vectors”). Shape vectors are obtained
by performing a principle component analysis (PCA) on the
training data.

PDM-based methods may further be categorized into
two classes depending on how the image observation is in-
corporated into the shape model. The first class of meth-
ods, derived from Active Appearance Models (AAMs) [4],
use a holistic “error image” to determine the parameter up-
dates [4, 20]. The second class of methods, derived from

Active Shape Models (ASMs) [5], are collectively named
Constrained Local Models (CLMs) and utilize an indepen-
dent set of local detectors. CLMs primarily differ on how
the corresponding noisy response maps are approximated.
Saragih et al. [23] show that a nonparametric Gaussian ker-
nel density estimate (KDE) [24] of the response maps out-
performs the existing parametric estimates [5, 27, 14].

PDM is a simple and an efficient method for modeling
the deformations of objects, such as a human face. How-
ever, it is a fairly strict model where the representation
power is limited with the shape variations presented in the
training data.

Contrary to these strict parametrized models, relatively
looser “part-based” statistical shape models have been pro-
posed in the literature as well (e.g. [12, 30, 11]). In these
statistical models the localization problem is formulated
as finding the best configuration of the parts of the model
(L = {l1, . . . , ln}), given an image I:

L∗ = arg max
L

[P (L|I)] ∝ arg max
L

[P (I|L) P (L)] (2)

In order to achieve efficient inference, most of the exist-
ing methods over-constraint the shape prior, P (L). A very
common strategy is to assume that the parts of the model
form a tree-structure [10, 22, 31]. The tree property gives
good results with relatively simpler object classes such as
airplanes, motorcycles, and horses. However, it lacks the
necessary loopy spatial constraints and produces unnatural
deformations in the case of faces.

Statistical shape models have been used for “hard-
detection” as well. These methods first generate “candidate
sets” and then apply the shape constraints to eliminate the
inconsistencies [26], and/or recover missing landmarks [2].

A fairly less explored approach for facial feature local-
ization with statistical shape models is to use approximate
inference. Sudderth et al. [25] demonstrated a method
where they approximate the complex node potentials and
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spatial relationships using Gaussian KDEs. In this work a
very simple, hand-made, five-node graph is used to model
the face. Nodes are defined to be high-dimensional feature
vectors, representing both the location and the appearance
of the corresponding part (e.g. left eye).

Our contributions in this paper are three-fold: 1) We pro-
pose a novel PGM-based framework, which addresses the
limitations of existing facial feature localization methods,
2) Unlike other face models, the topology of our model is
learned from training data, not manually set, 3) With greater
flexibility in the allowed shape deformations, and still cap-
turing the necessary loopy spatial constraints, the proposed
approach advances the localization accuracy of the state-of-
the-art in generic model fitting.

3. Proposed Approach

3.1. Background Information

3.1.1 Probabilistic Graphical Models (PGMs)

PGMs use a graph-based representation as the basis for
compactly encoding complex joint distributions over mul-
tiple, high-dimensional random variables [18]. An undi-
rected graph G is defined by a set of nodes V and a set of
edges E . Each node s ∈ V represents either an unobserved,
or hidden, random variable xs, or a noisy local observation
ys. Following the notation in [25], the neighborhood of a
node s ∈ V is defined as Γ(s) , {t|(s, t) ∈ E}.

In undirected, pairwise PGMs (see Figure 2) the joint
distribution over all variables p(x, y) factorizes as:

p(x, y) =
1

Z

∏
(s,t)∈E

φs,t(xs, xt)
∏
s∈V

φs(xs, ys) (3)

where Z is a normalization constant, φs,t(xs, xt) is
the compatibility potential between nodes s and t, and
φs(xs, ys) is the observation potential of node s.

While the joint distribution p(x, y) is hard to estimate, in
many applications, the real interest is in the computation of
conditional marginal distributions p(xs|y) for all xs ∈ V .

3.1.2 Belief Propagation (BP)

BP provides a convenient way for computing the condi-
tional marginal distributions p(xs|y). At iteration n of the
BP algorithm, each node t ∈ V sends a message mn

t,s(xs)
to each of its neighbors s ∈ Γ(t):

mn
t,s(xs) = α

∫
xt

φs,t(xs, xt)φt(xt, yt)
∏

u∈Γ(t)\s

mn−1
u,t (xt)dxt

(4)
where α denotes a proportionality constant.

At any iteration n, the belief of node s about the hidden
variable xs may be computed as follows:

p̂n(xs|y) = αφs(xs, ys)
∏

u∈Γ(s)

mn
u,s(xs) (5)

BP algorithm guarantees that the node beliefs will con-
verge to the correct conditional marginals in singly con-
nected graphs [21]. Even though there is little theoretical
analysis on the performance of BP in graphs with loops
([28, 29]), loopy BP has shown excellent empirical perfor-
mance in a number of applications [1, 13].

3.1.3 Nonparametric Belief Propagation (NBP)

Equation 4 may be evaluated analytically only when both
the compatibility and the observation potentials have spe-
cial forms. When both are Gaussians, the calculations are
straightforward since the product of a number of Gaussian
densities is another Gaussian. When either potential is a
Gaussian mixture and the other one is a Gaussian or a Gaus-
sian mixture, still the integration is straightforward, but now
the number of mixture components increase exponentially
at every iteration. And when the potentials do not have spe-
cial forms, analytical evaluation of the integral in Equation
4 becomes intractable.

In order to address this limitation of the BP algorithm,
Sudderth et al. [25] and Isard [16] independently developed
almost identical algorithms, which incorporate particle fil-
ters into the BP framework.

In these algorithms, nonparametric Gaussian KDEs [24]
are used to represent the messages at each iteration. Then
the BP update rule defined in Equation 4 becomes:

mn
t,s(xs) =

M∑
i=1

w(i)
s N (xs;µ

(i)
s ,Λs) (6)

where w(i)
s is the weight associated with the ith kernel with

mean µ(i)
s and bandwidth Λs.

Given input messages mu,t(xt) for each u ∈ Γ(t)\s, the
output message mt,s(xs) is then computed as follows:

1. Draw M independent samples {x̂(i)
t }Mi=1 from

φt(xt, yt)
∏

u∈Γ(t)\sm
n−1
u,t (xt)dxt, and

2. For each {x̂(i)
t }Mi=1 sample x̂(i)

s ∼ φs,t(xs, xt = x̂
(i)
s ).

Details may be found in [25].

3.2. Shape Model

In our formulation, x = {xs|s ∈ V} represent the 2D
landmark locations, and y = {ys|s ∈ V} represent the cor-
responding local image observations.
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Figure 3. Example (xs − xt) scatter plot. Note that an anisotropic
Gaussian would model this distribution fairly well.

As illustrated in Figure 2(c), the proposed approach may
be thought as modeling the prior shape knowledge in terms
of multiple, weak, pairwise spatial relationships. In order
to fully specify this shape model, one needs to define both
the pairwise compatibility potentials and the topology of the
underlying graph.

3.2.1 Compatibility Potentials

Anisotropic Gaussians are used to model the pairwise com-
patibility potentials:

φs,t(xs, xt) = N ((xs − xt);µs,t,Σs,t) (7)

where µs,t is the mean, and Σs,t is the covariance matrix
of the Gaussian. Both of these parameters are learned from
training data.

This potential encloses the prior shape knowledge be-
tween two landmarks, since given the location of a land-
mark xt and the potential φs,t(xs, xt), one may estimate
the likely locations of landmark xs by:

φs,t(xs, xt = x̂t) = N (xs;µs,t + x̂t,Σs,t) (8)

As Figure 3 illustrates, anisotropic Gaussians model the
compatibility potentials well. Furthermore, one may es-
timate the “importance” of a particular pairwise potential
within the model, simply by examining the learned covari-
ance matrices. A potential with a smaller Σs,t will have a
higher precision, and hence would be more informative than
a potential with a larger Σs,t.

3.2.2 Graph Topology

One of the primary advantages of using a PGM-based shape
model is the flexibility in determining the graph topol-
ogy. The possibilities range from a loose, singly connected
graph, to a very strict, fully connected graph. A singly

connected graph would reminiscence Snakes [17], whereas
parametrized shape models [5] would be considered densely
connected graphs.

In this work, the graph topology of the shape model is
learned from training data. For each node s, the neigh-
borhood Γ(s) is determined using the computed compat-
ibility potentials. Only the k most informative (smaller
Σs,t) nodes are connected to node s. This approach al-
lows for capturing a lot of shape knowledge in a fairly sim-
ple graph. Figure 4 illustrates the computed topologies for
k = 1, 2, 3, 4.

Please note that the proposed approach actually gener-
ates a “class” of spatial models, rather than just a single
one. Hence, the appropriate level of flexibility may be cho-
sen with respect to the application.

3.3. Observation Model

A variety of observation models have been used in the
facial feature localization literature. These methods vary
from using gradients as in the case for Snakes [17], to using
holistic error images in the case of AAMs [20]. CLMs, on
the other hand, use “local experts” (i.e. local patch detec-
tors), and have shown to perform superior [23].

The local experts used in this work are linear support
vector machines (SVMs) [6] and the features used are 3 ×
3 histograms of oriented-gradients (HOGs) [8] with 6−bin
histograms in each cell.

Inspired by the results of Saragih et al. in [23], the
observation potentials are defined to be the nonparametric
isotropic Gaussian KDEs [24] of the expert response maps:

φs(xs, ys) =
∑

zi∈Ψs

πziN (xs; zi, ρI) (9)

where Ψs denotes the set of integer pixel locations within a
square region centered at xs, ρ is the bandwidth of the ker-
nels, and πzi is the probabilistic expert response at location
zi.

This observation potential has two advantages:

1. Its Gaussian mixture form fits well into the NBP
framework (much better than than the one proposed in
[25]), and allows for the employment of efficient sam-
pling methods (e.g. [15]), and

2. It estimates the true response maps much better than
the existing parametric methods [23].

4. Experiments and Results
Extensive qualitative and quantitative experiments are

performed on The Extended Cohn-Kanade Dataset (CK+)
[19] and random images obtained from the Internet. These
experiments contain subjects with different ethnicities, per-
forming acted and/or spontaneous expressions. Imaging
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(a) GPA. (b) k = 1. (c) k = 2. (d) k = 3. (e) k = 4.

Figure 4. Results of Generalized Procrustes Analysis (GPA) and learned graph topologies for k = 1, 2, 3, 4.

(a) Initialization. (b) Iteration 1. (c) Iteration 2. (d) Result.

Figure 5. The fitting process. At each iteration the image is “similarity normalized” by aligning the current shape with the mean shape
(best viewed in color and high-resolution).

conditions and quality change significantly between the ex-
amples.

4.1. Shape and Expert Training

“Ground-truth” landmarks provided by the CK+ dataset
are used for both shape and local expert training. Chin and
nose region landmarks are ignored since these landmarks
contribute much less information in most applications.

For the shape training, first the landmarks are shape nor-
malized using Generalized Procrustes Analysis [9] (see Fig-
ure 4(a)). Then the compatibility potential parameters, µs,t

and Σs,t, are computed. Finally the graph topology is deter-
mined using the computed covariance matrices as illustrated
in Figures 4(b)-4(e).

Figure 4 demonstrates a major advantage of the proposed
algorithm. By learning the graph topology from training
data, we effectively obtain the smallest graph that would
capture the most prior shape knowledge.

The resulting graph, in the case of faces, is a very in-
tuitive one, where the parts of the face (e.g. eyes, mouth,
etc.) are densely connected, while the parts themselves are
loosely connected. Such a model will allow for a high vari-
ability between the locations of the parts, but at the same
time enforce more strict constrains on how the parts them-
selves may deform. In these experiments we used k = 3
connectivity.

24 × 24 patches are used to train the local experts. For
each landmark, positive examples are obtained from 1000
randomly selected images. Approximately 8000 negative

examples are extracted from the remaining landmarks and
other randomly selected images. LIBSVM [3] library is
used for the SVM training.

4.2. Testing

Unless otherwise specified, all test images are automat-
ically initialized. Local “search window”, Ψs, of Equation
9 is set to be a 23 × 23 region centered around the current
estimate. ρ is set to 1 and finally M = 200 particles are
used for belief propagation.

Algorithm convergence is determined using the node be-
liefs. At each iteration the beliefs (i.e. landmark locations)
are computed and when none of the landmarks move more
than 1.5 pixels in radius, the algorithm is terminated.

4.3. Handling Similarity Transforms

Similarity transforms may be incorporated into this
model either by scaling and rotating the compatibility po-
tentials (Equation 7), or by keeping them constant, but in-
stead aligning the current landmark estimates and the image
with the mean scale and rotation at each iteration. We fol-
lowed the second approach since it also implicitly solves
the scale and rotation variance of the experts. This fitting
process is illustrated in Figure 5.

4.4. Qualitative Results

Qualitative results on the CK+ dataset are presented in
Figure 6. As the figure illustrates, the proposed algorithm
performs equally well in a wide variety of examples, where
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Figure 6. Qualitative results of the proposed PGM-based approach (best viewed in color and high-resolution, green: ground truth, red:
results).

both the facial expressions and the facial attributes of the
subject change significantly. This is primarily due to the
higher level of shape flexibility provided by the model.

4.5. Qualitative and Quantitative Comparisons

The proposed approach is compared with two existing
methods in Figures 7 and 8: 1) the “Tree-model” by Zhu and
Ramanan, which has been proposed very recently, and 2)
CLM by Saragih et al., which may be considered the current
state-of-the-art in facial feature localization.

A total of 5876 images from 327 sequences have been
tested. For every sequence, the first frame is automatically
initialized. Every other frame in the sequence is initialized
with the results of the previous frame.

As Figures 7 and 8 illustrate, both CLM and the pro-
posed method significantly outperforms the “Tree-model”.
Even though similar tree-models perform well in other ap-
plications (such as part-based object classification), for fa-
cial feature localization they are too flexible, and hence al-
low unnatural deformations in the shape.

Out of 5876 tested images, the proposed approach
achieved a lower average error in 3468 images (59.02%),
CLM achieved a lower average error in 2296 images
(39.07%) and the Tree-model achieved a lower average er-
ror in 112 images (1.91%). Corresponding error distribu-
tions are presented in Figure 7.
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Figure 7. Quantitative comparison of Tree-model [31], CLM [23]
and the proposed approach (best viewed in color).

4.6. Generalization

Even though the proposed algorithm is trained on a rel-
atively small, fairly controlled dataset, as Figures 9 and 10
illustrate, it generalizes very well to real world images. This
may be explained by two primary properties: 1) pairwise
unimodal Gaussian compatibility potentials in the shape
model allow for a great level of flexibility and generaliza-
tion power, and 2) the HOG features capture the “generic”
appearance properties of the landmarks very well.

837837843



Avg. Pixel Error: 8.22902

Avg. Pixel Error: 9.91872

Avg. Pixel Error: 7.4538

(a) Tree-model [31].

Avg. Pixel Error: 5.35974

Avg. Pixel Error: 6.65247

Avg. Pixel Error: 4.86823

(b) CLM [23].

Avg. Pixel Error: 4.25422

Avg. Pixel Error: 4.64804

Avg. Pixel Error: 3.26781

(c) The proposed approach.

Figure 8. Qualitative comparison of Tree-model [31], CLM [23] and the proposed approach (best viewed in color and high-resolution,
green: ground truth, red: algorithm-specific results, less green seen means a better fit).

4.7. Implicit Occlusion Handling

Unlike AAM and CLM, our proposed approach models
the prior shape knowledge as pairwise local spatial relation-
ships. Figure 10 illustrates an important advantage of this
local model over the holistic approaches. Even with highly
occluded faces: 1) the visible landmarks are not affected
from the occlusion, and 2) reasonable predictions can be
made about the occluded landmarks. Please note that the
results in the figure are obtained without any explicit occlu-
sion handling mechanism.

5. Conclusion

In this paper, we proposed a novel approach for modeling
the prior shape knowledge in the facial feature localization
problem. Our framework is strict enough to capture all the
necessary loopy spatial constraints on a face, yet flexible
enough to generalize well to unseen expression and/or facial
attributes.

Through extensive qualitative and quantitative results we
showed that the proposed algorithm outperforms the state-
of-the-art in terms of localization accuracy.

Our future work consists of: 1) expanding the proposed
model to 3D, and 2) incorporating external applications into
the PGM framework.

Acknowledgments: We would like to thank the anony-
mous reviewers for their valuable feedback.
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