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Abstract—This paper focuses on a general framework for
singular point extraction from vector field. We design a new
index of singular point based on complex polynomial model. We
test our method in the publicly available benchmark dataset
of the singular point detection competition (SPD2010). Our
algorithm gets the best results and produces large margins
compared to the top five algorithms which took part in
the public competition. We also compare our algorithm with
the state-of-the-art singular point detection algorithm (called
”ZPM” method) with the benchmark. The performance of our
method is much better than that of the state-of-the-art method.

Keywords-Fingerprint Singular Point; Complex Polynomial
model; Vector Field;

I. INTRODUCTION

Singular point extraction plays a key important role in

vector field analysis such as fluid field, magnetic field,

gravitational field, and gradient fields from image/signal

processing.The points are considered as singular points if

directional fields are not continuous in these points. In this

paper we emphasis the application of our singular point

extraction framework in fingerprint recognition. Our method

is general and can be directly extended to other applications.

Many previous works have tried to address the SPs de-

tection and analysis problems. All of them roughly fall into

two categories. The first type of approach is mainly based on

the analytical properties of mathematical models estimated

from fingerprint orientation field [1], [2], [3], [4]. The

second tries to utilize features around singular points, such

as statistical features of orientation distribution,geometrical

shape features, invariant features [2], as well as appearance

features.

The second type of approaches, non-model based, are sen-

sitive to noises. The first type of methods, model based [1],

[2], [3], [4], are robust to noise. We extend the model based

approach and propose a general framework for singular point

detection. Different from the model based approaches [1],

[2], [3], [4], we define a new index for singular point based

on complex polynomial model of orientation field.

The main contributions of this paper are:

1) A new invariant Angle Matching Index (AMI) is

defined for singular point based on a complex poly-

nomial model of orientation field,

2) Conventional convergence index filter framework is

modified to give strongest evidences of presence of

singular points by collecting all of the AMI informa-

tion around candidate points.

3) We test our algorithm in publicly available benchmark

dataset and compare our algorithm with state of the art

methods. The experimental results show our method is

much better than state of the art methods. We release

our source codes to reproduce the experimental results.

II. RELATED WORK

The work most closely related to ours is model based

approaches [1], [2], [3], [4]. We give a short review of these

methods and point out their advantages and disadvantages.

In general, fingerprint orientation field can be fitted or

approximated by mathematical models. The singular points

can be detected by analyzing the analytical properties (such

as critical points) of estimated mathematical models.

The authors [5] proposed a singular point extraction

method based on 2D Fourier series expansions of two non-

linear differential equations (FOMFE). In [5], the polyno-

mial order is empirically set to 4 and a heuristic algorithm is

applied to remove the false SPs based on the information of

curl and divergence. Hence, FOMFE has limited capability

to detect singular points.

In [1], authors investigated the appearance similarity be-

tween singular areas and complex filter patterns and used

two kinds of complex filters to extract singular points based

on the responses of different complex filters. Different from

that algorithm [1], our method defines a new translation

and rotation invariant feature based on complex polynomial

model and a special sampling skill. Furthermore, only one

filter is required to extract singular points and the specific

maximum/minimum of ideal filter response (without noise)

can be explicitly predicted with our model. Our method

doesn’t directly depends on the appearance of singular area.

78



Instead of estimating fingerprint orientation field model,

singular points can be detected using new features obtained

by deeply analyzing the mathematical model [2], [3]. A

new distinct feature has been derived from zero-pole model

of fingerprint orientation field in [2], [3], [4]. This feature

characterizes the spacial relationship between singular points

and their neighboring image pixels. This relationship is

characterized by parametric curves such as straight lines in

[2], [4] or circles in [3]. Then a Hough Transform(HT) based

method is proposed to detect singular points [2], [3], [4].

To address the above issues (i.e., sensitive to noise and

features owning limited distinguishing power) in singular

point detection, we propose a new framework to generally

solve the singular point extraction problem by using complex

polynomial model and ridge topology analysis.

According to the protocols from the first fingerprint sin-

gular points detection competition (SPD2010) [6], we have

evaluated the performance of our singular point extracting

algorithm proposed here using the benchmark database and

metrics suggested in SPD2010 [6] , such as false alarm rate,

detection rate, miss rate, percentage of correctly detected

fingerprints. All of the Matlab source codes for our algorithm

are available at http://jqichina.wordpress.com/research/ to

reproduce the results in this paper.

III. AMI INDEX FROM COMPLEX POLYNOMIAL MODEL

Our proposed singular point detection method needs vec-

tor field to be given. For fingerprint recognition area, The

details of orientation field computation method can be found

in [7]. We refer readers to the paper [7] for more specific

introduction of the orientation field computation. In this

paper, we use the publicly available Matlab source codes

[8] of the orientation field computation algorithm mentioned

above to calculate fingerprint orientation field and segment

the fingerprint foreground. The Matlab source codes [8]

follow the basic algorithm in [7].

A. Zero-Pole Model of Orientation Field

Zero-Pole Model is first used to model fingerprint ori-

entation field by Sherlock and Monro [9]. Essentially, the

Zero-pole model is a complex rational polynomial whose

zero and pole are considered as the core and delta singular

points in orientation field. The complex function p(z) and

the orientation O(z) of pixel z in fingerprint image are given

by:

p(z) =

√

e2jo∞
(z − zc1)(z − zc2) · · · (z − zcm)

(z − zd1)(z − zd2) · · · (z − zdn)
, (1)

o(z) = (arg(p(z))) mod π (2)

where zci, zdj , o∞ and arg(p(z)) are the zeros, poles,

a constant term and the argument of polynomial p(z),
respectively. An orientation image with a core and delta
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Figure 1. Zero-pole Model simulates orientation fields: (a) field with a
core and (b) field with a delta.

generated by the Zero-pole Model is shown in Fig. 1 From

equation (2), o(z) can be represented as

o(z) = [o∞+
1

2
(

K
∑

i=1

arg(z−zci)−

L
∑

j=1

arg(z−zdj))] mod π.

(3)

The global topology of fingerprint image can be well de-

scribed by the above zero-pole model. The model can be

utilized to compute the orientation of a pixel in image and

to reconstruct a good quality image from noisy image.

B. Angle Matching Index from Zero-pole Model

We derive our Angle Matching Index from the Zero-pole

Model in this section. Equation (3) can be rewritten as:

o(z) =[o∞ +
1

2
(

K
∑

i=1

arg(z − zci)−

L
∑

j=1

arg(z − zdj))]

+ k × π, k ∈ Z.

(4)

Hence, we have

2× o(z) =[2× o∞ + (

K
∑

i=1

arg(z − zci)−

L
∑

j=1

arg(z − zdj))]

+ 2× k × π, k ∈ Z.
(5)

If we choose two points z1 and z2 in the fingerprint image,

we have the following two equations:

2× o(z1) = [2× o∞ + (

K
∑

i=1

arg(z1 − zci)

−

L
∑

j=1

arg(z1 − zdj))] + 2× k1 × π, k1 ∈ Z.

(6)

2× o(z2) = [2× o∞ + (

K
∑

i=1

arg(z2 − zci)

−

L
∑

j=1

arg(z2 − zdj))] + 2× k2 × π, k2 ∈ Z.

(7)
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Once the first equation is subtracted by the second one, we

have

2× (o(z1)− o(z2)) = [(

K
∑

i=1

arg(z1 − zci)−

K
∑

i=1

arg(z2 − zci)

+

L
∑

j=1

arg(z2 − zdj)−

L
∑

j=1

arg(z1 − zdj))]

+ 2× (k1 − k2)× π, k1, k2 ∈ Z

=
K
∑

i=1

[arg(z1 − zci)− arg(z2 − zci)] +
L
∑

j=1

[arg(z2 − zdi)

− arg(z1 − zdj)] + 2× k3 × π, k3 ∈ Z,
(8)

where k3 = k1 − k2.

If we put some constraints on the positions of the points

z1 and z2, the equation (8) can be simplified. Suppose that

points z1 and z2 are in the neighborhood of one fingerprint

singular point and the Euclidean distance ||z1−z2|| between

z1 and z2 is small. Assume without loss of generality that

the point pair z1 and z2 are close to singular point zc1
and the distance between them is pretty small. The spatial

distribution of the fingerprint singular points and point pair

z1 and z2 is shown in Fig. 2. Fig. 2 shows two core points

zc1, zc2 and two delta points zd1, zd2. From Fig. 2, we can

see that the distance from either of the points z1 and z2 to

each of the singular points zc2, zd1 and zd2 is relatively large.

It can be easily concluded that the relative angle between

two straight lines lz1zci , connecting points z1 and zci, i 6= 1
and lz2zci , connecting points z2 and zci, i 6= 1 or lz1zdj ,

connecting points z1 and zdj , and lz2zdj connecting points

z2 and zdj are pretty small. Hence we have

arg(z1 − zci)− arg(z2 − zci) ≈ 0, ∀i 6= 1, (9)

and

arg(z2− zdj)−arg(z1− zdj) ≈ 0, ∀j ∈ {1, · · · , L}. (10)

Substituting the above two equations into the equation (8),

we get

2× (o(z1)− o(z2)) = [arg(z1 − zc1)− arg(z2 − zc1)]

+ 2× k3 × π, k3 ∈ Z,
(11)

To make the term k3 in the right side of the above equation

disappear, we take sin function value on both sides of the

above equation. Thus the following is true

sin(2×(o(z1)−o(z2))) = sin[arg(z1−zc1)−arg(z2−zc1)],
(12)

The above equation is true for the special case in Fig. 2. In

general, if the point pair z1 and z2 is in the neighborhood

Figure 2. Spatial distribution of singular points and point pair z1 and z2:
core points (circle symbols) zc1 and zc2; delta points (triangle symbols)
zd1 and zd2; point pair z1 and z2 are close to each other and in the
neighborhood of singular point zc1; point pair z1 and z2 are far away
from all of the singular points except core point zc1.

of core point zc (this case called Casec) or delta point zd
(this case called Cased), equation (8) can be simplified as

sin(2× (o(z1)− o(z2))) = sin[arg(z1− zc)− arg(z2− zc)],
(13)

or

sin(2× (o(z1)− o(z2))) = sin[arg(z2 − zd)− arg(z1 − zd)]

= − sin[arg(z1 − zd)− arg(z2 − zd)].
(14)

If the point pair z1 and z2 is not in the neighborhood of

any singular point, the right side of equation (8) will be

zero. Hence for the case where the point pair z1 and z2 is

in the neighborhood of some non-singular point zns (this

case called Casens), the following formula can be obtained

according to equation (8)

sin(2× (o(z1)− o(z2))) = 0. (15)

For convenience, we denote 2 × (o(z1) − o(z2)) and

arg(z1 − zs)− arg(z2 − zs) by ψ and θ, respectively. Thus

equation (13), (14), and (15) have the following concise

forms

sinψ − sin θ = 0, (16)

sinψ − sin θ = −2× sin θ, (17)

and

sinψ − sin θ = − sin θ, (18)

respectively. θ could be a small positive constant angle

by specially sampling z1 and z2 (see more details in the

next section). We call | sinψ − sin θ| as ”Angle Matching

Index (AMI)”. Apparently AMI index value is the largest (

with value |2 × sin θ|) for Casec and the smallest (with

value 0) for Cased. Therefore, AMI index can be used

to detect singular points (core and delta points). We will

modify the conventional Convergence Index Filter to show

how to use AMI index information around a candidate point

(possibly singular or non-singular) as much as possible in

the following section.
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Figure 3. Convergence index filter and the angle θ: R: support region; P :
center of region R; (i, j): coordinates of point P ; Q: arbitrary pixel; (k, l):
coordinates of pixel Q; g(k, l): gradient vector of pixel Q; θ: relative angle

between vector g(k, l) and line PQ; r: radius of support region R.

Figure 4. Extended configuration of convergence index filter and sampling
pattern: z: point of interest; Ci, i = 1, ·,M : concentric sampling circles;
Lj , j = 1, · · · , N : straight lines rotating anti-clockwise every θ angle;
zij : sampling point where ith circle Ci intersect with jth line Lj ; ψij :
2×(o(zij)−o(zi(j+1))), where o(zij) and o(zi(j+1)) are the fingerprint
ridge orientations of pixels zij and zi(j+1) from the fingerprint orientation
field.

C. AMI Index and Modified Convergence Index Filter

Convergence Index Filter has been widely utilized to

detect rounded convex objects. Here we extend the Con-

vergence Index Filter to detect singular points rather than

convex objects. For convenience, we first give the introduc-

tion of the general Convergence Index Filter as follows.

Convergence Index Filter: As shown in Fig. 3, the filter’s

supporting area is a circular region R with radius r. Point

P is the center of the filter. The supporting area of the

filter centered around point P with coordinates (i, j) is a

circular area R with a radius r. Suppose that g(k, l) is the

gradient vector of any point Q with coordinate (k, l) and

θ(k, l) is the relative angle between gradient vector g(k, l)
and line PQ connecting points P,Q. cos θ(k, l) is defined

as the convergence index of the gradient vector g(k, l). The

output C(i, j) of the Convergence Index Filter at position

(i, j) is computed as

C(i, j) =
1

M

∑

(k,l)∈R

cos θ(k, l), (19)

where M denotes the total number of pixels in supporting

region R. It is the same filter as the so called COIN filter.

The convergence index at point P measure the degree to

which all gradient vectors in the region R point toward the

center P of the region R. It is computed using the pixels

around the pixel of interest, P .

As for our case in singular point detection, we are trying

to use all of the proposed AMI indices around a candidate

point. AMI index involve two angles ψ and θ which are

determined by the positions of the point of interest z and

the pair of sampling points which are close to each other

(for example, z1 and z2 in Fig. 2). However, we will take

a lot of sampling point pairs in the neighborhood of the

point of interest z. Our sampling pattern and the extended

configuration of convergence index filter are shown in Fig.

4. In Fig. 4, the circles Ci, i = 1, · · · ,M , are concentric

to each other and share the same center z. The half-lines

Lj , j = 1, · · · , N , radiate from the point z. The orientation

of the jth half-line Lj with respect to the abscissa is 2πj/N ,

where j = 1, · · · , N . The sampling points zij are taken at

the positions where the ith circle Ci intersects with the jth
half-line Lj . We compute AMI features on all possible pairs

of neighboring points zij and zi(j+1). Thus each sampling

point zij is paired with the neighboring sampling point

zi(j+1) and both of them lie on the same sampling circle

Ci. Therefore, we assign two angles ψij and θij to each

sampling point zij . These two angles can be computed as

follows:

ψij = 2× (o(zij)− o(zi(j+1))), (20)

and

θij = arg(zij − z)−arg(zi(j+1)− z) = −2π/N = θ, (21)

where o(zij) and o(zi(j+1)) are the ridge orientations at

pixels zij and zi(j+1) found by fingerprint orientation field,

respectively. From our special sampling pattern in Fig. 4,

θij = −2π/N is true. We denote the constant angle −2π/N
by θ as shown in Fig. 4

Therefore, the AMI index fij for each sampling point zij
can be calculated:

fij = | sinψij − sin θij | = | sin(2× (o(zij)− o(zi(j+1))))

+ sin(2π/N)|.
(22)

This AMI index fij is similar to the convergence index value

cos θ(k, l) in equation (19). For each point of interest z as

shown in Fig. 4, its AMI index value Fz is the average of

all AMI indices fij in its neighborhood as follows:

Fz =
1

M ×N

∑

i = 1, · · · ,M

j = 1, · · · , N

fij . (23)

The Average AMI value Fz is similar to the output C(i, j)
of the convergence index filter in equation (19).

As so far, we have extended the convergence index filter

to systematically use our proposed AMI indices for singular

point detection by proposing a special sampling pattern and

defining new convergence indices. As the convergence index

cos θ(k, l) in equation (19) is a measure of how strongly

the gradient vectors point toward the pixels of interest P
in Fig. 3, our AMI index fij in equation (23) is a measure
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(a) (b)

Figure 5. (a): Original fingerprint image; (b) its AMI index image.

(a) (b)

Figure 6. (a): local extrema; (b) detected singular points.

of how likely the point of interest z is a singular point in

Fig. 4 (Actually, maximum for delta point, minimum for

core point). An original fingerprint image and its AMI index

image are shown in Fig. 5(a) and 5(b), respectively. It can

be seen from Fig. 5(b) that the singular points are enhanced

and non-singular points are suppressed.

D. Singular Point Detection by Thresholding

It is easy to extract singular points given AMI index

image (see Fig. 5(b)) of vector field just by thresholding

the AMI index image with appropriate threshold values. At

the first step, we detect all of possible extrema. Then Core

points are those maxima whose AMI index values are larger

than Tc = 3/2sin(θ) = 3/2sin(2π/16) = 0.57 and Delta

points are those minima whose AMI index values are smaller

than Td = 1/2sin(θ) = 1/2sin(2π/16) = 0.19. Values

of thresholds Tc and Td are empirically set in this paper.

Fig. 6(a) shows our detected extrema from one orientation

field. We remove false singular points by thresholding the

magnitude of detected extrema and obtain the final detected

singular points as shown in Fig. 6(b).

IV. EXPERIMENTAL RESULTS

In this section, some experiments will be presented. It will

be shown that applying our proposed method in this paper

ensures the accurate estimation of SP locations.

SPD2010 benchmark database has 500 fingerprint images

with 355×390 pixel resolution captured by an optical scan-

ner (Microsoft Fingerprint Reader - model 1033) without any

restrictions on the poses of fingers. The subjects are males

and females aged from 20 to 62 years old coming from 7

countries. The fingerprint images in this dataset have a large

variety in quality, type, affine transformation and nonlinear

distortion.

The ground truth for the positions of core and delta points

are obtained by hand according to E. R. Henry’s definition

[10] of singular points.

A. Visually checking a few examples

We first visually compare the detected SP results of our

algorithm with that of state of the art Zero-Pole model based

method (ZPM) [3] from six types of fingerprint images(i.e.

arch, tented arch, left loop, right loop, twin loop, whorl). The

results are shown in supplementary material due to limited

space in this paper. It can be seen that ZPM loses one true

core point while our method can recover all of the true

singular points from the images.

B. Quantitative performance evaluation of our method

We quantitatively evaluate the performance of our algo-

rithm proposed in this paper by running our program on the

whole SPD2010 benchmark dataset [6] consisting of 500

fingerprint images, of which 290 images and 210 images are

testing dataset and training dataset, respectively. There are

240 cores and 92 deltas annotated by hand in the training

set; 297 cores and 144 deltas are labeled manually in the

testing set. The training database is utilized to adjust the

values of the parameters in our algorithm and the state of

the art method ZPM. More information on parameter setting

can be found in the following sub-section.

The performance of our singular point extracting algo-

rithm is evaluated in this paper according to the instructions

from the first fingerprint singular points detection competi-

tion (SPD2010) [6]. The values of recommended metrics

(such as false alarm rate, detection rate, miss rate and

proportion of correctly detected fingerprints) are calculated

to quantitatively measure the performance of our system.

The definitions of such metrics can be found in [6].

The values of the above metrics for test data are listed

in Tab. I. Our algorithm yields a substantial quantitative

improvement over the other top 5 competitors in SPD2010

with this benchmark and gets the first ranking among all the

algorithms. For example, compared with the best algorithm

(called MagicFinger) in SPD2010 [6] our method achieves

an increase of 9.38% in the percentage of correctly detected

fingerprints and an increase of more than 11.60% in the core

detection rate in the test dataset from SPD2010 .

We also compare our algorithm with the state of the art

algorithm ZPM [3] on the same benchmark [6]. The values

of metrics from our algorithm and the implemented ZPM

on test dataset are listed in Tab. II. The performance of our

method is much better than that of the state of the art method

[3].
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# Algorithm CD(%)
CDSP Detection rate (%) Miss rate (%) False alarm rate (%)

# MD SDD cores deltas cores deltas cores deltas

Ours(AMF) 38.00 240 5.11 2.61 52.00 60.00 48.00 40.00 56.00 28.00

8 MagicFinger 28.62 190 4.87 2.54 40.40 48.61 59.60 51.39 57.24 36.81

4 PintoMota 17.59 181 5.67 2.53 27.61 68.75 72.39 31.25 102.69 43.75

9 Chunfeng 17.24 136 5.63 2.55 29.29 34.03 70.71 65.97 78.79 53.47

6 Chiu 15.52 119 5.58 2.57 26.60 27.78 73.40 72.22 85.86 82.64

10 PJ 12.76 96 5.86 2.36 18.18 29.17 81.82 70.83 62.96 55.56

Table I
PERFORMANCE RANKING OF DIFFERENT ALGORITHMS ON TEST

DATASET. THE VALUES FOR ALL METHODS EXCEPT OURS ARE

DIRECTLY FROM THE SPD2010. CD: CORRECTLY DETECTED;CDSP:
CORRECT DETECTION OF SINGULAR POINTS; MD: MEAN DISTANCE;

SDD: STANDARD DEVIATION OF DISTANCE.

# Algorithm CD(%)
CDSP Detection rate (%) Miss rate (%) False alarm rate (%)

# MD SDD cores deltas cores deltas cores deltas

Ours(AMF) 38.00 240 5.11 2.61 52.00 60.00 48.00 40.00 56.00 28.00

ZPM 26.00 197 5.91 2.53 32.00 71.00 68.00 29.00 98.00 29.00

Table II
COMPARISON OF OUR ALGORITHM WITH ZPM ON TEST DATASET. CD:

CORRECTLY DETECTED;CDSP: CORRECT DETECTION OF SINGULAR

POINTS; MD: MEAN DISTANCE; SDD: STANDARD DEVIATION OF

DISTANCE.

C. Time performance and parameter setting

The proposed SP detection algorithm in this paper is

implemented in Matlab language without any optimization

in programming. We evaluate the time performance of our

method proposed in this paper using Intel(R) Core(TM) i7

CPU 880@3.07GHz with 64 bit windows OS. Only one

core (8 cores available) is used based on single thread

programming. The time used for the whole process of

detection and AMI index computation part is listed in Table

III for the fingerprint images with the size 355×390 pixels in

the benchmark dataset. The time performance can be much

improved when parallel programming skills are used. We

note that the AMI index computation part takes the majority

of the computing time since it uses the ”nlfilter” function in

Matlab which is pretty slow. The computation time can be

largely reduced if AMI indices computation is implemented

by using c/c++ language.

There are 6 parameters, θ,M,R,RS,Tc and Td, in our

SP detection algorithm in this paper. The values of these

parameters are set by the training process in which the

program run multiple times on the training database by

trying different parameter values. All of the parameters and

their values in this paper are listed in Table IV.

Dataset The whole process (sec-
onds/image)

AMI index computation
(seconds/image)

SPD2010 datase 16.4049 12.2553

Table III
THE TIME PERFORMANCE OF THE WHOLE SP DETECTION PROCESS AND

AMI INDEX COMPUTATION PART IN OUR PROPOSED ALGORITHM IN

THIS PAPER.

V. CONCLUSIONS

In this paper we propose a new SP detection method based

on our definition of AMI index of singular points in vector

fields. Our proposed approach is a general framework and

Dataset θ M (number of circles) R (radius) RS (radius step) Tc Td
SPD2010 Dataset π/16 4 5 5 0.57 0.19

Table IV
PARAMETERS AND THEIR VALUES.

can be widely used in other vector field analysis area, such

as natural textures, fluid/air flow and force/electromagnetic

field.

We have evaluated the performance of our singular point

extracting algorithm in this paper using a number of metrics

on SPD2010 dataset. The performance of our method is

much better than that of the state of the art method.
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