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Abstract

A method of reconstructing the 3D trajectories of a table
tennis ball is introduced, which was developed to solve the
problem with conventional analysis in table tennis. There
are several methods of reconstructing 2D ball trajectories
or 3D trajectories of balls heavier than those in table tennis.
However, these methods cannot be adopted to reconstruct
the 3D trajectories of table tennis balls, because there are
problems that are attributed to the dimensions of the trajec-
tories and weight of the balls. The method proposed in this
paper could reconstruct the 3D trajectories of a table tennis
ball. The key feature of the method is that it approximates
that a ball is traveling on tilted planes. This approximation
makes reconstruction robust against failure to measure 3D
ball positions. A system using two RGB cameras was devel-
oped based on the new method. The system experimentally
demonstrated that it could provide accurate information for
match analysis. A system using an RGB-D camera was then
developed to optimize usability for practitioners. We exper-
imentally demonstrated that the system could provide accu-
rate information for service analysis.

1. Introduction
There has recently been growing interest in tactical and

technical analysis though videos and statistics, i.e. so-called

performance analysis, in sports sciences[4, 8, 9] where

coaches can use the results of performance analysis to op-

timize decision making. There has been some research that

has aimed at applying methods of performance analysis to

table tennis[5, 7].

However, performance analysis has rarely been seen in

practical scenario in table tennis because this analysis in ta-

ble tennis requires enormous amounts of time or huge bud-

gets due to the heavy workload imposed by data collection.

The inefficiency of methods of data collection makes it dif-

ficult to carry out analysis, and it is not currently available

to many practitioners.

We developed computer systems to solve this problem.

One of the systems was developed without any computer vi-

sion technologies. and it made data collection more efficient

by supporting input operations by just using a graphical user

interface (GUI). This system certainly advanced solutions

to the problem. For example, the system enabled perfor-

mance analysis at the London Olympics in 2012. While the

system achieved advances, it still had a major problem in

that they required a lot of time to collect shot data, such as

the positions where the ball was hit and where it bounced.

We have called analysis with software “conventional analy-

sis” in this paper and the main problem with this originated

from its dependence on the operation of manual input. Au-

tomated data collection is therefore urgently required. This

problem could be solved if we could obtain the 3D trajecto-

ries of table tennis balls.

Here, we propose a vision-based method of reconstruct-

ing the 3D trajectories of table tennis balls. There are sev-

eral methods of reconstructing 2D ball trajectories or 3D

trajectories of balls that are heavier than table tennis balls.

However, they cannot be adopted to reconstruct the 3D tra-

jectories of table tennis balls because there are problems

that are attributed to the dimensions of the trajectories and

weights of a balls. The proposed approach in this paper

can be used to reconstruct the 3D trajectories of table tennis

balls. The key feature of the proposed method is approxima-

tion where the ball is traveling on tilted planes. This approx-

imation makes the reconstruction robust against failures to

measure 3D ball positions in various frames. In addition,

the proposed approach can successfully be used to recon-

struct trajectories with ball candidates including false pos-

itives. The method of dealing with false positives is based

on the method proposed by Fei et al. [1]. We developed a

system using two RGB cameras based on the new method.

The system obtained shot data for match analysis and was

expected to solve the problem with conventional analysis.

We then developed a system using an RGB-D camera to

optimize usability for practitioners. Although the system

using the RGB-D camera could not reconstruct the trajecto-

ries of fast moving or rotating balls due to functional issues

with the RGB-D camera, the system was useful for analyz-
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ing services. Moreover, we expected that the system would

be able to reconstruct the positions of any balls in the fu-

ture when the frame rates and the measurement range of

depths of RGB-D cameras were enhanced. The proposed

method experimentally demonstrated that it made perfor-

mance analysis of table tennis more efficient and more ef-

fective through these developments in the systems.

This paper consists of six sections. Section 2 briefly

descrives conventional analysis. Section 3 first considers

technical issues in reconstructing the 3D trajectories of ta-

ble tennis balls with usable photographic devices for per-

formance analysis. Next, we describe our method that over-

came several technical issues. Section 4 introduces the sys-

tem that use two RGB cameras, which we experimentally

evaluated. Section 5 introduces the system using an RGB-

D camera, which we also experimentally evaluated. Finally,

we conclude the paper in section 6.

2. Conventional Analysis
Table tennis matches were analyzed with conventional

analysis in two steps with the GUI computer software we

developed: (1) analysis that provided brief results based on

data related to rallies and (2) analysis that provided detailed

results, based on data collected at (1) and data related to

shots. We collected data related to rallies in analysis (1),

such as those from the server, the scoring player, and the

shot number of the scoring shot1. After the data were col-

lected, we computed statistics that could be used as indica-

tors of (a) the scoring possibility depending on serves or re-

turns, (b) transitions in scores, and (c) the scoring possibil-

ity depending on the shot number. Many data were obtained

automatically with this software, based on the assumption

that a shot was played alternately by players. Input opera-

tion was therefore just to record the times of shots and the

shot number of the scoring shots, and we could conduct this

analysis in real time. We collected data related to shots in

analysis (2), such as the types of shots and the direction

(position from which the ball bounced and the direction in

which it moved) of a shot. After the data were collected, we

computed the statistics that could be used as indicators of

(a) the scoring possibility depending on the type of shot and

(b) the scoring possibility depending on the direction of the

shot. We mainly analyzed the spatial factor of tactics in this

analysis. It was difficult to manually record the precise co-

ordinates of shots, but it was possible to record the data on a

scale according to a 3 x 3 divided area of a half court. Spa-

tial tactics in table tennis are generally considered based on

the 3 x 3 divided area. We could therefore use the direction

data if they were obtained on a 3 x 3 scale of accuracy. This

analysis involved an enormous workload, while analysis (2)

provided useful results for performance analysis.

1Shot number denotes the ordinal number of shots in a rally. For exam-

ple, making the serve is the first, and receiving it is the second.

Conventional analysis was used in performance analysis

at the London Olympics in 2012. We analyzed 136 matches

based on (1) and 59 matches based on (2) as a result of this

analysis, which provided advanced performance analysis in

table tennis. However, the problem where we needed a great

deal of time to collect shot data remained because this could

not be solved by manually collecting data conventionally,

and we urgently needed a method of automatically collect-

ing data.

3. Trajectory reconstruction
The biggest problem with conventional analysis is the

enormous workload imposed by collecting shot data. We

propose a method of reconstructing the 3D trajectories of

table tennis balls to solve this problem. 3D trajectories pro-

vide the spatial features of shots (e.g. the positions from

which balls bounced, their maximum height, and the di-

rection and velocity of movements). However, because we

cannot set up optimal environments for performance analy-

sis in practice, it is difficult to reconstruct the 3D trajectories

of table tennis balls. This section first introduces technical

issues and related work. We then propose our method that

overcame these issues.

3.1. Technical issues

First, let us consider usable devices in practical scenario

(e.g. competition venues and training rooms). The setup

to operate devices for performance analysis would be diffi-

cult to achieve if it required many devices. Therefore, the

smaller the number of devices, the better. We can mini-

mize the number of devices by using only one device that

can detect depth, like an RGB-D camera. However, since

RGB-D cameras cannot be set to have either high frame

rate or short exposure times, we cannot target fast moving

balls with them. We can target a fast moving balls by using

two RGB cameras, although usability would decrease. We

used two RGB cameras or an RGB-D camera to reconstruct

trajectories for this reason.

Next, we considered the technical issues we faced in re-

constructing the 3D trajectories of a table tennis ball. First,

it is a difficult to detect a table tennis ball. We took a video

far from the court at a competition venue. We could there-

fore not take images of the ball at high resolution. We would

encounter the same problem when we used an RGB-D cam-

era even in a training room because the resolution of stan-

dard RGB-D cameras is around 640 x 480 pixels. The di-

ameter of a table tennis ball is less than 10 pixels in this

situations and it is difficult to discriminate this from many

other objects. Although there has been much research that

has tried to detect actual balls from images, no researchers

have detected balls accurately[3, 14]. Second, the 3D posi-

tion of balls cannot be measured robustly because of the

restrictions with usable devices. We cannot measure the
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3D coordinates of balls with two RGB cameras when ball-

to-objects, usually ball-to-player, occlusion occurs at one

viewpoint. We encountered more difficult situations using

an RGB-D camera because there were many missing values

in the depth images we took with it. The ratio, expressed as

a percentage, where we successfully measured the 3D po-

sitions of a ball was about 20% in all frames including the

ball in our experiments. We needed a method that could re-

construct the 3D trajectories of table tennis balls, even if we

had few 3D positions for the balls.

3.2. Related work

Poliakov et al. [10] proposed a physics-based method of

tennis ball tracking based on knowledge that the ball was

traveling from a racket. This method avoided the difficulty

of ball detection using racket positions. However, it was

also difficult to detect rackets, especially in table tennis, be-

cause they were small and were often occluded by the play-

ers. We would have faced other difficult issues if we had

used their method.

Fei et al. [1] proposed a method of reconstructing the 2D

trajectories of a tennis ball from cluttered data. They ap-

proximated a motion model of balls with constant accelera-

tion over short periods of time and linked short trajectories

by solving the shortest path problem. Their experimental

results indicated this method could reconstruct a trajectory

from detection results that including many false positives.

However, if we failed to measure ball positions in succes-

sive frames, the approximation used in their method would

be inappropriate. We often encountered such situations be-

cause of restrictions with usable devices, as we mentioned

in the previous subsection. Therefore, their method could

not deal with the problem.

Ren et al. [11] proposed a method of reconstructing the

3D trajectory of a soccer ball. They approximated the tra-

jectory of a soccer ball with planar curves on vertical planes.

Because they could obtain the 3D positions of the ball by

projecting its 2D position, this method could be used to re-

construct the 3D trajectories of the ball when there were few

3D positions of balls. However, when a ball spinning fast

and changed direction after being affected by lift force, the

approximation that the ball will travel on a vertical plane

is inappropriate. We could not use this method because ta-

ble tennis balls are light and can be severely affected by lift

force.

As a result, there were technical problems that related

work could not solve. The problems were attributed to the

dimensions of trajectories and the weights of the balls. We

therefore needed a new method of reconstructing the 3D

trajectories of table tennis balls.

Figure 1. Flowchart to reconstruct trajectory for table tennis.

3.3. Our method

Figure 1 shows a flowchart for our method whose main

feature was to approximate a ball traveling on tilted planes

(trajectory planes). The planes were not assumed to be ver-

tical to the ground, and the method could be applied to ta-

ble tennis balls. We could reconstruct the 3D trajectories of

balls from a minimum of three points by projecting ball po-

sitions in image space using the approximation. The prob-

lem with the few 3D positions of balls was solved. The

problem of ball detection was solved by a method of recon-

structing the 3D trajectories of balls from candidates includ-

ing false positives. The approach that was used to estimate

the trajectory model was based on the method proposed by

Fei et al. [1].

The proposed method required six items of information:

camera parameters, table corners in world and image space,

ball candidates in world and image space, bounce time, im-

pact time, and the start and end times of rallies. We assumed

the impact times, and start and end times of rallies would

be recorded with the conventional method. As it is not a

problem to record data with the conventional method, these

assumptions were appropriate. We have described methods

of obtaining other previous information in Sections 4 or 5

because the methods depend on devices. We have described

methods of reconstructing the 3D trajectories of table tennis

balls in this section.

3.4. Estimating trajectory planes

We approximated that a ball was traveling on a tilted

plane between ball-to-racket or ball-to-court collisions. We

also obtained the bounce times and impact times. We there-

fore need to separately take each periods of time between

collisions into consideration after this.

First, outliers are detected and eliminated by fitting the

planar model to ball candidates in world space. Next, three

optimal ball candidates are chosen. Let us denote the num-
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ber of ball candidates in world space as nc, the jth candi-

dates as cj , the plane constructed by three chosen ball can-

didates as P , and the Euclidean distance between plane Pi

and candidate cj as D(Pi, cj). The candidates that mini-

mize the following cost function are chosen as:

C =

nc∑
j=0

D(P, cj) (1)

This computation may provide poor results when we have

so few candidates because of the errors included in true

positives. The trajectory plane is robustly estimated using

bounce points as anchors. The number of candidates in a

period can be too small to reconstruct a plane even using

a bounce position. We set the threshold for the number of

candidates required to reconstruct a trajectory plane with

the method. The candidates in the time trajectory plane are

not reconstructed are projected to another plane, which is in

the closest planes in the future or past and provides smaller

C.

3.5. Reconstruction of trajectory model

First, we project ball candidates in image space to a tra-

jectory plane and obtain ball candidates in world space. Let

us denote the normal of a trajectory plane as n, the model

of the trajectory plane as ax + by + cz + d = 0, and the

physical position of the ball on the image as ximage. A ball

position in world space xplane is computed as:

xworld = −( d

n · ximage
)xiamge (2)

where the optical center of the camera that takes the pro-

jected ball candidate is defined as the origin of world space.

The physical position of the ball on the image is computed

by using camera parameters.

Next, we reconstruct the 3D trajectory model from the

3D positions of balls obtained before processes. We used

the method proposed by Fei et al. [1] to estimate the tra-

jectory model with extensions for 3D. First, false positives

are eliminated based on the consecutive candidates in adja-

cent frames, as described in Fig. 2. Every candidate is ex-

amined in the process to check whether it has consecutive

candidates, which is defined by the distance from the candi-

date, in adjacent frames. The distance that defines succes-

sive candidates is the maximum distance the ball can travel

between frames. A candidate is eliminated when no other

candidates are detected in either or both adjacent frames. If

there is more than one candidates in a frame, all candidates

in the frame are eliminated. Almost all false positives are

eliminated after the process.

Next, trajectory models are estimated. We approximate

that the motion model of the ball has constant acceleration

in the specific period of time, nc. Let us denote the positions

Figure 2. Elimination of false positives. Candidates 1 and 3 are

eliminated in frame i, because they have no consecutive candidates

within the threshold range (dashed sphere) in frame i-1 and/or

frame i+1. Candidate 2 is not eliminated, because it has consecu-

tive candidates in both adjacent frames.

(a) (b)

Figure 3. Estimation of trajectory model by iterative optimization.

(a) is model before optimization and (b) is model after tree opti-

mizations. Black circles are detected ball candidates. Red circles

are estimates given by trajectory model.

of candidates as p1, p2, and p3, their time as t1, t2, and t3
(t1 < t2 < t3), t2 − t1 as Δt21, t3 − t1 as Δt31, constant

acceleration as a, and velocity at time t1 as v1. The constant

acceleration model can be solved as:

v1 =
p2 − p1

Δt21
− Δt21a

2
(3)

a = 2
Δt21 × (p3 − p2)−Δt32(p2 − p1)

Δt21Δt32(Δt21 +Δt32)
(4)

Models could be inaccurate when they are reconstructed

from successive candidates in close frames. We solved the

problem with the trajectory model by using three points, i.e.

the earliest, the latest, and the middle ones in inliers, which

were consistent with the trajectory. This iterative optimiza-

tion stops when the three points do not change or the sum

of errors starts to increase. As we can see from Fig. 3, the

distance between the trajectory model that is estimated from

the three successive points (Fig. 3 (a)) is longer than that of

the trajectory model that is estimated after three iterations of

the optimization process (Fig. 3 (b)). Next, we link recon-

structed trajectories in time-series order. We then smooth

the trajectories with a Savitzky-Gollay filter[12]. As a re-

sult, we can finally reconstruct the 3D trajectories of a table

tennis ball.
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Figure 4. Flowchart to obtain data using multiple camera system.

4. System using two RGB cameras
4.1. System architecture

We described the system to reconstruct the 3D trajec-

tory of a ball based on the proposed method in the previous

section. This system was composed of two RGB cameras,

whose exposures were synchronized, and an ordinary PC.

It was operated in collaboration with conventional analysis

and provided spatial data of shots. We expected collabora-

tion to solve problems in conventional analysis. Figure 4

has the flowchart to obtain data with the system. The steps

are described in detail in the following subsections.

4.2. Camera calibration

We used the method proposed by Zhang[15] to compute

intrinsic camera parameters. Extrinsic camera parameters

were obtained from planar transformation matrix (Homog-

raphy) H[13]. Let us define the end lines and side lines

of the court as the X-Y plane, the vertical direction of the

court as the Z axis in world space, and the coordinates of

the four corners as (0 m, 0 m, 0 m), (1.525 m, 0 m, 0 m),

(0 m, 2.74 m, 0 m), and (1.525 m, 2.74 m, 0 m). Based on

this definition, H can be computed [2]. The four corners

were manually recorded. Optimal extrinsic parameters can-

not be expected with this method because we only used four

points on the same plane and independently calibrated each

of the cameras. However, this method is easy to operate and

can be used in many cases. Its results are also sufficiently

accurate to be used for performance analysis. We used the

calibration method in the system for this reason.

4.3. Detection of ball candidates

First, we eliminate large segments by using contour

based segmentation and area based elimination. We used

findContours, which is an OpenCV function, to obtain con-

tours. The main aim of the process was to eliminate player

segments. Player segments contain that have a similar ap-

Figure 5. Reconstructed trajectory with system using two RGB

cameras. Red curve was reconstructed using trajectory plane and

black curve was reconstructed without trajectory plane.

pearance to balls and they can generate false positives. Ball

candidates were then detected by extracting moving ob-

jects through inter-frame subtraction, and extracting high

intensity segments and those that were circularity. Can-

didates without consecutive candidates in adjacent frames

were eliminated (the same as the algorithm in Fig. 2) after

this process. Next, we computed the 3D positions of the

ball by triangulation. If there were multiple candidates in a

frame, no candidates were computed in the frame. Finally,

we could obtain ball candidates in world space.

4.4. Estimation of bounce time

We detected bounces from the 3D positions of the balls.

First, we reconstructed the trajectories by using the method

proposed by Fei et al. [1] and smoothed them with a

Savitzky-Gollay filter[12]. Next, we looked for the time

when the vertical component of the direction of movement

changed from going downward to going horizontally or up-

ward. This method could not detect bounces when a player

hit a ball right after it bounced and the ball was occluded by

a racket or a player. However, this had no affect on recon-

structing the trajectories, since the time between bounces

and shots was short.

4.5. Experiments

We performed experiments to verify whether our method

could reconstruct 3D trajectories and provide performance

indicators. The subjects were experienced table tennis play-

ers who executed ten rallies. The resolution of the video was

640 x 480 pixels, and the frame rate was 60 fps.

The reconstructed trajectory of a table tennis ball is

shown in Fig. 5. The results for estimating the bounce posi-

tions are summarized in Table 1 where manually measured

data were used as the reference data.

If we only use Fei et al. [1]’s method, the shape of the

trajectory could be unnatural around impact due to the oc-

clusion between players and the ball (the black curve in Fig.

5). Since our method is robust against occlusion by one

viewpoint because the approximation of the trajectory of a

ball is a planar curve, the shape of the trajectory is natural
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Table 1. Results for estimating bounces. Errors are differences

from ground truth recorded manually.

Indicator Value

Minimum error [mm] 7.3

Maximum error [mm] 298.3

Average error [mm] 56.5

Standard deviation [mm] 50.4

Recall [%] 91.9

Precision [%] 97.1

(the red curve in Fig. 5). The average error in bounce posi-

tions, i.e. 56.5 ± 50.4 mm (Table 1), is attributed to inaccu-

racy in calibration because ball detection and the trajectory

plane were accurately estimated according to the shape of

the trajectory. This error was acceptable in actual practical

use of performance analysis. As we discussed in Section 2,

coaches and players who consider bounce positions gener-

ally refer to a 3 x 3 separated area of the half court and con-

ventional analysis provides accurate data. The short side of

the separated area is 460 mm, which is much greater than

the error in our method. All the bounce positions were cor-

rectly predicted in this experiment on the 3 x 3 scale. There-

fore, the results using the system were sufficiently accurate

to solve the problem with conventional analysis.

However, we need to note that this system used two RGB

cameras whose exposure times synchronized. Although it

could be acceptable and effective in many cases, setup and

calibration operations were required and usability was not

optimal. The next section describes a system that makes it

possible to solve the issue of usability.

5. System using RGB-D camera
5.1. System architecture

It is optimal to use an RGB-D camera, which can detect

depth in a scene, from the aspect of usability as we men-

tioned in Section 3. Although current RGB-D cameras can-

not track fast moving balls because of functional issues(e.g.

low frame rates and long exposure times), these would not

be problems if we only targeted services2. Moreover, devel-

oping the skill of service is regarded as an important issue

in table tennis. It would be useful for players if there were a

system to reconstruct the trajectory of services and provide

their quantitative features. In addition, there is the possibil-

ity that the capabilities of RGB-D cameras will be improved

and they will be able to track all kinds of balls in the future.

We developed a system that provided the features of ser-

vice using an RGB-D camera. Fewer devices were required

2Players making serves in table tennis need to bounce the ball in their

own court before they bounce it in the opposite court. It is therefore dif-

ficult to score by increasing the velocity of the ball. This is why many

players mainly consider tactics with rotation and direction when serving.

Figure 6. Detection of ball candidates in a depth image. White

curve is 2D trajectory reconstructed based on RGB images. Rect-

angle is the range of positions where ball can be, which was de-

fined with the trajectory. Red segment was selected as ball, and

blue segment was rejected.

and it was easy to use. The flowchart for the system is nearly

the same as the one that used two RGB cameras (Fig. 4).

However, the algorithms that were adopted in each process

were different. The steps are described in detail in the fol-

lowing subsections.

5.2. Detection of Table corners

First, we reconstructed a planar model of a court using

the 3D positions of all pixels in the depth images. The RGB-

D camera was placed above the table, and the major part

of the image was a court. We could reconstruct the planar

model using the random sample consensus (RANSAC) al-

gorithm for this reason. We then detected white lines on the

reconstructed plane by using a Hough transform. Finally,

we selected four optimal points from the intersections of

the white lines based on the area of the quadrangle that was

comprised of selected points.

5.3. Detection of ball candidates

We needed to detect the ball in depth images to compute

their 3D positions. However, it was difficult to detect the

table tennis ball in depth images because there were many

missing values and there was a great deal of noise in the

depth images taken with the RGB-D camera. We therefore

detected the ball in the RGB images, defined the range of

positions where it could be in a depth images, and detected

it. The position in a depth image calculated from the po-

sition in an RGB image using known geometric relations

could be inaccurate because the exposure of the RGB cam-

era and the depth camera were asynchronous. We therefore

needed to detect the ball in RGB images and a depth images.

The method of detecting balls in RGB images was the

same as that used in the system using two RGB cameras:

the elimination of large segments, the extraction of mov-

ing objects, the extraction of high intensity segments, and

extraction based on circularity.

We then reconstructed a 2D trajectory in RGB images

using the method proposed by Fei et al. [1]. As we can see
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Table 2. Results of recall ratio (%) of successfully measured 3D

positional data for balls with RGB-D camera. This table indicates

RGB-D camera could not robustly obtain data from moving balls.

Indicator Value

Minimum [%] 10.3 (4/39)

Maximum [%] 24.4 (10/41)

Average [%] 20.7(7.8/37.8)

Standard deviation [%] 6.4

from Fig. 6, the trajectory defines the range of positions

where the ball can be in a depth image. For example, when

we look for ball candidates in the ith frame of depth images,

the range is defined as the circumscribed rectangle of the 2D

trajectory from the i−1th to the i+1 frames, which include

specific size margins. Ball candidates are detected based on

the area and the circularity of segments. The closest one in

the detected candidates is chosen. The ball positions in the

depth images provide the 3D coordinates of balls[6].

However, the ratio, expressed as a percentage, success-

fully used to measure the 3D position of a ball was about

20% in all frames that included the ball (Table 2). The ra-

tio was low because there were many missing values in the

depth images taken with the RGB-D camera and the table

tennis ball was small. The results indicated that the RGB-D

camera could not robustly obtain the depth values of mov-

ing table tennis balls.

5.4. Estimation of bounce time

There were few 3D positions for the ball as we men-

tioned in the previous subsection. We therefore detected

bounces based on the 2D trajectory of the ball in RGB im-

ages, which had already been obtained when we detected

the ball in depth images. The field of view could be as-

sumed to be almost fixed. The bounce positions are the

minimal values vertical to the direction of movement in the

trajectories. The direction of movement in trajectories is de-

termined according to the direction of movement of the ball

when it bounces or peeks. The temporal differentiation of

the inner product of the successive directions of movement

of the ball takes a minimal value at peaks and bounces in the

trajectory. We detected peaks and bounces in the 2D trajec-

tory of the ball using this fact, and calculated the direction

of movement in the trajectory by computing the average di-

rection of movement by the ball at bounces and peaks. Let

us denotes the direction vector of the ball at i as vi, and the

second order differential of the inner product of adjacent di-

rections of movement by the ball as ci,i−1, ci−1,i−2. The

direction of movement in 2D trajectory d is calculated as:

d =
Σsi
|Σsi| (5)

where si =

⎧⎪⎨
⎪⎩

0 if c′′i−1,i−2 = 0

0 if c′′i,i−1c
′′
i−1,i−2 ≥ 0

vi otherwise

(6)

We rotate the trajectory to fit the direction of movement in

the trajectory on X axis. We can then detect bounces by

seeking the minimal value for the Y components in the ro-

tated trajectory. The service in table tennis bounces two

times, i.e. first in the serving player’s own court and then in

the receiver’s court. As the second bounce position is im-

portant for tactical reasons. The second bounce position is

used to estimate the trajectory plane.

5.5. Experiments

We carried out experiments to verify whether the system

could reconstruct the 3D trajectory of a service and pro-

vide information. The subjects were experienced table ten-

nis players who made six services. The resolution of the

RGB and the depth images were 640 x 480 pixels, and the

frame rate was 30 fps. Microsoft Kinect was used to take

videos and was placed high, i.e. 2.3 m, above the ground,

opposite to the server.

The 3D trajectory of two services are shown in Fig. 7.

The recall rates to measure the 3D positions of balls with

the RGB-D camera are listed in Table 2. Five out of six trial

shots were successfully reconstructed, the same as in Figs.

7 (a) and (b).

As we can see from Fig. 7, few 3D positions were mea-

sured with the RGB-D camera (white spheres) . The trajec-

tory could not be reconstructed only by using the method

proposed by Fei et al. [1] from these positions. Unfortu-

nately, the accuracy of results could not be quantitatively

evaluated in these experiments, but we expected the trajec-

tory to provide information that could be used for train-

ing purposes. However, one of the reconstructed trajecto-

ries could not be successfully reconstructed, as we can see

from Figs 7 (c) and (d). There were few 3D positions of

balls in the experiments. Therefore, all the ball positions

in the trajectory were projected onto one trajectory plane.

The projection was inappropriate for the service shown in

Figs. 7 (c) and (d) because it rotated quickly and rapidly

changed the direction of movement when it bounced. We

may be able to solve problem by using RGB-D cameras

whose frame rates are higher than that of Kinect because

the problem just involves the amount of 3D positional data.

We need to consider other RGB-D cameras for future sys-

tems.
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(a) Trajectory 1 (b) Trajectory 1

(c) Trajectory 2 (d) Trajectory 2

Figure 7. Reconstructed 3D trajectory. This figure indicates trajec-

tory 1 was successful and trajectory 2 failed.

6. Conclusion

We introduced a method of reconstructing the 3D trajec-

tories of a table tennis ball. The two key features of the

proposed method were: (1) It was robust against failures in

measuring 3D ball positions in some frames and (2) It could

reconstruct trajectories from ball candidates including false

positives. A system using two RGB cameras was developed

based on the new method and it was experimentally verified

that it could provide accurate information for match analy-

sis. We also developed a system using an RGB-D camera

to optimize usability for practitioners. The system experi-

mentally verified that it could provide accurate information

for service analysis. Although the system using the RGB-D

camera cannot currently track fast moving or rotating balls,

this will not be a problem in the future because this issue

depends on the capability of current RGB-D cameras. In

conclusion, it was possible to collect shot data from table

tennis matches without imposing heavy workloads by us-

ing the systems. Future issues involve using the systems

in practical scenarios that will contribute to making perfor-

mance analysis more efficient through upgrades.
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