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Abstract

Human pose estimation from monocular video streams
is a challenging problem. Much of the work on this prob-
lem has focused on developing inference algorithms and
probabilistic prior models based on learned measurements.
Such algorithms face challenges in generalization beyond
the learned dataset. We propose an interactive model-
based generative approach for estimating the human pose
in 2D from uncalibrated monocular video in unconstrained
sports TV footage without any prior learning on motion
captured or annotated data. Belief-propagation over a
spatio-temporal graph of candidate body part hypotheses
is used to estimate a temporally consistent pose between
key-frame constraints. Experimental results show that the
proposed generative pose estimation framework is capable
of estimating pose even in very challenging unconstrained
scenarios.

1. Introduction
Pose estimation is an important problem and has re-

ceived considerable interest in the computer vision com-

munity [11]. We consider the problem of estimating hu-

man pose in 2D from a single view video stream. There are

many potential advantages to being able to analyse monoc-

ular video streams including lower equipment cost, lower

complexity and higher portability of the camera set-up. Ad-

ditionally, most of the content available to the user, despite

recent advances in 3D film and stereoscopic displays, re-

mains single-view. Thus, for most practical purposes only a

single video stream of the scene is available for analysis.

Monocular sports footage is challenging due to the com-

plexity of the backgrounds and the highly articulated hu-

man body, engaged in fast paced activities. Additional chal-

lenges posed by such data include motion blur, low fore-

ground resolution, occlusions and self-occlusions and rapid

configuration changes, camera movement and zoom. The

goal of the proposed algorithm is not only to deal with such

data, but to do so with sufficient reliability to be suitable for

use in a broadcast/production environment and can be sum-

marised as follows: Given a monocular sequence of images
with one or more athletes in each image, estimate the full
body 2D limb configuration and joint locations of the ath-
letes in each image.

Figure 1. Comparison of the proposed method (left) to an off-the-

shelf implementation in [7] (right).

The aim is to provide rapid, yet robust, user-assisted

pose estimation and tracking. We opt for a generative

model-based approach that requires no offline learning and

is generic in the types of motion it is capable of handling but

relies on a small amount of human interaction. As the target

use scenario is within a production environment with the

presence of human operators, complete automation is not

critical. Although we focus our experiments on real athletic

events footage, no assumptions are made about body size

and appearance, type of motion, and the scene.

The algorithm introduces an effective constraint on pose

change over time for a full human skeletal model and is

capable of estimating pose in unconstrained data requiring
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a relatively small number of keyframes.

2. Previous Work
Human pose estimation algorithms in the literature can

be separated into two distinct categories - generative and

discriminative. Discriminative approaches are typically

data driven and tend to rely on a mapping from image fea-

tures (silhouettes, salient features etc...) to pose informa-

tion [5, 1]. The key idea behind discriminative approaches

is that the number of typical human poses is far smaller than

the number of kinematically possible ones. Discriminative

methods learn a model that directly recovers pose estimates

from observable image metrics. In other words, the state

posterior is modelled directly by learning an image to pose

mapping. Once this training process is complete estimating

pose is fast but heavily reliant on the training data.

Ren et al. [15] propose a framework that exploits sym-

metry of limbs and parallel lines present throughout the

human body. A major drawback of this approach is that

without knowledge of scale and appearance the part detec-

tor is weak resulting in many false detections. In a simi-

lar approach [13] Mori et al. use superpixel through nor-

malized graph cuts (or NCut) and low-level salient limb

and torso features to produce partial candidate locations

for most limbs. The parts are then combined into partial

body configurations, which are completed by combinatori-

ally searching the space of superpixels to recover full body

pose. Srinivasan and Shi [19] propose a method where a

subset of salient shapes detected in an image (via NCut seg-

mentation) is combined into a shape similar to that of the

human body. Pose recovery is then formulated as a parsing

problem.

Part-based discriminative approaches model the human

body as a collection of parts, and the problem changes from

estimating the entire human pose to estimating pose of ev-

ery body part from image metrics. The advantage of part-

based approaches is that occlusion is easily modelled and

efficient global search techniques can be used. In [16], par-

tial configurations, where some body parts are missing, are

allowed into the model. Unfortunately the approach may

fail to detect a pose due to similarity of appearance between

the person and the background scene.

Generative approaches presuppose an explicitly known

parametric body model (generally a kinematic tree) and

estimate pose by inverse kinematics or numeric optimiza-

tion of a model-image correspondence metric over the pose

variables, using forward-rendering to predict the images.

Bottom-up Bayes’ rule is used and the state posterior den-

sity is modelled using observation likelihood or a cost func-

tion. Decision making can proceed even in the case of miss-

ing or incomplete data and assumptions as well as any prior

information (such as pose constraints) are easily accommo-

dated, but most importantly, there exists a bilateral depen-

dence between the model and the data. Such algorithms

generally incorporate a likelihood model capable of dis-

criminating incorrect hypothetical poses from correct ones

based on image evidence and an estimation algorithm able

to generate possible pose hypotheses from the parametric

body model [9, 10]. Model-based tracking is a derived tech-

nique which focuses on tracking the pose estimate from one

time step to the next, starting from a known initialization

based on an approximate dynamical model. Most gener-

ative pose estimation frameworks suffer from the fact that

the optimisation is prone to hitting local minima, requiring

a good initialisation and often failing on complex motions

[2].

Figure 2. Generic pipeline of a full pose estimation framework.

The area in green represents where the proposed algorithm could

fit into the pipeline.

Pictorial Structures (PS) is a probabilistic inference for a

tree-structured graphical model where the overall cost func-

tion for a pose decomposes across edges and nodes of the

tree. PS recovers locations scales and orientations of rigid

rectangular part templates that represent a body. PS is a

well developed detection method and can be used for track-

ing by detection [6, 3, 4]. A technique to extend exist-

ing training data sets is presented in [14]. These meth-

ods, however, require a large motion capture and image

training dataset. Lan and Huttenlocher [10] use a spatio-

temporal model though pictorial structures as states in a

Hidden Markov Model(HMM). A recent development [3]

introduces the idea that pictorial structures may be a generic

multi-purpose solution to pose estimation, detection and

tracking. The method is reliant on a strong discriminatively

trained appearance model. Ferrari et al. [8] propose a tem-

poral link between frames when estimating pose in videos,

but the proposed algorithm only works for frontal upper-

body poses. A variation on the temporal smoothness term

used for estimating 3D pose based on calibrated multi-view

ground truth learning data is presented in [18]. Although

the smoothness term is similar, it is applied within a three

frame moving window rather than globally.

While there exist multiple pose estimation techniques

capable of extracting human pose from monocular image
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streams, existing approaches do not provide a suitable so-

lution to the problem of general pose estimation in sports

footage to the fast and extreme motion captured with mov-

ing and zooming cameras. Most algorithms focus on recov-

ering pose from single images and/or do not make full use of

the temporal constraint on limb motion [3, 17, 14, 2]. Avail-

able off-the-shelf single image methods such as [7] have

trouble coping with the difficulty of the data, even when the

human is detected. Figure 1 shows a side-by-side compari-

son of the output of the algorithm developed in [7] obtained

using their online demo tool and the proposed method.

We propose a novel generative approach to pose estima-

tion from sports video to avoid loss of generality and bypass

the requirement for motion captured training data of specific

athlete motions. The focus of the framework is on pose es-

timation with the assumption that a human is detected and

an approximate foreground mask is available. Silhouette

extraction is a well studied problem and there is a wide va-

riety of methods that deal with background subtraction, for

example [20]. The diagram in Figure 2 shows where our al-

gorithm fits within a complete pose estimation framework.

The contributions of this work are twofold. First, we

propose a temporal smoothness term applied to the pictorial

structures model and show that this term makes a significant

impact on the outcome of the pose estimation problem. This

temporal smoothness constraint should be useful in most

existing pose estimation algorithms.

Second, we propose a framework for estimating full

body pose in truly challenging circumstances by effectively

moving the learning stage of the algorithm online. Gen-

erally, for a sequence of around 200 images our algorithm

will require 20 to 30 keyframes (depending on difficulty of

the motion) to produce high quality results. The keyframes

provide a motion prior and local part appearance models.

3. Methodology
The input into the algorithm is an image sequence along

with a corresponding sequence of masks and several user-

created keyframes. The keyframes are used for building

appearance models of body parts as well as to provide a

body part location prior through motion interpolation. The

process of pose estimation consists of two steps: body part

detection and pose recovery.

We employ a human skeletal model consisting of b =
13 body parts (root (R), head (H), neck (N), right and

left femur(RF, LF), tibia, (RT, LT), metatarsal (RM, LM),

humerus (RH, LH) and radius (RR, LR) as depicted in Fig-

ure 3.

Let xt represent the state of the skeleton at time instant

t. Let pi represent the state (x, y, θ, s) of part i as per the

standard PS model [6]. Then xt = {p1, p2, ..., pb}t.
Given a sequence of n frames the problem of estimating

human pose at each time instance can be written as:

Figure 3. Graph representation of the human kinematic skeletal

model consisting of 13 body parts.

X = argminxα

n∑

t=1

D(xt) + (1− α)

n∑

t=1

S(xt, xt−1) (1)

where X represents the temporal sequence of poses

{x1, x2...xt}, D(xt) represents the data term and

S(xt, xt−1, ) the smoothness term at time instance t.
The data term evaluates the cost of a state xt with respect to

image observations, while the smoothness term evaluates

the temporal continuity of the sequence. Sections 3.1 and

3.2 explain in more detail how these terms are computed.

In order to solve the problem we first represent it as

a factor graph and solve the resulting graph using an

implementation of generalised Belief Propagation [12].

3.1. Smoothness Term

The smoothness term consists of two distinct compo-

nents: an inter-limb distance cost Jxt , representing joint

connectivity, and a temporal distance term Txt , represent-

ing smoothness of motion across time:

S(xt, xt−1) = βJ(xt) + (1− β)T(xt, xt−1) (2)

The joint distance cost for skeleton xt is given by:

J(xt) =
b∑

k=1

dist(bk, par(bk)) (3)

where the dist() function evaluates the distance between

corresponding joints and par gives the hierarchical parent

of bone bk. The root bone has no parent. This creates a soft

requirement on inter-part connectivity. The assumption here

is based on the physical reality that adjacent limbs should be

connected. This term alone, however, is not likely to lead to

desirable solutions due to frame to frame jitter.

In order to reduce jitter between frames, a temporal

smoothness term is introduced:
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Figure 4. Representation of temporal and inter-limb links for

frames at time instances t − 1, t and t + 1. Coloured links rep-

resent the temporal constraint, while those in black represent the

joint connectivity constraint.

T(xt, xt−1) = d(xt, xt−1) (4)

The temporal term is effectively the Euclidean distance

between the joint locations at t and t−1. Figure 4 illustrates

the complete graph including the temporal term for three

consecutive frames.

3.2. Data Term

The data term is defined simply as the sum of support

scores S(kxt) assigned to each generated part candidate for

configuration xt:

D(xt) =

b∑

k=1

S(kxt) (5)

To generate part candidates for part k a search region

centred around the midpoint between the two joints of the

interpolation for that part is created. At each pixel within

the search region and the foreground mask a rectangular

template R = {p0, p1, ..., pq} containing q pixels is centred

with varying orientations and scales. Each instance of the

template receives a support score S based on the strength of

the support region as detailed in Equation 6.

S(k) =

∑n
i=0 d(pi)k

q
(6)

To obtain the descriptor d in Equation 6, an 83 RGB

colour histogram for each body part using information from

the two closest user-created keyframes is first built. The

histogram is sampled from image data at 8 bits per colour

channel and is normalised by the total number of samples.

The histogram is accumulated across all regions within the

Figure 5. Image with mask overlay and keyframe skeleton with

part regions that part models are built from.

Figure 6. Sample foot histogram model. Blob size represents fre-

quency and blob colour represents the actual bin colour.

foreground in a defined area around each bone. This nor-

malised 3D colour histogram serves as an appearance model

for body parts. Figure 5 is an example of regions from

which the histogram model is built while Figure 6 shows

a sample histogram of a foot model.

The histogram models provide k colour distribution

functions, one for each body part. A k-dimensional vector

is built at every pixel of the foreground region with each el-

ement giving the likelihood of the pixel belonging to a given

part based on colour using the colour distribution functions

previously obtained. This vector is then normalised by the

maximum of its elements, creating k-dimensional descrip-

tor d assigned to the pixel p(x, y) where each element of the

descriptor is the probability of the pixel belonging to the

corresponding body part.

Additionally, a 3D motion interpolation is computed us-

ing the two closest keyframes. The interpolation limits

the search region and provides initial orientation and scale

estimates for body part candidate generation. Interpola-

tion is used to limit the search space and make the prob-

lem tractable on commodity hardware. The interpolation is
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computed using the manually annotated keyframes based on

locations of joints in 3D space. Joint angles are represented

in quaternions and we use linear interpolation to estimate

the body state at a time instance.

4. Results and Evaluation
The framework is evaluated on three sports sequences

with different camera angles, zoom and motion from two

different sports - triple jump and hurdles. Due to the fast

motion of the athlete’s body many frames of suffer from

motion blur effects. Table 1 summarises the data used to

evaluate the framework and Figures 12, 13, 14, show sam-

ple results from each sequence. The size of the athlete

(height in pixels) differs in every sequence, ranging from

under 100 to over 500.

Table 1. Summary of sequences used for framework evaluation.
Name Sport Resolution Frames Keyframes
hurdlesSD hurdles 720x576 76 17

triplejumpHD triple jump 1920x1080 198 42

triplejumpSD triple jump 720x288 89 12

We use the interpolation between keyframes as the mo-

tion prior and assume that it gives a reasonable initial esti-

mate. In order to help reduce the search space we do not

vary scale and vary limb orientation by 90◦ in each direc-

tion in increments of 10◦. We also limit the search region

for body parts to twice the interpolated limb length. This

strikes a good balance between accuracy and computabil-

ity allows us to obtain results for 10 images (8 frames plus

two keyframes) at speeds of around 15 seconds per frame

on a commodity laptop computer, depending on foreground

region size.

The error of a body part to ground truth is defined as

the square of Euclidean distance to ground truth body part

joints and is given by:

Ek =
d(j0, g0)

2 + d(j1, g1)
2

2
(7)

where j0 and j1 are estimated joint positions for the body

part k and g0 and g1 are the ground truth positions. The

graphs in Figures 9, 10, 11, show a comparison of RMS er-

ror at each time instance between 3D interpolation and our

method for each of the three sequences.The ground truth is

obtained by manual annotation of the sequences. The man-

ual annotation of the sequence includes labelling of limbs as

occluded to the point where even a human operator cannot

reliably determine the location of the limb. Limbs labelled

in this way are removed from error analysis as their true

location is unknown.

The parameters used for obtaining the results were ex-

perimentally derived using a short section of the triple-

jumpSD sequence. Testing has shown that values of α =
0.2 and β = 0.7 (Equations 1 and 2) produce good results.

Graphs in figures 7 and 8 show our findings for the triple-

jumpSD sequence. To determine the optimal value of α the

sequence was solved using the same set of candidate parts

with β = 0 at intervals of 0.05 from 0 to 1. Similarly, to de-

termine the value of β, the value of α was fixed to 0.2 and

the same candidates were used with β being varied in the

same range with identical frequency. This experiment also

serves to confirm that the temporal term has a quantifiable

impact on the quality of the results.

Figure 7. Error to ground truth of our algorithm for the trijumpSD

sequence at different α values.

Figure 8. Error to ground truth of our algorithm for the trijumpSD

sequence at different β values.

Analysis of these sequences indicates that qualitatively

our method is almost always better than pure interpolation.

The significance of improvement can depend on how good

interpolation is for a particular sequence. Since the inter-

polation we compare against is done on a 3D skeleton it

is fairly good at coping with normal human motion and is

guaranteed connectivity and temporal consistence as long

as it is across one gait cycle. Currently, we make use of in-

terpolation as a motion prior and search space limiter with

the assumption that the interpolation provides a reasonable

initial estimate of pose. Thus, even a seemingly small im-

provement in distance often has significant visual impact

with regard to accuracy of body part locations. Furthermore

the problem of the interpolation straying significantly from

the ground truth, preventing detection, and potentially drag-
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Figure 9. Error to ground truth of our algorithm (green) and motion

interpolation (red) for the triplejumpHD sequence.

Figure 10. Error to ground truth of our algorithm (green) and mo-

tion interpolation (red) for the triplejumpSD sequence.

Figure 11. Error to ground truth of our algorithm (green) and mo-

tion interpolation (red) for the hurdlesSD sequence.

ging the optimisation in the wrong direction is left for future

work but has a definite impact on the results.

The error differences between interpolation and our

method vary for the different sequences and sections of se-

quences. For example, the graph for the triplejumpHD se-

quence 9 has a much more significant error gap than both

triplejumpSD and hurdlesSD. Large gaps can occur when

the interpolation has strayed 90 degrees of rotation away

from ground truth (at the limit of our used range) but has

stayed close enough to contain the image body parts within

the search region.

Figure 12. Sample solutions from the trijumpHD sequence. Black

marks at zero error indicate keyframes.

Figure 13. Sample solutions from the trijumpSD sequence. Black

marks at zero error indicate keyframes.

5. Conclusion and Future Work

We have presented a method for recovering human pose

in challenging sports scenarios using only a single view but

requiring some human interaction. The proposed frame-

work is generic in terms of types of motion and pose the

athlete could take. The algorithm has been tested on three

challenging sports sequences of different sports. Quantita-

tive and qualitative analyses have shown that our method

provides a significant improvement to using interpolation

and is capable of recovering pose even in the most chal-

lenging of conditions.

Future work will focus on improving the appearance

model as a stepping stone to weakening the reliance of the

algorithm on interpolation and reducing the solution search

space by generating higher quality body part candidates.

Since our algorithm is capable of recovering joint locations

another avenue for exploration is recovery of pose in 3D,

which would allow for additional kinematic constraints to

be added to the optimisation.
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Figure 14. Sample solutions from the hurdlesSD sequence. Black

marks at zero error indicate keyframes.
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