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Abstract

We revisit the notion of object affordances, an idea that

speaks to an object’s functional properties more than its

class label. We study the problem of spatially localizing

affordances in the form of 2D segmentation masks anno-

tated with discrete affordance labels. For example, we use

affordance masks to denote on what surfaces a person sits,

grabs, and looks at when interacting with a variety of ev-

eryday objects (such as chairs, bikes, and TVs). We in-

troduce such a functionally-annotated dataset derived from

the PASCAL VOC benchmark and empirically evaluate sev-

eral approaches for predicting such functionally-relevant

object regions. We compare “blind” approaches that ig-

nore image data, bottom-up approaches that reason about

local surface layout, and top-down approaches that reason

about structural constraints between surfaces/regions of ob-

jects. We show that the difficulty of functional region predic-

tion varies considerably across objects, and that in general,

top-down functional object models do well, though there is

much room for improvement.

1. Introduction

“If you know what can be done with a ... object,

what it can be used for, you can call it whatever

you please”

J. J Gibson [14]

Gibson eloquently argues that predicting functional “affor-

dance” is more important than predicting object category

labels. However, the vast majority of work on object recog-

nition focuses on the task of predicting bounding boxes

and category labels - see, for example, the PASCAL VOC

benchmark [7]. As an example, consider the objects in

Fig. 1; though it is unclear if they should be labeled as a

“chair”, most people would know how to sit on them. If a

humanoid robot were to be confronted with these objects,

it would not suffice to simply name them or estimate their

bounding boxes; rather the crucial bit is knowing where the

robot should rest its bum and back.

Figure 1. Objects that can potentially be used as chairs by humans.

Humanoid robots, when faced with such objects would need pre-

cise localization of the regions that they can sit on (yellow) and rest

their back against (blue). We benchmark a wide variety of algo-

rithms for producing such outputs, including blind baselines that

ignore image data, bottom-up models of surface geometry, and

top-down models that reflect object-specific structural constraints.

We argue such precise modes of interaction exist for vir-

tually any object category. When interacting with a bottle,

we must estimate where to grab it with our hands and where

to place our mouths. When interacting with a computer, we

must estimate where to look, since a rear-facing monitor af-

fords little use to an observer. The central thesis of this work

is that functional regions are an important type of output

that recognition systems should produce, alongside classic

outputs as categorical labels and attribute values. We define

a generic set of affordance labels based on body parts that

touch an object during typical interactions (e.g., when using

a bike, one places feet on pedals and hands on handlebars).

Additionally, we define “looking at” as an important inter-

action that does not involve touching. We show examples

of functional regions for everyday objects in Fig. 2.

Functional prediction dataset: Formally, we define the

task of function region prediction as the prediction of seg-

mentation masks with discrete affordance labels. We de-

fine a candidate mask and label to be correct if it over-

laps the correspondingly-labeled ground-truth segmentation

mask by a sufficient amount. For simplicity, we consider the

case when an object bounding box is known at test-time,

similar to the formulation of attribute prediction [9].

Benchmark evaluation: We compare several baseline

approaches to functional region prediction. We first con-

sider “blind” baselines that do not look at any image data,

and just use the bounding box to predict functional region

masks. We show that such baselines do well for certain ob-

jects with little variability in 3D structure or pose. For ex-

ample, bottles tend to mostly be upright, in which case one

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.141

947

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.141

955

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.141

962

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.141

968



bottle tv chair sofa

Figure 2. We show functional regions for a variety of everyday objects, visualized as translucent polygons. We derive these region labels

by first annotating objects with functional landmarks that define polygon corners.

can simply “grasp” the bottom of an instance’s bounding

box and “put their mouth” on the top. For other objects

such as chairs, functional region prediction is much more

nuanced. We introduce novel but simple approaches based

on bottom-up geometric surface layout estimation, as well

as object-specific top-down models. Bottom-up geometric

models are effective for coarse-scale layout estimation [17].

However, top-down models can take advantage of object-

specific structural constraints; e.g., for a chair, the back rest

is above and perpendicular to the seat. We show that such

high-level constraints are important for good performance.

2. Related Work

Object affordances: J.J. Gibson coined the term affor-

dances to describe object function [14], though such notions

date back at least to the Gestalt school of psychology [18].

Early computer vision research relating to object function

include [23, 24, 26]. [23] describe methods for estimat-

ing the function of known objects by reasoning about their

constituent parts and relations; for example, a hammer can

be described by a handle connected to an end effector that

strikes targets. We explore top-down models that similarly

connect object shape to function, but our models are learned

from data rather than hand-coded. Along these lines, [15]

learn a “sittable” affordance detector of a chair by fitting

3D models of a sitting human skeleton to 3D models of

chairs. [27] describe a method for computing planar sur-

face approximations of everyday objects using view-based

deformable models. While they evaluate landmark predic-

tion, we focus on affordance region prediction.

Scene affordances: More recently, scene affordances in

indoor settings have been explored in [13, 16, 19]. [13, 16]

restrict the scene to a box-shaped room and estimate its 3D

layout [20]. [16] use the estimated layout and occupancy

model to fit cuboidal models of objects, which in turn define

a functional human workspace. Cuboidal approximations of

chairs and sofas are likely too coarse to resolve our desired

affordance labels (that specify where to rest one’s back and

bum). [13] estimate functional regions by observing human

actors interacting with objects in the scene - one can infer

that an object is “sittable” because multiple people have sat

on it. Our formulation differs in that we focus on estimating

affordance labels directly from a static image. Presumably

such reasoning is required in order estimate functional af-

fordances when presented with a novel scene of objects.

Spatially-defined attributes: Attributes are another frame-

work for reporting “interesting” properties of an object.

Much work formulates attribute prediction as a discrete

multilabel problem [9]. Often attributes are not tied to par-

ticular spatial regions, though [2, 6, 25] consider spatially-

localized attributes, such as the type of nose in an image of

a face. Our work can viewed as similar in spirit, in that we

spatially localize functionally-important attributes of an ob-

ject.

Supervised part models: Our top-down models are based

on exemplar-based templates [21] and 2D pictorial struc-

tures [11]. We show that nearest-neighbor classification,

followed by functional label transfer, is a surprisingly ef-

fective approach. We also explore deformable part models

(DPMs) [12] and variants [28, 5] that are tuned to report

detailed spatial reports of objects rather than just bounding

boxes. This is in contrast to other supervised part models

[1, 3] that ignore part localizations when reporting final out-

put at test time. Our functional perspective also addresses

one classic difficulty with supervision; it is often not clear

what are the right parts - for example, what are the natu-

ral parts of a sofa? We argue that one should define parts

that are necessary to understand how one interacts with an

object. From this perspective, an armrest is a good part be-

cause it is relevant for functional region prediction. In some

cases, functionally-relevant parts may look quite different

from classically-defined parts; for example, part-based car

detectors typically do not model the door handle, but such a

landmark is extremely relevant from our functional view.

3. Blind baselines

Recall our problem formulation; we are given training

images of an object with functional region masks, and we

wish to predict the same region masks on test images (with

bounding box annotations). In this section, we describe two
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Figure 3. Blind prediction: we show pixel-level spatial priors of

functional regions of bottles (grasp and mouth-placement), tvs

(screen), chair/sofas (back rest and seat), and bikes (left han-

dlebar, right handlebar and seat). The strong spatial priors for

bottle and monitor suggest that a “blind” algorithms based

exclusively on the prior may do well. Bicycles vary considerably

in 3D pose, so the pixel-wise prior looks to be quite weak.

simple “blind” baseline models that do not process any pixel

data. Surprisingly, we show that for some objects, such

blind baselines work well.

Linear Regression: Our first blind baseline makes use

of a polygonal representation of the region masks. We rep-

resent each region mask using a four-sided polygon, param-

eterized with 4 (x, y) corner points. We can then treat the

problem of region prediction as a multivariate regression

problem, where one is predicting 8 values for each affor-

dance region of interest, using simply the bounding box

coordinates as input. Let us write (xn1 , y
n
1 , x

n
2 , y

n
2 ) for the

bounding box coordinates of the nth training example, writ-

ten in normalized image coordinates such that each training

image has unit height and width. We define a linear regres-

sion problem that predicts the ith corner point on the nth

training instance, written as pni , given the height and width

of the nth bounding box:

argmin
Wi

∑
n

||Wi

[
xn2 − x

n
1

yn2 − y
n
1

]
− pni ||

2 (1)

where Wi ∈ R
2×2, pni ∈ R

2×1

The above model predicts the ith corner point using the as-

pect ratio and scale of the given bounding box. One can

solve for each row of Wi independently using linear regres-

sion. We found this regression model to outperform one

based on the four bounding box coordinates (probably be-

cause the above model has fewer parameters and so is less

likely to overfit). At the other extreme, one might try to

learn a scale-invariant predictor (or moreover, a anisotropic

scale-invariant predictor invariant to aspect changes) by

normalizing each bounding box to have unit height and

weight, but we saw worse performance. This suggests that

both the scale and aspect ratio of the bounding box are use-

ful cues for object function. This makes sense; the aspect

ratio of a couch gives clues as to its 3D pose, which in turn

impacts the prediction of where we should sit and rest our

backs.

Pixel-level prior: Another reasonable blind baseline

maybe a pixel-level prior for the affordance label, based

strictly on the location of the pixel inside the bounding box.

For ease of exposition, let us first define our pixel-level prior

to be aspect and scale invariant (unlike our linear regression

model above). To do so, we write xi ∈ {0, . . . ,K} for the

affordance label of pixel at location i, where i are coordi-

nates within a rescaled bounding box with unit height and

width. We define 0 to be the background label. Specifically,

we write the joint distribution over all pixels x = {xi} as:

P (x) =
∏
i

P (xi) such that P (xi = k) = βik (2)

where βik is the prior that pixel i taken on value k (such

that
∑

k βik = 1). This can be readily learned by counting

the frequency of labels in training data. See Fig 3 for a

visualization of such learned priors.

Aspect-specific prior: We also learned aspect-specific

pixel-level priors (by clustering training data based on as-

pect, and learning a separate model for each cluster), but

saw little improvement. Our pixel-level model is much

higher dimensional than our linear regression model, and

so we posit that it requires additional training data to avoid

overfitting.

Inference with spatial-coherence: The above prior

model assumes the label of each pixel is independent of all

other pixel labels, given the bounding box coordinate frame.

One might also define spatial coherence model that biases

neighboring pixels to have similar labels (say, with a pair-

wise Markov random field). Inference and learning with

such a model can be difficult if pairwise potentials are not

submodular. Instead, we enforce spatial coherence by re-

quiring all pixels in a superpixel S (produced with an over-

segmentation of the image [10]) to share the same affor-

dance label.

Label(S) = argmax
k

∏
i∈S

P (xi = k) (3)

Technically speaking, the above spatial coherence model is

no longer “blind” since image evidence is used to group pix-

els in the over-segmentation, but the above model still fails

to use image evidence to decide the label of each superpixel.

4. Bottom-up model of surface-layout

We now describe bottom-up models that produce func-

tion region predictions by processing image data in a

bottom-up manner.

Surface layout prediction: The functional regions of

many objects can be described as planar surfaces. In this

section, we show how one can use geometric surface lay-

out models (e.g.[17]), to generate functional region predic-

tions of such planar regions. We apply these models to

a subset of our objects, including chairs, sofas and

tv monitors. The output of [17], tuned for indoor sur-

faces, produces a distribution over 7 geometric classes at
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each pixel: support, sky, vertical left, vertical center, verti-

cal right, vertical porous, vertical solid. These models are

trained using a variety of features including color, spatial

position, texture features, and fitted line features. Let gi be

the geometric surface label of each pixel.

P (g) =
∏
i

p(gi) such that P (gi = l) = γil (4)

where γil is the prior that pixel i taken on geometric label l.

To report functional labels, we define mapping function

P (xi = k) ∝ P (gi = map(k)) (5)

where map(k) maps an affordance label to a geometric class

label.We take the surface labels and map them to functional

labels as follows: For chair and sofa, support pixels

are mapped to seats and vertical labels are mapped to back-

rests. Because some geometric classes contain multiple

subclasses (such as vertical), we solve for the best mapping

of subclasses to the desired functional label, so as to max-

imize benchmark performance (which happens when the

predicted regions tend to overlap the ground-truth). Fig. 4

shows some examples of surface labels and their mapped

affordance labels. As in (3), we use superpixels to enforce

spatial coherence in a computationally efficient manner.

Prior+Surface: We train a model that combines the

prior spatial distribution of (2) with the geometric cues of

(4) using a conditional model. To do so, let us define a fea-

ture vector at each pixel fi consisting of the probabilities

returned by each model:

fi =
[
βi1 . . . βiK γi1 . . . γi7

]T
(6)

These features are fed into a K-way “soft-max” classifier,

trained using maximum-likelihood:

P (xi = k) =
e(θk·fi)∑
l e

(θl·fi)
(7)

Finally, we enforce spatial coherence by forcing all pixels

in a superpixel to have the same label, as in (3).

5. Top-down appearance models

We now explore top-down models that explicitly score

appearance (and hence are not “blind”).

Nearest-neighbor prediction (NN): We first begin with

a simple nearest-neighbor approach; given a test object, we

find the closest training example (in terms of appearance)

and simply transfer the functional region label:

Label(I) = Label(i∗) where i∗ = argmin
i

||φ(I)− φ(Xi)||
2

(8)

ch
ai

r

so
fa

Figure 4. Bottom-up prediction: We show functional labels pre-

dicted by our Surface algorithm on test images. The left image

shows the ground-truth functional labeling of an image (with a

translucent blue mask), the middle image shows surface labels

as computed by [17], and the last image shows functional labels

produced by the computed mapping, where yellow corresponds

to “backrest” and red correponds to “seat”. Surface labels corre-

spond to support, vertical left, vertical center, vertical right, ver-

tical porous, vertical solid, and sky (white). Only pixels inside

the object bounding box are considered for quantitative evalua-

tion. Such bottom-up methods do well when functional regions

have clear boundaries, but sometimes struggle to differentiate sub-

tle geometry (such as the sofa seat versus backrest).

where I is the test instance, Xi is the ith training instance,

and Label(i) is its functional-region label. To model appear-

ance, we resize training and test data to a canonical width

and height and compute a histogram of oriented gradients

(HOG) descriptor φ. We map the region label to the width

and height of the test instance I . Similar ideas that consider

nearest neighbors in terms of descriptor distances have also

been used in detecting salient regions in images [22]. One

would expect such a non-parametric model to need large

amounts of training data to do well, but we find it is com-

petitive even on moderately-sized training sets.

Latent DPM (LDPM): Deformable part models appear

to represent the current state-of-the-art in recognition. We

train a model using [12], which learns latent parts given ob-

ject bounding-boxes. This model produces aspect mixture

labels and part localizations associated with each detection.

We train a post-processing linear regressor analogous to (1)

that predicts corners of functional regions given the out-

put of LDPM detector. Interestingly, we found the mixture

component to be a more reliable cue than the part locations.

As such we train a separate linear regressor using the same

feature set as (1), for each mixture. We do this by re-running

the learned model on the training images, and recording the

input and target features for learning a regressor.

Functional DPM: We posit that functional landmarks

may provide additional supervision that can be used to learn

more semantically-meaningful parts. For example, it may

be much easier to predict the location of a handlebar if

one explicitly trains a handlebar part. We define parts at

each functional landmarks that define corners of function

regions (as shown in Fig. 5). Some objects have clear se-

mantic landmarks; a bicycle has the left/right handle, 2

wheels, a seat, etc. However, objects such as a chair,

950958965971



chair sofa bottle bike tv

Figure 5. Top-down prediction: we visualize FunctionalDPMs and their associated functional regions. FunctionalDPMs are part models

learned from functionally-supervised parts. We show gradient-based part templates along with example images that triggered a detection.

sofa, bottle, tv monitor are difficult to break up

into parts. Instead, we define functional landmarks at cor-

ners of functional regions. As we describe in Sec. 6, we

assume functional regions are represented as polygons, and

simply define a landmark at each corner point (shown in

Fig. 2). In fact, such keypoint annotations for a variety

of PASCAL categories have been made publicly available

by [3]. Fig. 2 shows examples of keypoints provided by [3]

for four different objects along with their functional regions

(represented as translucent segmentation masks). For each

object category, we now have a training set with annotated

functional landmarks.

Latent parts need not be semantically-meaningful, and

tend to be coherent in appearance due to their construc-

tion. Functional parts can vary greatly in appearance due to

changes in object viewpoint and structure. To model these

variations, we use local part mixtures corresponding to clus-

ters of landmark configurations, as in [5, 28]. We briefly

review the formulation from [5, 28] here. Each part i is pa-

rameterized by its position pi = (x, y) and mixture type

ti ∈ {1, 2, . . .M}. Given an image I , we score a particular

arrangement of K parts p = {pi}i=1:K and mixture types

t = {ti}i=1:K with:

S(I, p, t) =
K∑
i=1

αi
ti ·φ(I, p

i)+
∑
i,j∈E

β
ij

ti,tj
·ψ(pi−pj) (9)

The first term computes the score of placing tem-

plate αi
ti

, tuned for mixture ti for part i, at location

pi. We write φ(I, pi) for a HOG feature vector [4] ex-

tracted from pixel location pi. We write ψ(pi − pj) =[
dx dy dx2 dy2 1

]T
for a quadratic deformation

vector computed from the relative offset of locations pi and

pj . We can interpret β
ij

ti,tj
as a quadratic spring model that

switches between a collection of springs tailored for a par-

ticular pair of mixtures (ti, tj). Because the spring depends

on the mixture components, spatial constraints are depen-

dent on local appearance. As in [5], we find this useful for

modeling self-occlusions due to changes in viewpoint. The

last element of β
ij

ti,tj
defines a “prior” or bias over which

pair of mixtures should be selected.

Given a test image with an annotated bounding box, we

find the maximum scoring part arrangement p and mixture

assignment t that overlaps the bounding box by at least

50%. When E is tree-structured, this solution can be com-

puted with dynamic programming [28]. The edge structure

E is learned from the landmark annotations using maximum

likelihood, as in [5]. Model parameters α, β are learned us-

ing a structural SVM, as in [28].

6. Experiments

Dataset: Our goal is to predict the functionally-

important regions on the object in the form of segmenta-

tion masks. We use the publicly available dataset of [3],

which annotates the 2009 PASCAL trainval set with key-

point annotations. We select 300 images for each of 5 ob-

ject categories, intentionally ignoring images with severe

occlusions. We randomly split this into equal-sized train-

ing and test sets. We define functional regions as such:

chairs and sofas labeled with seat and backrest re-

gions, tv monitors labeled with screens that people

look at, bicycles labeled with the left and right handle-

bar and the seat, and bottles labeled with grasping re-

gions and regions that one places their mouth on. For ease

of annotation, we represent segmentation masks for regions

as 4-sided polygons, as shown in Fig.2.

Evaluation: To avoid conflating issues of detection with

functional region prediction, we assume we are given a test

image with a bounding box around the object of interest as

well as a object class label. This is similar to the proto-

col followed by the Action Classification and Person Lay-

out challenges in the Pascal benchmark [8]. We use one

of aforementioned models to predict functional segmenta-

tion masks (with affordance labels) on each test bounding

951959966972



box. We evaluate our prediction by thresholding the area

of intersection/union between a pair of (ground truth, pre-

dicted) masks with corresponding labels. For objects with

multiple functional regions, we require ratios for all pairs of

(ground truth, predicted) masks to be greater than a given

threshold. We argue that, in order to correctly use a bicycle,

one must simultaneously place both their hands and bum on

the correct functional regions.We compare our aforemen-

tioned models: blind LinReg (1), SpatialPrior (2); bottom-

up SurfaceIndoor (4), Prior+Surface (7); and top-down

NN (8), LatentDPM [12], FunctionalDPM (9). Qualita-

tive results are shown in Fig. 6, and quantitative results are

shown in Fig. 7.

Region prediction: For chair, sofa and bicycle,

both FunctionalDPM and Nearest Neighbor do better than

all other baselines, particularly at higher overlap thresholds.

Qualitative results (Fig. 6) suggest that high overlaps are

needed, for say, a humanoid robot to parse an chair accu-

rately enough to sit on it. Using a 50% overlap threshold,

we find that top-down methods tend to accurately parse 5%

of bicycles, 15% of chairs, and 40% of sofas. All methods,

including blind baselines, tend to process bottles and tv-

monitors equally well (with 25% and 90% correctly-parsed,

respectively). Blind baselines do well because there is lit-

tle shape variation in such objects, as suggested by their

prior masks in Fig. 3. Bicycles are particularly challenging

because handler bars and seats are fairly small, and so re-

quire precise localization to satisfy the overlap criterion. In

some sense, this is indicative of true functional difficulty; its

harder to ride a bike than sit on a sofa! Both NN and Func-

tionalDPM tend to consistently outperform the well-known

LatentDPM baseline. The latter suggests that functional

part-labeling is important, while the former suggests that

structurally-rich models (with many mixtures and/or parts)

maybe needed for accurate function prediction. The inferior

performance of Surface Indoor [17], compared to our blind

baselines, is surprising. We attribute this to a lack of encod-

ing of object-level spatial structure. This is corroborated by

the fact that it does significantly better when combined with

a spatial prior (Prior+Surface).

Landmark prediction: We also evaluate the accuracy

of various models in predicting functional landmarks. We

define a landmark as correctly localized when its predicted

location sufficiently overlaps with the ground-truth loca-

tion, similar to the probability of correct part (PCP) mea-

sures used for pose estimation.We posit that functional re-

gion prediction and landmark prediction should correlate

well, since they both are capturing object function. We

show quantitative results for various models in Fig. 8. We

measure a model’s performance by plotting the percentage

of test images for which a minimum number of keypoints

on the object was correctly localized. The ordering of var-

ious models is consistent with what we observe in Fig. 7.
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Figure 8. We plot the percentage of test images (Y-axis) that cor-

rectly localize a minimum number of landmarks on the object (X-

axis), where the numbers in parentheses indicate percentage of test

instances for which half the landmarks are correctly localized. We

do not compare to bottom-up algorithms since they do not provide

landmark predictions. We compare to an additional blind base-

line that predicts the average landmark location, which sometimes

outperforms blind regression. We see a similar trend as Fig. 7;

top-down models such as NN and FunctionalDPM do quite well.

Consistent results hold for other objects, but are omitted due to

lack of space.

This further highlights one of the advantages of a landmark-

based approach to modeling functional regions: we can

leverage the large body of work in landmark prediction (say,

of faces or articulated human poses). Or put another way,

our functional perspective gives another motivation for pre-

dicting landmarks; instead of predicting expressions or ar-

ticulated pose (typically limited to humans), one can predict

general object function.

Conclusion: In this paper, we have revisited the idea

of object affordances in the form of functionally-interesting

regions on objects. We argue that functional regions

should be placed alongside category labels, object segmen-

tation masks, and attributes as desiderata that contempo-

rary recognition systems should produce. We have shown

how such regions can be represented in terms of affordance-

labelled segmentation masks or functional landmarks. Fi-

nally, we have collected and annotated a general object

dataset for initial exploration of this somewhat novel (yet

classically-defined) problem. We evaluate a large collec-

tion of models, including simple “blind” baselines, exist-

ing bottom-up geometry-based techniques, and top-down

shape-based models for this task. We show that top-down

models that explictly reason about object shape and struc-

ture, encoded through functionally-supervised parts and

non-parametric large-mixture models, are worthy of further

exploration.
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Figure 6. We compare model predictions versus ground-truth regions (shown as blue masks) for a test image from each object category.

Yellow masks indicates the predicted backrest (for chairs and sofas), watchable monitor screens, and the graspable bottle regions. Red

indicates predicted seats and bottle spouts. We compute overlaps percentages (using standard intersection over union [8]) for yellow and

red predictions, displayed beside each image. “Good” predictions tend to overlap the ground truth by at least 50%. We qualitatively

evaluate our models in such a manner in Fig. 7. Our bottom-up surface baselines do not generate geometric labels that are appropriate for

curved objects such as bottles. In general, our top-down models perform better, but we refer the reader to the text for additional analysis.
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Figure 7. We plot accuracy of functional region prediction for a variety of models. We vary the functional region overlap threshold along

the x-axis and compute the fraction of test images that satisfy the threshold (y axis). The numbers in parentheses indicate performance for

50% overlap. In general, top-down constraints are important for good performance. The geometric surface model of [17] does much better

when combined with object-specific spatial models (Prior+Surface). NN and FunctionalDPM perform well for difficult categories such as

the chair, sofa, and bicycle. Both models tend to outperform the latent DPM model of [12], indicating the importance large mixture-models

and functional supervision. For categories with less within-class and viewpoint variation (such as bottle and tvmonitor), all models do well,

including “blind” approaches that do not make use of pixel data (indicating the easiness of the problem in this case). Please see the text for

further discussion.
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