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Abstract—Face classification is a technique used in Biomet-
rics to help distinguish between facial images. However, this
technique has been applicable on human face images only.
Online virtual worlds such as Second Life, Sims Online, etc.
are gaining popularity over the Internet. They require human
users to create a digital persona of oneself, known as an
“avatar”. Several avatars are designed to resemble human
users. With crime being reported in virtual worlds, computer-
generated avatar faces being created from human faces and
human-resembling humanoids being designed, there is a need
to distinguish between natural and artificial faces. Our work
applies two new face classification techniques on grayscale,
facial images of humans and avatars to tell them apart. (1)
Uniform Local Directional Pattern (ULDP) utilizes the uniform
patterns from Local Directional Pattern (LDP) (2) Wavelet
Uniform Local Directional Pattern (WULDP) applies the ULDP
technique on the wavelet transform of an image. Extensive
experiments conducted on five different face image datasets
(Caltech, FERET for human faces and Entropia, Second Life,
Evolver for avatar faces) achieve baseline average classification
accuracies of 98.55% using ULDP and 89.55% using WULDP
respectively.
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I. INTRODUCTION

Face classification is a technique that segregates facial
images into different groups based on criteria such as
age [1], [2], gender [3], [4] and facial expressions [5]. It is
widely used in several biometric application domains such
as access control, surveillance, identification systems, etc.
The process can be divided into two stages. The first stage
employs a feature extractor to select the significant feature
and the second uses a classifier to assign class labels to
a new face image based on these extracted features [6].
However, here we deal with human face images in the native
domain only. With advanced technologies one can virtually
model the human body, especially the face, by creating
a digital persona of oneself known as an avatar. Virtual
reality is being gradually linked to physical reality with
several designed avatars resembling their creators. Online
Virtual Worlds (VW) such as Second Life, Sims Online, etc.
are gaining popularity wherein human users create avatars
representing themselves. VW have been used constructively
for the benefit of the society. However, there are safety

and security concerns as well e.g. cyberterrorism activities
and economic crimes such as money laundering [7]. As
the physical and virtual worlds come closer, the distinction
between the two begins to fade, calling for security systems
capable of working in the contexts of physical and virtual
reality [8]. Thus, existing biometric authentication schemes
must be extended into the virtual domain [9], [10] to
generate a digital footprint of the human user. Moreover,
computer-generated virtual avatars are also used to simulate
human emotions [11] and communicate/chat with users [12].
So how does one measure how realistic these avatars are
based on their face images? Figure 1 shows examples
of remarkable resemblance of humans and their virtual
counterparts. The striking resemblance of humans and their
corresponding avatars motivates us towards implementing
a unique classification technique. This will not only help
classify them but also serve as a tool to answer our previous
question.

(a) (b)

Figure 1. Humans and their resembling avatars/robots. (a) Second Life
avatar [13] (b) Geminoid - A humanoid designed by Hiroshi Ishiguro [14]

Our work addresses the goal of classifying natural (hu-
man) and artificial (avatar) faces. Two, unique, feature
extracting techniques namely Uniform Local Directional
Pattern (ULDP) and Wavelet Uniform Directional Pattern
(WULDP) are applied on human and avatar face image
datasets. Gaussian noise with zero mean and unit variance
(default parameters) is applied to each image to measure
the classifier’s robustness. Chi-Square distance is used as
the classifier. In ULDP, we select the uniform patterns
(binary patterns with no more than two bitwise i.e. 0-
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1 or 1-0 transitions) of Local Directional Pattern (LDP)
which comparatively yield a smaller histogram as compared
to the original LDP technique [15]. In WULDP, first-
level decomposition using wavelet transforms (Daubechies
Wavelet (db2) [16]) are applied on the images to acquire
the approximation image. Next, ULDP is applied on this
approximation image to achieve the classification accuracy.
Experiments are conducted on two human datasets (Caltech
and FERET) [17], [18] and three avatar datasets (Entropia,
Second Life and Evolver) [19], [20].

II. BACKGROUND AND RELATED WORK

The face is an instant and the most popular biometric
used to classify or recognize individuals. Notable work has
been carried out in applying biometric principles on avatar
faces. Artimetrics: a field of study that identifies, classifies
and authenticates avatars, virtual robots and virtual reality
agents [9], verification and recognition of avatar faces [10],
a personalized avatar creation system [21], Avatar DNA that
aims to link the biometrics of the user to his/her avatar
profile [22], detecting avatar faces [23], recognizing avatar
faces [24] and examining the personality of an avatar’s
character based on its facial appearance [25]. Besides
avatars, face recognition has also been applied on viewed
sketches [26] and forensic sketches [27], [28] mapping
them to their corresponding digital pictures. Local Binary
Patterns (LBP) with varying neighborhood sizes [29], [30]
and Wavelet transforms [31] have also been applied towards
recognizing avatar faces. In general, complex neighborhoods
in images have been described through advanced direction
statistics before LBP and LDP. Dynamic Link Architecture
in combination with Elastic Graph Matchingis used for
object recognition [32]. Complex moments of Gabor power
spectrum yield geometrically significant image attributes that
are powerful texture descriptors [33].

A. Local Directional Pattern

Local Directional Pattern (LDP) uses the change in the
gradient magnitude in a specific direction around the pixels
to encode its local texture. Instead of comparing neighboring
pixel intensities, it compares the neighboring pixel’s gradient
magnitude. It computes the edge response values in eight dif-
ferent directions and uses these to encode the image texture.
This technique is robust in presence of noise and invariant
to image rotations [15]. It assigns an eight bit binary code to
each pixel of an input image by comparing the relative edge
response value of that pixel in the eight different directions.
Thus, eight directional edge response values of each pixel
in eight different orientations are computed. Kirsch masks
(Mask M0 - Mask M7) are used for this purpose centered on
the pixel [34]. These masks are shown in Figure 2. Similar
to LBP, the neighborhood size can always be extended to
different sizes to accommodate representative features of
certain types of textures.

Figure 2. Eight Kirsch edge response masks [15]

Applying each of these masks to a pixel we obtain its
edge response values (m0 - m7), each representing the edge
significance in eight directions. Response values are unequal
in all directions. Presence of corners or edges yields high
response values in particular directions. In order to generate
the LDP, the k most prominent directions are determined.
Thus, the top k values are set to 1 and the remaining (8-k)
bits are set to 0. The equation for obtaining the LDP code
is shown in (1).

LDPk =

7∑
j=0

bj(Mj −Mk)2
j (1)

where,

bj(q) =

{
1 if q ≥ 0
0 if q < 0

Figure 3 shows the mask response with the LDP bit
positions and Figure 4 shows a sample LDP code with k=3.
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(a) (b)

Figure 3. (a) Eight directional edge response positions based on the
different mask positions. (b) Corresponding LDP binary bit positions [15].

B. Discrete Wavelet Transform on images

The Discrete Wavelet Transform (DWT) is a popular
tool in image processing. It represents an image at lower
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Figure 4. Sample LDP code with k=3 [15].

resolutions and provides the spatial and frequency charac-
teristics of an image through multi-resolution analysis [24].
On applying 2D-DWT on an image, the first level wavelet
decomposition provides four subbands, each having 1/2
resolution of the original image. Each subband represents
the horizontal, vertical and diagonal edges of the image. An
example is shown in Figure 5.

Original
Image

Approximation
Image

Horizontal
Detail

Vertical
Detail

Diagonal
Detail

(a)

(b)

2D-DWT 
(First level 

decomposition)

2D-DWT 
(First level 

decomposition)

Figure 5. (a) First level decomposition after applying 2D-DWT (b)
Applying the technique on a sample image.

C. Avatar CAPTCHA

CAPTCHAs (Completely Automated Public Turing Tests
to Tell Computers and Humans Apart) aim to distinguish
between human users and computer programs (bots) [35].
Besides text, there have been image CAPTCHAs designed
as well. Avatar CAPTCHA is one such example [36]. Here
the task is to identify images of avatars (artificial faces) from
human faces from 12 grayscale images in each challenge.
This is visually an easy task for human users to identify and
solve whereas, it is a challenging task for a bot. Figure 6
shows an example of this CAPTCHA.

Figure 6. A snapshot of the Avatar CAPTCHA [36].

A challenge [37] was presented for this CAPTCHA to dis-
tinguish between human and avatar facial images. The goal
of hosting this challenge was to determine how successful
computer programs are at this task. A sample set of images
is shown in Figure 7. There were some notable solutions
that solved the problem fairly successfully [38]–[41].

Figure 7. A sample set of human and avatar facial images provided at the
ICMLA Challenge 2012 [37].

Our work involves recognizing uniform patterns in the
LDP patterns (k=3) and applying them towards classifying
human and avatar facial images from different datasets to
determine performance in terms of average accuracy, average
training and test times. Uniform patterns refer to those
patterns with no more than two binary bit transitions i.e. 0 to
1 or 1 to 0 in the circular presentation of the binary pattern.
These patterns provide a vast majority of the examined
texture patterns [42].

III. EXPERIMENT

We conducted two sets of experiments to obtain baseline
results. Experiment 1 involves applying ULDP on human
and avatar face images and Experiment 2 involves applying
WULDP on the same set of images to obtain classification
accuracies. The experiments were run on a Gateway desktop
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computer with an Intel core i7 processor with a clock
frequency of 3.4 GHz, 10 GB DDR3 memory and 2 TB
hard drive.

A. Datasets

Our datasets comprise of upright frontal faces with
plain/non-plain backgrounds and varying illuminations. All
images were 400 x 400 pixels in dimension. The datasets
used were:

1) Humans: Set C - Caltech: Images from the California
Institute of Technology [17] with non-plain backgrounds and
varying illuminations.
Set F - FERET: Images from the FERET [18] dataset with
plain backgrounds and varying illuminations.
Figure 8 shows sample images from the C and F datasets
respectively.

(a)

(b)

Figure 8. Sample human facial images from (a) Caltech (b) FERET
datasets.

2) Avatars: Set E - Entropia Universe: Images obtained
from a scripting technique designed to automatically collect
avatar faces [19] with non-plain backgrounds.
Set SL - Second Life: Images obtained from the same
scripting technique as that of Entropia [19] with non-plain
backgrounds and varying illuminations.
Set EV - Evolver: Images from an automated bot, used to
collect avatar images [20] with plain background and varying
illuminations.
Figure 9 shows sample images from the E, SL and EV
datasets respectively. Six human-avatar dataset combinations
are used altogether: CE, CSL, CEV, FE, FSL, FEV. Each
combination has a total of 300 images (150 human and 150
avatar images).

B. Uniform Local Directional Patterns (ULDP)

For Experiment 1 we apply ULDP to classify the images
from each dataset as a human or avatar. We consider the
8-neighbors for each pixel in the image. We obtain an 8-bit
binary pattern i.e. values that range from 0-255. Of these, 56
values are LDP patterns with k=3. Of these 56 values, we
obtain 8 uniform (8-bit binary patterns with no more than 2
bit transitions (0-1 or 1-0)) LDP values. These ULDP values
obtained are 7, 14, 28, 56, 112, 131, 193 and 224. They are

(a)

(b)

(c)

Figure 9. Sample avatar facial images from (a) Entropia Universe (b)
Second Life (c) Evolver datasets.

used to create 8-bin histograms, reducing the feature vector
dimension from 56 (for LDP) to 8 (for ULDP).

C. Applying ULDP over an image

First, we apply Gaussian noise with its default parameters
(zero mean and unit variance) on all the images. This is
done to test the robustness of the algorithm in presence
of noise. Next, we subdivide each 400 x 400 image into
regions of size 80 x 80. Thus, we end up with 25 regions
per image. Next, we apply a 3 x 3 window with radius=1,
neighbors=8 and threshold(k))=3 to each region to obtain
the ULDP coded image using a mapping table. This table
maps each ULDP value to a different bin and the remaining
values to one single bin. Thus, we end up with a 7+1=8 bin
local histogram for each region and a 25x8 bin histograms
for the entire image. These histograms are concatenated to
form a 1 x 200 bin global histogram which is the global
descriptor for each image. Figure 10(a) shows the ULDP
coded image generation process and Figure 11(a) shows the
global descriptor generation process for an image.

D. Wavelet Uniform Local Directional Patterns (WULDP)

For Experiment 2 we apply WULDP to classify the images
from each dataset as a human or avatar. First, we apply
the Gaussian noise with its default parameters (zero mean
and unit variance) on all the images. Next, we perform
first-level decomposition on the input noisy image through
2D discrete wavelet transform using Daubechies wavelet
filter db2 [16] to obtain the approximation image. This
approximation image has a resolution half of that of the
original image i.e. 200 x 200. This speeds up its processing
time. We subdivide each image into regions of size 40 x 40
thus, ending up with 25 regions per image. Finally, we apply
the ULDP technique on this approximation image to obtain

30



Original image Noisy image ULDP image

Gaussian
Noise

Apply
ULDP

(a)

Noisy imageOriginal image

Gaussian
Noise

WT image

WT image Approximation image
(200 x 200)

Apply
ULDP

(b)

2D-DWT 
(First level 

decomposition)

Figure 10. Coded image generation process (a) ULDP (b) WULDP.

the WULDP coded image. Figure 10(b) shows the WULDP
coded image generation process and Figure 11(b) shows the
global descriptor generation process for an image.
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Global image 
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(concatenated 
region histograms, 
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(a)

(b)

Figure 11. Global image descriptor generation (a) From ULDP coded
image (b) From WULDP coded image.

For both experiments, a 10-fold cross validation is per-
formed over each dataset. The training set comprises of
270 random images whereas the test set comprises of the
remaining 30 images from the set. The Chi Square distance

is used to classify the images yielding accuracies for each
dataset. Training times, test times as well as accuracies for
each fold are recorded. We report the average training times,
test times as well as the overall accuracy for each dataset in
the Results section below.

IV. RESULTS

Results from Experiment 1 (ULDP) and Experiment 2
(WULDP) for each dataset are presented in Table I and
Table II respectively with the average values over 10 folds
of cross-validation.

Table I
RESULTS OVER 10 FOLDS OF CROSS-VALIDATION FOR EACH DATASET

FOR Experiment 1. IMAGE RESOLUTION = 400 X 400, WINDOW SIZE = 3
X 3, RADIUS=1, NEIGHBORS = 8, REGION SIZE = 80 X 80.

Datasets Avg.
Training
Time (secs)

Avg.Test
Time
(secs)

Overall
Accuracy
(%)

CE 45.97 45.87 99
CSL 49.07 48.49 95
CEV 47.46 47.03 100
FE 47.21 47.24 100

FSL 48.21 48.28 97.33
FEV 51.91 48.66 100

Overall average 48.30 47.59 98.55

From Table I we observe that for Experiment 1, best
accuracies are achieved for the CEV, FE and FEV datasets.
The EV and the F datasets have plain backgrounds which
provide distinct patterns for classification. However, when
evaluated against each other the results are remarkable which
demonstrates the power of the ULDP descriptor. Executing
this experiment on the entire image yields higher average
training and testing times as that in Experiment 2.

Table II
RESULTS OVER 10 FOLDS OF CROSS-VALIDATION FOR EACH DATASET

FOR Experiment 2. IMAGE RESOLUTION = 200 X 200, WINDOW SIZE = 3
X 3, RADIUS = 1, NEIGHBORS = 8, REGION SIZE = 40 X 40.

Datasets Avg.
Training
Time (secs)

Avg.Test
Time
(secs)

Overall
Accuracy
(%)

CE 11.18 11.16 82.67
CSL 11.07 11.08 87.33
CEV 11.66 11.57 94.67
FE 11.37 11.46 87.33

FSL 11.66 11.55 96.33
FEV 12.15 12.17 89

Overall average 11.51 11.49 89.55

From Table II we observe that for Experiment 2, good
accuracies are achieved for the FSL and CEV datasets. Since
this experiment is executed on the approximate image it
yields lower average training and testing times.

Figure 12 shows the ROC curves for both sets of experi-
ments. The ULDP curves are segregated into three parts for
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clarity. Overall, we observe that ULDP descriptors are better
than WULDP in classifying human and avatar facial images.

(a) (b)

(c) (d)

Figure 12. ROC curves for Experiment 1: ULDP (a) CE and CEV (b)
CSL and FE (c) FEV and FSL (d) Experiment 2: WULDP.

V. CONCLUSIONS AND FUTURE WORK

Our work involves the classification of natural and ar-
tificial faces. To address this we have implemented two
techniques, namely ULDP and WULDP and applied them
on human (natural) and avatar (artificial) datasets to classify
them in the presence of Gaussian noise. Our experiments
report good baseline results. The accuracy rates achieved
in ULDP are higher than WULDP suggesting that uniform
patterns obtained from the original image are much better
descriptors than those obtained from the approximate image
after wavelet transform. We intend to expand our work
by using different datasets, utilizing uniform patterns with
different thresholds (k-value) and varying noise intensity
levels over the images to help achieve comparable results.
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