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Abstract

For each person, there exist large unstructured photo
collections in personal photo albums. We call these pho-
tos Hetero-source images, which imply abundant shape and
texture information of the specific face. In this paper, we
propose a novel 3D face modeling method combining the
normal map of Hetero-source images with the fitting re-
sult based on a single image to achieve more accurate 3D
shape estimates. Based on recent research showing that
the set of images of convex Lambertian surfaces under gen-
eral illumination can be well approximated using low-order
spherical harmonics, we first incorporate spherical har-
monics into the 3D morphable model to initialize the 3D
shape. The fitting result, however, suffers from model domi-
nance and lacks of fine details. The normal map inferred by
Hetero-source image shading constraints allows the possi-
bility of improving local details and challenging the model
dominance. We estimate the normal map which contains
more accurate orientation information in an alternating op-
timization way and apply it to improve the preliminary 3D
surface. Experimental results on both synthetic and real
world data demonstrate that our method could be used to
capture discriminating facial features and outperforms the
single image fitting result in accuracy.

1. Introduction
3D face modeling provides solutions for a wide range of

applications as pose/illumination invariant face recognition,
public security and human computer interactions. It has re-
ceived a continual development over the past two decades
and a considerable body of researchers is still working on
the challenging parts of this task [1][6] [9][8][13].

Statistical model based 3D reconstruction methods have
achieved great success in solving the problem of recovering
the shape and texture of unseen subjects. Blanz and Vetter
propose a generative 3D morphable model (3DMM) with
potential of recovering highly satisfactory face models [5].

They minimize the texture discrepancy between the input
and synthesized images to get the model parameters based
on the Phong reflectance model. For the cases roughly ly-
ing within the linear subspace spanned using the training
data, the method performs relatively well. To achieve bet-
ter performance, Romdhani adds image features as edges
and specular highlights to formulate a smooth cost func-
tion [17]. Brian et al. [1] develop a 3DMM based stereo
system, which uses stereo information of multiple images
taken simultaneously to improve accuracy and robustness.
However, the increase of accuracy yields a more computa-
tionally expensive search. Moreover, those measures could
not essentially solve the problem of model dominance and
the reconstruction quality is entirely dependent on whether
a similar subject is included in the training set [13].

Photometric stereo based methods [7] focus on image
shading cues and explores images themselves. For instance,
Georghiades et al. [6] propose an illumination cone based
method which recovers accurate 3D face using 7 well illu-
minated and registered images. For unknown illuminations,
there exists a generalized bas-relief (GBR) ambiguity [3] re-
quiring the orientations for key positions to be set forehead.
Some researchers are committed to resolving this ambiguity
by iteratively estimating light positions [10] or using tem-
plate model as constraints [9]. Despite the GBR ambigu-
ity, photometric stereo provides high-frequency information
that 3DMM based methods lack.

For such algorithms, images were acquired with spe-
cial instruments or under controlled conditions. What we
take into consideration is recovering 3D face from large un-
structured image collections. We call them Hetero-source
images, which show extreme variations in pose, illumina-
tion and facial expression. On the other hand, those im-
ages involve abundant information which may contribute to
3D modeling if used properly. Unfortunately, traditional
reconstruction methods as illumination cone [6] cannot be
directly applied to the problem. To our knowledge, only [9]
attempts to address such a question, which recovers a model
that is locally consistent with the photo collection. In this
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Figure 1. Overview of our approach, which consists of three major
parts: 3D face reconstruction, normal map estimation and shape
improvement.

work presented herein, we propose a method sharing similar
thoughts to [19], which combines multiview and photomet-
ric stereo for accurate 3D reconstruction. We build on our
approach by fusing the 3DMM fitting algorithm based on
a single image and the normal map of Hetero-source im-
ages. It maintains the high-frequency details and avoids
low-frequency bias using normal and position information.
As shown in Figure 1, the input of our method is a Hetero-
source image set which consists of faces under variant illu-
minations. There exist no facial expression or pose variation
among the set for illumination is our main concern. Addi-
tionally, it is an easy task to find sufficient faces of near
frontal pose in the image set. The 3D shape is initialized
by fitting the 3DMM to a single image. Then we adopt an
iterative optimization method based on classic photometric
stereo and initial shape prior to estimate the normal map,
which is subsequently applied to improve the preliminary
3D geometry. In summary, our main contributions are as
follows:

• exploring a new approach which takes advantage of a
broad range of personal photo collections.

• combining the 3DMM fitting algorithm with the pho-
tometric stereo to achieve more reliable 3D models.

The rest of the paper is organized as follows. Section 2
reviews the modified LiST algorithm [16] and section 3 it-
eratively estimates the unknown illuminations and normal
map of Hetero-source images. New normals are used to im-
prove the preliminary 3D model based on the method in [12]
(Section 4). Section 5 demonstrates experimental results on
Basel Face Model (BFM) [14] and FRGC2.0 database [15].
The last section concludes our work.

2. 3D morphable model fitting
The 3D morphable model (3DMM) [5] is a widely used

statistical model with potential to recover high quality 3D

shape. In the first subsection, we will briefly describe the
3DMM and our modified LiST fitting algorithm based on
Spherical Harmonic Lighting model [2]. In the following
subsections, we detail the iterative optimization framework
to recover model parameters from the input.

2.1. 3D morphable model

The idea of 3DMM is based on the assumption that hu-
man faces are within a linear subspace. Blanz and Vetter
used 200 3D face meshes in full correspondence to estab-
lish eigenvectors of the subspace [5]. Any novel face shape
and texture can be represented as

s = s̄ + Sα, t = t̄ + Tβ (1)

in which S and T denote the PCA matrices formed by stack-
ing the scaled eigenvectors; vector α and β stand for the
shape and texture coefficients. The common practice for fit-
ting the model is to minimize the discrepancy between the
input image Iinput and the synthesized one Imodel rendered
with α, β and p (p is rendering parameter vector and con-
sists of rotation, scale, translation and illumination) :

min
α,β,p

δI =
∑
x,y

||Iinput(x, y)− Imodel(x, y)||2 (2)

It has been demonstrated that the set of images of a con-
vex Lambertian object under a wide variety of lighting con-
ditions can be well approximated by a low-order spherical
harmonic basis [2]. We modify the LiST fitting algorithm
[16] based on Phong Lighting model to build our LiST
based on Spherical Harmonic Lighting model. Equations
3 4 5 summarize the process of transforming the shape and
texture vectors, s and t, into a gray level image using the
first nine spherical harmonic basis:

s3d = R(̄s + Sα)⇒ n = (nx, ny, nz) (3)

smodel2d = fP s3d + t2d (4)

Imodel≈ ρ.∗
9∑
i=1

hi(n)li, ρ=
[
0.30 0 0
0 0.59 0
0 0 0.11

]
(̄t+Tβ) (5)

HereR denotes the rigid rotation transformation and P rep-
resents the orthogonal projection. After the projection a
scaling factor f and a 2D translation t2d are applied. ρ is
the albedo vector, which is approximated by transforming
the R, G, B color values of model texture t to gray value.
hi(n) and li (i = 1, 2, · · · ,9) represent the 9 spherical har-
monics and their coefficients respectively. Furthermore, the
first nine harmonic image set Y has the form of (ρ.∗h(n))T
where the operator .∗ denotes the component-wise product:

Y =(ρ.∗h(n))T

=(ρ.∗(1,nx,ny,nz,nxy,nxz,nyz,nx2−ny2 ,3nz2−1))T

(6)
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where nx, ny and nz are the components of all vertex sur-
face normals and nxy is defined as nx.∗ny (similarly for
nx2 , ny2 , nz2 , nxz, nyz).

Directly minimizing the cost function defined with inten-
sity distance as Eq. 2 amounts to solving a highly compli-
cated and nonlinear optimization problem. The LiST fitting
algorithm approximates the non-linear optimization prob-
lem using two linear error parts: the shape and texture error
functions linearly depending on the shape and texture pa-
rameters respectively [16]. The method alternately updates
one parameter while maintaining the others constant in an
iterative way. Similarly, we build our Spherical Harmonic
Lighting model based LiST algorithm as follows.

2.2. Shape fitting

Instead of recovering shape parameters from δI , updat-
ing α from shape errors is adopted [16]. However, as the
image does not contain any shape information, the shape er-
ror δs2d is estimated by applying an optical flow algorithm
[20] between the input and synthesized images. We denote
the shape recovered by optical flow on the input by simg2d .

Rotation R, Translation t2d and Scale f parameters
update. To account for variations in pose, we first calculate
pose parameters using automatically located feature points
of the input [11] and corresponding points on the 3DMM.
Let q and Q denote the point sets on the image and the
model respectively. We attempt to seek the R, f and t2d
such that

min
R,s,t2d

||(fRQ+ t2d)− q||2 (7)

In our work, we adopt the Least-Squares Rigid Motion
Using SVD [18] to recover the pose parameters and set them
as start values. In subsequent iterations, the minimization
is performed on recovered shape simg2d and corresponding
model points to avoid the feature point location errors.

Shape Parameters α Update. Given the newly updated
pose parameters, shape error δs2d is equal to the difference
between the shape simg2d and the model shape smodel2d . While
rotation and scale parameters remain constant, the relation
between δs2d and α is linear as

simg2d − smodel2d = δs2d = fPRSδα = Aδα (8)

By solving the over-constrained linear system of equations,
shape parameter vector α is updated in a single step.

2.3. Texture fitting

Illumination Coefficients l update. We first estimate
the illumination l by finding the best coefficients that fit the
current model to the input:

min
∑
||Iinput − ρ.∗

∑
hi(n)li||2 (9)

Since all the other parameters are kept constant, this is
a highly over-constrained linear system with only 9 un-
knowns. It has been demonstrated in research [8] that the
error of recovering lighting by even using the 3D face of a
different individual is sufficiently small.

Texture Parameters β Update. At this stage, shape and
rendering parameters are maintained constant. Equation 2
can be simplified as

δI =
[
0.30 0 0
0 0.59 0
0 0 0.11

]
T.∗

9∑
i=1

hi(n)liδβ = Bδβ

(10)
Similar to the update of α, β is acquired in a single step

by calculating the pseudo-inverse of B. In practice, how-
ever, with the existence of noise and nonlinearity, minimiz-
ing Eq. 8 and Eq. 10 by directly calculating pseudo-inverse
may cause over-fitting and lead to a result far from the real
face [4]. We instead turn to solving the following L2 con-
strained Least Squares problem, in which the tradeoff be-
tween fitting quality and plausibility can be controlled by a
constant η [16].

min
δα

(||δs2d −Aδα||2 + η||αcur + δα||2)

min
δβ

(||δI −Bδβ||2 + η||βcur + δβ||2)
(11)

The whole iteration procedure starts from the pose pa-
rameters update, and ends when the image intensity discrep-
ancy δI obtained after this iteration is less than a threshold.
To make the process less computationally expensive, the al-
gorithm randomly performs on a subset of all visible ver-
tices. Compared to the original LiST in [16], our method
automatically initialize the pose parameters without requir-
ing manual interactions. Moreover, the optimization steps
are all linear benefited from the Spherical Harmonic Light-
ing model. The resulting shape and texture vector are used
as initial values of our surface improvement algorithm. On
average, the reconstruction gets converged within 6 itera-
tions and costs about 40s on a 2.5GHz Intel Core i5-3210M
CPU.

3. Normal map
At this stage, we have obtained a 3D shape which is

globally accurate but lacks of fine local details due to the
problem of model dominance [13]. In this section, we will
present how the surface orientation inferred using Hetero-
source image shading cues can be used to generate a more
precise 3D model. Generally, this technique offers the pos-
sibility of increasing the accuracy of current fitting algo-
rithms since it is independent from the single image based
reconstruction.

Consider an image set consisting of n images taken with
different cameras and under different illuminations. In the
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first step, we attempt to recover illuminations using normals
and albedo initialized by the 3DMM fitting result. In con-
sideration of the linear relation between normal components
and spherical harmonics, we take the first-order approxima-
tion to formulate the over-constrained linear least squares
optimization with only four unknowns for each illumina-
tion:

min
∑
||In×m − Ln×4Y4×m|| (12)

in which In×m stands for n images with m valid pixels
each; Ln×4 represents the n illumination conditions and
Y4×m stands for the first 4D spherical harmonic space.

Given the newly updated illumination coefficients, we
now attempt to recover the spherical harmonic basis and
albedo. For every visible vertex j we choose different sub-
sets by evaluating how well the n images fit the current
shape, which works as reference [9]. For point j, the dis-
tance between the input and synthesized image intensities
||Ij−Ln×4Yj|| are calculated where Ij is a vector denot-
ing the intensities of a pixel in all images (column of In×m)
and Yj represents the harmonic images (column of Y4×m).
Those k pixels whose distances are less than a threshold are
chosen as the subset. In this way, our method can suppress
effects of cast shadows and noise to some extent. The fi-
nal error function of two terms is defined using the selected
image subset as

min
Yj

||Ik×4 − Lk×4Yj||2 + κ||Yj − Yjcur||2 (13)

where the first term represents the lighting consistency re-
lation and the second acts as a regularization avoiding large
departures from the current value. The penalizing param-
eter κ is set as 1 and decreases by 0.2 for every iteration
(κ is no smaller than 0). The solution to this minimization
problem is

Yj = (LTk×4Lk×4 + κE)−1(LT Ik×1 + Yjcur) (14)

in which E stands for a 4 × 4 identity matrix. The first
element of Yj is the new albedo and the other three com-
prise the new normal vector nj

∗, creating the normal map
of Hetero-source images as Figure 3(a). Once the normal
map is reconstructed, we repeat this procedure iteratively
using the current albedo and spherical harmonics.

To review, in this section we build a two-step iterative
optimization method to alternately recover illuminations by
solving Eq. 12 and normal map by solving Eq. 14. In prac-
tice, two to four iterations prove a significant improvement
for the normal orientation. The recovery of normal map
gets converged within 4 iterations and costs about 20s on a
2.5GHz Intel Core i5-3210M CPU.

4. Surface Improvement
In this section, the normal map is applied to the initial

shape for a more discriminating face model. Nehab [12]

Figure 2. Mean and standard deviation of angular errors for 10
BFM subjects.

Figure 3. Normal map of Hetero-source images (a); Angular er-
rors distribution presented by gray value for LiST result (b), and
improved surface (c).

suggests that a triangular mesh can be manipulated to match
the new normals by minimizing a cost function of two error
terms as:

Ep =
∑
j

||Mj(s
∗
j − sj)||2 (15)

En =
∑
j

∑
u,w

||[n∗
j · (s

∗
u − s∗w)]2||2 (16)

The position errorEp encourages a solution close to the ini-
tial shape and the normal error En considers the difference
between the new normals and its tangent space, in which
(u,w) are vertices of edges surrounding the center vertex
j. The refined shape s∗ is given by minimizing the final
error function

min
snew

λEp + (1− λ)En (17)

in which λ ∈ [0, 1] controls how much effect the positions
and normals have on the optimization. A value of 0.15 gives
satisfactory results in our experiment. This optimization is
formulated as a large over-constrained linear system and
can be efficiently solved using sparse least squares. Gen-
erally, this step dealing with about 25000 vertices gets fin-
ished in 10s on a 2.5GHz Intel Core i5-3210M CPU.

To statistically explain the effectiveness of our surface
improvement algorithm, we test it on synthesized Hetero-
source image sets of BFM out-of-sample subjects, one sub-
ject of which is shown in Figure 4. Angular errors of LiST
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Figure 4. Synthesized Hetero-source images across varying illu-
minations of BFM subject.

fitting result and improved surface relative to the ground
truth are analyzed with the mean and standard deviation
in Figure 2. It can be observed that our method helps de-
crease the angular errors for all subjects. Figure 3 shows
the distribution of angular errors, in which brighter pixels
indicate larger errors. It is apparent that angular errors of
LiST fitting result are larger in global compared with the
improved surface. Moreover, the nose and mouth parts con-
tain regions with maximum errors and need more correc-
tion, which is corresponding to our experimental results.

5. Experiments

We would like to evaluate our algorithm on both syn-
thetic data generated from BFM [14] and real world data
from FRGC2.0 [15]. The experiments provide both quan-
titative error measures with respect to the ground truth and
visual evaluation. For experiments below, we first apply
the modified LiST fitting algorithm to initialize the 3D
shape and texture using a picture randomly selected from
the Hetero-source image set. The fitting result also acts as
the state-of-the-art comparison to our improved geometry.

To create Hetero-source image sets for BFM subjects,
we randomly generated 10 renderings across varying illumi-
nations based on Spherical Harmonic Lighting model and
continually applied different nonlinear transformation to the
synthesized images, e.g., histogram equalization, image in-
tensity adjustment and logarithm transformation. One ex-
ample is illustrated in Figure 4, some images of which show
extreme lighting conditions.

To quantitatively measure the reconstruction error, we
estimate the per-vertex average of distances between the re-
covered surface and ground truth using the inner points (ne-
glecting neck and ears). It can be observed in Figure 5 that
our algorithm improves the accuracy for all cases of two
databases. Moreover, our algorithm performs much bet-
ter than the LiST fitting algorithm in depicting face local
fine details, which is corresponding to our original inten-
tion. Two of the BFM refined face shapes are presented
in the first two rows of Figure 6. As shown in the figure,
the corrected surfaces are capable of describing detailed and
discriminating features such as dimples on the faces. Exper-
imental results on real world data from FRGC2.0 in the last
two rows of Figure 6 demonstrate more visual resemblance

(a)

(b)

Figure 5. Reconstruction error of BFM (a) and FRGC2.0 (b). All
distances between eye centers are normalized to 60 mm.

for the nose and mouth as emphasized in red rectangles.

6. Conclusion

In this paper, we creatively proposed a method capable
of reconstructing high quality 3D face models from unstruc-
tured Hetero-source images. We began by fitting the 3DMM
to an input image using the modified LiST algorithm. The
resulting shape and texture are set as initial values for our
two-step estimation of normal map inferred by image shad-
ing cues. By combining the 3DMM fitting result and the
normal information, our method provides a route to improv-
ing the shape local details and reduce the problem of model
dominance. Experimental results demonstrate the ability of
our algorithm to capture discriminating facial features and
improve quantitative accuracy.

Our work could be extended in a variety of ways. We
would like to incorporate it with more other reconstruction
methods since it is independent from the single image based
recovery. And fortunately it adds only a little time burden
because all the steps are linear. Additionally, the limitation
of non-frontal cases could be solved by incorporating rota-
tion transformation in the normal map optimization.
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Figure 6. Ground truth or input faces (a); our improved shapes (b);
LiST fitting shapes (c).
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