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Abstract—This work analyzes the problem of homography
estimation for robust target matching in the context of real-time
mobile vision. We present a device-friendly implementation
of the Gaussian Elimination algorithm and show that our
optimized approach can significantly improve the homography
estimation step in a hypothesize-and-verify scheme. Experi-
ments are performed on image sequences in which both speed
and accuracy are evaluated and compared with conventional
homography estimation schemes.

I. INTRODUCTION

Object recognition is an important task of machine vision.
The past few years have seen important progress in this
direction. Of particular interest are the recent methods for
fast feature point matching among which are BRIEF [1],
FREAK [2], BRISK [3] and ORB [4]. These allow reliable
matching of feature points at very low computational costs.
Their secret sauce resides in their use of binary descrip-
tors to represent a patch surrounding a keypoint. Matching
then involves only simple binary operators which can be
computed very efficiently on modern CPU. However, the
recognition of multiple objects at frame rate and at full
resolution on devices with limited resources such as mobile
phones remains an important algorithmic challenge.

Planar targets are particularly interesting for recognition
because, in this case, the different views are related by a 2D
homographic transformation. Real-time recognition in video
is generally achieved using a matching framework in which
keypoints detected in each frame are matched with the ones
associated with a reference view of the planar target. The
resulting set of putative correspondences is then validated
through a robust estimation scheme that aims at identifying
a plausible homography mapping the current target view to
its reference image.

In this work, we analyze the problem of model parameter
estimation in robust target matching. This process represents
one of the key steps in planar target recognition and we
demonstrate through our experimentation that, in this con-
text, reliable homography estimates can be obtained using a
device-friendly implementation of the Gaussian Elimination
algorithm. More specifically, we show, in this paper, that
our optimized approach can improve by a factor of 20

the homography estimation step in a hypothesize-and-verify
scheme.

The rest of this paper is organized as follows. Section 2
presents a review of planar target recognition based on robust
homography estimation. Section 3 describes the proposed
homography estimation algorithm. Section 4 presents the
target recognition framework used to test our homography
estimation scheme. Experimental results are presented in
Section 5. Section 6 is a conclusion.

II. FAST RECOGNITION OF PLANAR TARGETS

Efficient recognition of planar targets is achieved by
building, during an off-line phase, a rich model of a planar
target that will then be used to reliably detect this target
in live video under a wide range of viewpoints. In [5], the
model is built by considering random pair of pixel locations
inside a defined neighborhood around the keypoint. A simple
binary test is performed to compare the intensity values
of those pixels leading to binary features that are grouped
together to create small binary space partitions called Ferns.
By generating thousand of viewpoints, the training phase
estimates the class conditional probability of each Fern for
each keypoint. The likelihood of a new patch to correspond
to a patch in the model can then be computed by assuming
independence of these estimated probability distribution. The
BRIEF [1] feature point descriptor also uses the concept of
intensity comparison to generate a binary string describing
a keypoint patch. ORB [4] is a variant of BRIEF to make it
more robust to noise and rotationally invariant. In both cases,
Hamming distance is then simply used for evaluating the
similarity of two putative matches. In their Histogrammed
Intensity Patch method, Taylor et al. [6] introduced the idea
of grouping the generated random views into viewpoint bins.
The model is built by first computing coarse histograms
of the intensities of selected pixels around a keypoint for
each viewpoint bin. Once computed these histograms are
binarized by identifying bins that are rarely hit with the idea
that corresponding patches in the live view should have a
small number of pixel values falling into these bits.

During the matching phase, these fast algorithms produce
a large set of putative matches. Depending on the quality of
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the target descriptors, this match set will be contaminated
by a more or less large number of false matches (outliers).
This is where robust model estimation comes into play. In
the case of a planar targets, the model to be estimated is
the two-view homography between the current frame and
the reference target. The most commonly used techniques to
robustly estimate a model from data contaminated by outliers
is RANSAC [7]. It proceeds by randomly selecting a small
subset from the data from which a model is hypothesized.
This model is then verified against all data points in the set
in order to compute its support that is the number of data
points that are in agreement with the hypothesized geometric
model. By repeating several times this process with different
random sampling of the data set, a solution with a high
support should be found.

Several variants of the basic RANSAC scheme have been
proposed in the past that aim at improving the efficiency
of the algorithm. Among the most notable ones is the
PROSAC algorithm [8] that observed that by sampling the
data from the best quality matches, the probability of hitting
a valid model is increased. The ARRSAC [9] framework has
been designed to provide accurate estimates in spite of the
fixed time budget that imposes a real-time application. It
operates by generating a first set of candidate hypotheses
that are evaluated on a subset of the data. Based on the
current estimate of the inlier ratio, additional hypotheses are
then adaptively generated from the highest quality matches.
More recently, [10] introduced the USAC framework which
proposes a unified package that incorporates the most re-
cent development in RANSAC-based robust estimation. It
includes a number of key elements for building a compu-
tationally efficient solution and thus offers an ideal tool for
benchmarking new approaches.

To achieve fast recognition performance on a low-power
mobile device, high efficiency and low computational cost
of each of these tasks is crucial. The contribution of this
paper resides in the hypothesis generation step. We show that
the robust estimation of a homography can be significantly
improved by using a computationally efficient implemen-
tation of the well-known Gaussian Elimination method to
solve the underlying set of equations. Additionally, we
show that in the context of target recognition, the solutions
found provides reliable estimates of the homography with
an accuracy comparable to solutions based on the more
commonly used Singular Value Decomposition.

We tested our homography estimation implementation in
a target recognition framework that uses FAST9 keypoints
described by the BRIEF descriptor. Our robust homogra-
phy estimation approach follows a PROSAC scheme. It is
however important to note that any other approaches in
which a target is recognized by estimating a homography
from a contaminated set of tentative correspondences could
have been considered and would benefit from our efficient
implementation.

III. HOMOGRAPHY ESTIMATION BY GAUSSIAN
ELIMINATION

A homography is a plane-to-plane relation in a projective
space. It is algebraically defined by a 3 × 3 matrix H
mapping two views of a planar object. If we define X
and x to be the projective coordinates of the same point
respectively on the reference planar target and on an image
of it, the 2D homography transformation is then defined as:

X = Hx (1)

This equality being up to a scale factor, the homography has
8 degrees of freedom and can consequently be computed
from four point correspondences. The corresponding homo-
geneous system of equations is solved through the Direct
Linear Transform algorithm by posing:

Xi ×Hxi = 0 (2)

in which H is computed using the source points (xi, yi) and
target points (Xi, Yi). This equation can then be rewritten
as:  0T −xi

T Yixi
T

xi
T 0T −Xixi

T

−Yixi
T Xixi

T 0T

h = 0 (3)

Which results in equations of the form Aih = 0, with Ai

being the lines of the left matrix and h being a 9× 1 vector
made of the entries of the homography matrix. The typical
approach to solve this system of equation is to use Singular
Value Decomposition. This technique is particularly useful
when more point correspondences are available, in which
case SVD will identify the optimal least-square algebraic
solution. Other more computationally expensive (and itera-
tive) approaches could also be used to obtain a geometrically
optimal solution [11].

Even if the SVD estimation from four point correspon-
dences in a RANSAC-based framework can be performed
with a relative efficiency, its repetitive computation can still
impose a significant computational load in the context of
real-time estimation using low-power devices. This obser-
vation leads us to consider simpler approaches to resolve
the 4-point homography estimation problem. In particular,
we selected the well-know Gaussian Elimination scheme
that can be used to solve the non-homogeneous 4-point set
of equations. Even if this approach is known to be less
numerically stable, we show here that in the context of
target recognition, stable and accurate solutions can still be
obtained.

Our implementation of the reduction to reduced-row-
echelon form of the matrix is summarized here. It assumes
that the minimum configuration is used to estimate the
homography, that is 4 matches. If we take the matrix in
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(3) to be decomposed as (after appropriate row shuffling):

x0 y0 1 0 0 0 −x0X0 −y0X0 X0

x1 y1 1 0 0 0 −x1X1 −y1X1 X1

x2 y2 1 0 0 0 −x2X2 −y2X2 X2

x3 y3 1 0 0 0 −x3X3 −y3X3 X3

0 0 0 x0 y0 1 −x0Y0 −y0Y0 Y0
0 0 0 x1 y1 1 −x1Y1 −y1Y1 Y1
0 0 0 x2 y2 1 −x2Y2 −y2Y2 Y2
0 0 0 x3 y3 1 −x3Y3 −y3Y3 Y3


(4)

We notice here that the matrix is somewhat sparse, and
what’s more, the top left 4× 3 matrix minor is identical to
the bottom middle 4× 3 minor. This is of great help, since
it means that initially, the same operations will be applied
to the top 4 rows and bottom 4 rows of the matrix. Even
better, when 4-lane or 8-lane vector processing engines (such
as SSE, AVX, Altivec or NEON) are available, the loads of
xi, Xi, yi and Yi, the multiplies xX , xY , yX and yY and
the row operations can be done in parallel.

We now subtract rows 2 and 6 from the rows 0, 1, 3
and 4, 5, 7 respectively, thus eliminating almost all 1’s in
column 2 and 5. Since we choose not to scale the rows
containing said 1’s, they will remain unaffected throughout
the remainder of the computation and therefore no storage
needs to be reserved for them.

∼



x0 − x2 y0 − y2 0 0 0 0 x2X2 − x0X0 y2X2 − y0X0 X0 −X2

x1 − x2 y1 − y2 0 0 0 0 x2X2 − x1X1 y2X2 − y1X1 X1 −X2

x2 y2 1 0 0 0 −x2X2 −y2X2 X2

x3 − x2 y3 − y2 0 0 0 0 x2X2 − x3X3 y2X2 − y3X3 X3 −X2

0 0 0 x0 − x2 y0 − y2 0 x2Y2 − x0Y0 y2Y2 − y0Y0 Y0 − Y2
0 0 0 x1 − x2 y1 − y2 0 x2Y2 − x1Y1 y2Y2 − y1Y1 Y1 − Y2
0 0 0 x2 y2 1 −x2Y2 −y2Y2 Y2
0 0 0 x3 − x2 y3 − y2 0 x2Y2 − x3Y3 y2Y2 − y3Y3 Y3 − Y2


(5)

We note here that at this stage, of the 72 potential floating-
point values in the matrix, only 32 (excluding the two
remaining 1’s) are distinct and non-zero. This neatly fits
in half of a vector register file with 16 4-lane registers, a
common configuration in most modern architectures.

For brevity, after this point only the row operations are
given. They were designed to delay the use of reciprocals
as long as possible. and the first part is duplicated on both
top and bottom half.
First we eliminate column 0 of rows 1 and 3:

~R1 = r0,x ∗ ~R1 − r1,x ∗ ~R0, idem on ~R5

~R3 = r0,x ∗ ~R3 − r3,x ∗ ~R0, idem on ~R7

We eliminate column 1 of rows 0 and 3.

~R0 = r1,y ∗ ~R0 − r0,y ∗ ~R1, idem on ~R4

~R3 = r1,y ∗ ~R3 − r3,y ∗ ~R1, idem on ~R7

We eliminate columns 0 and 1 of row 2.

~R0 =
1

r0,x
∗ ~R0, idem on ~R4

~R1 =
1

r1,y
∗ ~R1, idem on ~R5

~R2 = ~R2 − (r2,x ∗ ~R0 + r2,y ∗ ~R1), idem on ~R6

Columns 0-5 of rows 3 and 7 are zero, and the matrix now
resembles this:

1 0 a06 a07 a08
. . . a16 a17 a18

1 0 a26 a27 a28
0 0 a36 a37 a38
0 1 a46 a47 a48

. . . a56 a57 a58
1 a66 a67 a68

0 0 a76 a77 a78


(6)

Let’s now cease treating the matrix as two independent 4×9
halves and now consider the rightmost three columns as one
8× 3 matrix. We use the barren rows 3 and 7 to eliminate
columns 6 and 7, thus:
First, we normalize row 7.

~R7 =
1

r76
∗ ~R7

We eliminate column 6 of rows 0 through 6.

~R0 = ~R0 − r06 ∗ ~R7
~R1 = ~R1 − r16 ∗ ~R7

~R2 = ~R2 − r26 ∗ ~R7
~R3 = ~R3 − r36 ∗ ~R7

~R4 = ~R4 − r46 ∗ ~R7
~R5 = ~R5 − r56 ∗ ~R7

~R6 = ~R6 − r66 ∗ ~R7

We normalize row 3.

~R3 = 1
r37
∗ ~R3

We eliminate column 7 of rows 0 through 2 and 4 through
6.

~R0 = ~R0 − r07 ∗ ~R3
~R1 = ~R1 − r17 ∗ ~R3

~R2 = ~R2 − r27 ∗ ~R3
~R4 = ~R4 − r47 ∗ ~R3

~R5 = ~R5 − r57 ∗ ~R3
~R6 = ~R6 − r67 ∗ ~R3

The last column of the matrix now contains the homography,
normalized by setting h22 = 1 :
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∼



1 h00
. . . h01

1 0 h02
0 0 1 h21
0 1 h10

. . . h11
1 h12

0 0 1 h20


→

 h00 h01 h02
h10 h11 h12
h20 h21 1


With this non-homogeneous solution, poor estimation

would be obtained if the element h22 should actually have
a value close to zero. Gaussian elimination is however nu-
merically stable for diagonally dominant or positive-definite
matrices. For general matrices, Gaussian elimination is usu-
ally considered to be stable, when using partial pivoting
[12]. In practice, we observed reliable stability when the
Z-component of the translation is significant with respect
to the X − Y ones; this is the common situation when a
hand-held device is used for target recognition.

IV. ROBUST TARGET MATCHING FRAMEWORK

The proposed homography estimation algorithm has been
designed for real-time planar target matching using hand-
held devices. The first step is to extract features from a
video frame. These are then compared with the features
of a reference target model resulting in a set of putative
matches. In our implementation, we used the FAST9 feature
detector [13] and the BRIEF binary descriptor [1] for fast
performance. In order to improve the robustness of the
matching, we synthesize multiple views of the reference
target by warping it using different random perspective
transforms. Following the scheme proposed by Taylor et al.
[6], we group these generated views into viewpoint bins from
which stable keypoints are identified. A majority vote is then
applied on each the individual descriptors of corresponding
keypoints to produce a top-level descriptor used during the
matching phase as in [14].

A planar target is detected by using a RANSAC scheme
based on a model hypothesize-and-verify loop in which
each iteration implies a homography estimation step and
its parameters are evaluated using our Gaussian Elimination
algorithm. We chose to use here the PROSAC variant [8]
in which samples are selected from the ordered set of cor-
respondences based on their Hamming distance. Compared
to the typical RANSAC method, PROSAC greatly reduces
the number of attempts for the best support hypothesis,
in the sense that it is more likely to choose outlier-free
samples from the subset of highest score correspondences.
Algorithm (1) summarizes our PROSAC implementation for

fast homography estimation. For the stopping criterion, we
selected the SPRT test described in [15] and also used in
[10].

Algorithm 1 PROSAC for H estimation

Require: Set of putative matches with corresponding
matching score and a level of confidence η0.
Initialize Ibest := 0 and kMAX with the maximum allowed
value.
Sort the set with respect to the similarity score.
for i = 1 to kMAX do

Select minimal samples (4 pairs) from the highest
scored correspondences.
H ← Generate a hypothesis using the selected pairs.
Ik ← Evaluate the current hypothesis’s support using
SPRT method [15].
if Ik < Ibest then
Ibest ← Ik
Update H with the hypothesis with the strongest
support.
kMAX ← Update iteration bound to achieve the
level of confidence η0.

end if
end for

V. EXPERIMENTATION

This section presents experimental results showing the
performance of our homography estimation method. We
assessed the reliability and accuracy of the homography
estimation itself as well as the resulting recognition rate
and efficiency when used in the context of planar target
recognition.

A. Homography Estimation Accuracy

In order to validate our homography estimation algorithm,
we used the test set proposed in [10] to benchmark the
USAC framework. We produced the same performance table
as in [10] in which a homography is estimated using different
image pairs (see Table II). The first column shows the
performance we obtained using the standard USAC 1.0
framework. In the second column, we simply replaced the
USAC SVD estimation by our Gaussian Elimination (GE)
implementation. Very similar performances are obtained
which demonstrate that GE estimation is also able to pro-
vide accurate estimates. The computational timings are also
similar and this is explained by the fact that under the full
USAC framework, the homography estimation stage does
not represent a significant portion of the total computation.
We therefore ran a new set of experiments in which we
removed the more costly local optimization and symmetrical
re-projection error steps as these are not required in a target
recogntion context. In such a case, the benefit of using
GE in the estimation of the homograhy becomes apparent
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(compared to the third column SVD results, fourth column
GE results are 2 to 5 times faster). Finally, the last column
shows the performance of our PROSAC implementation
based on GE estimation of the homography.

B. Target recognition performance

In order to assess the performance of our GE imple-
mentation in the context of planar target recognition, we
captured four sets of image sequences for four different types
of targets, with each sequence comprising of around 250
to 300 frames1. The image sequences were captured using
an LG Optimus 2X smartphone camera with a resolution
of 480 × 480. The camera was rotated by approximately
45◦ in all directions (i.e. 45◦ in- and out-of-plane rotation).
The scale of the target varies from full resolution (where
the target fully occupies the frame) to about one third the
image size. A majority of the images suffer from perspective
distortions and severe motion blur in some cases. The ground
truth target locations were manually obtained by identifying
the four corners of the target in each image of each sequence.

The matching scheme based on BRIEF described in
Section 2 was used to match the target features with the
ones detected in each frame of the test sequences. Each
matching set thus obtained is then feed to our PROSAC
estimator in order to obtain a putative homography. The
same experiments was repeated for the different homography
estimation methods, all of them using the same initial match
sets.

Table I shows the number of matches in the initial set
and the number of matches in the final set with best support
as found by PROSAC. We report these results for the SVD
solution (as implemented in OpenCV) and for our Gaussian
Elimination implementation.

The recognition rate is determined by analyzing the max-
imum error between the estimated target corner locations to
the corresponding ground truth corner location. This error,
given in pixels, is obtained as follows:

Ei(C̃) = max
j
‖Hip̂j − p̃ij‖, 1 ≤ j ≤ 4 , (7)

where Hi is the estimated homography at frame i, p̂j is the
coordinate of target corner j in the reference frame and p̃ij is
the manually obtained location of corner j in frame i. If we
consider that a target is successfully detected if E(C̃) ≤ 10
pixels, we then obtain a recognition rate of 72.56% for SVD
and 73.44% for Gaussian Elimination (last column of Table
I). To illustrate the behavior of the two tested homography
estimation methods, we show in Figure 2 the evolution of
the maximal positional error (reported every 5 frames) for
one of the test sequences. As it can be seen, except for one
large error made by Gaussian Elimination, both estimation
scheme exhibits very similar behavior.

1available at www.eecs.uottawa.ca/∼laganier/projects/mobilevision
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Figure 2: Maximum positional error for the book sequence.

C. Computational efficiency

We report in this section the global computational effi-
ciency of different homography estimation methods in the
context of robust target detection. Speed is here measured
in cycle count. For completeness, we evaluate the perfor-
mance of different methods under different contexts; the
results are shown in Figure 3. First, we measured the speed
of the OpenCV cv::findHomograhy function (version
2.4) under the RANSAC mode. We also built our own
implementation of the RANSAC scheme inside which we
used the OpenCV 2.4 SVD function. We then integrated
the same OpenCV 2.4 function under our PROSAC imple-
mentation. We also tested the DEGSVD function from the
LAPACK package. We also tested a publicly available but
non-optimized Gaussian Elimination implementation [16].
Finally, the last results shown in Figure 3 is the one obtained
our proposed optimized Gaussian Elimination scheme. For
a device equipped with a 2.26GHz CPU, a 30fps detection
rate corresponds to a maximum number of about 75 millions
of cycles.

VI. CONCLUSION

We have presented in this paper a device-friendly im-
plementation of the well-known Gaussian Elimination algo-
rithm for homography estimation. We have shown that this
simplified approach significantly speeds-up the homography
estimation process. Since this estimation step is repeated
many times in target recognition frameworks that are based
on the hypothesize-and-verify scheme, this improvement
considerably reduces the computational load in real-time
implementation on low-powered devices. Additionally, we
showed from experimentations that the homographies ob-
tained using our optimized GE implementation have an
accuracy comparable to the ones obtained using the more
conventional SV D solution.

The homography estimation algorithm proposed in this
paper was integrated into a fast target recognition framework
based on trained BRIEF features. Any other recognition
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(a) Map (b) Book (c) Adv (d) Football

Figure 1: Target recognition for one frame of each of our test videos.

Target Total matches Total Inliers Iterations Recognition rate(%)

GE SVD GE SVD GE SVD

Book 169.0± 33.1 67.1± 41.3 61.0± 34.7 756.0± 710.6 772.0± 722.5 48.82 45.40
Map 75.3± 18.7 38.1± 17.2 38.6± 17.3 317.4± 546.8 299.4± 526.3 72.24 74.75
Football 232.7± 41.9 82.2± 44.8 79.8± 40.8 747.9± 723.7 742.2± 717.4 84.58 79.06
Adv 200.8± 52.8 74.8± 41.0 83.0± 39.6 693.1± 726.8 604.1± 661.0 88.09 90.49

Average 175.6± 65.6 67.5± 41.6 67.3± 38.9 658.8± 709.7 635.4± 694.0 73.44 72.56

Table I: Average number of total matches, inliers ,required iterations and recognition rate are shown for the four targets with
both GE and SVD method

USAC 1.0 USAC GE USAC SVD
(No LO)

USAC GE
(No LO)

our PROSAC
GE

A: ε = 0.46,
N = 2540

I 1147.6± 0.1 1147.7± 0.1 1074.4± 9.1 1017.2± 10.1 969.6± 10.2
K 4.8± 0 5.9± 0.1 7.8± 0.1 9.1± 0.2 8.4± 0.2
K rej 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
models 4.8± 0 5.9± 0.1 7.8± 0.1 9.1± 0.2 8.4± 0.1
VPM 755.6± 15.6 667± 16.4 1021.6± 16.6 869.3± 16.1 1193.5± 14.8
error 1.27 1.27 1.18 2.22 2.27
time(ms) 24.78 24.4 0.4494 0.3477 0.0810

B: ε = 0.15,
N = 514

I 68.1± 0.0 68.0± 0.0 67.7± 0.5 61.5± 0.9 64.3± 0.4
K 925± 316 14557± 3676 57.0± 11.9 165.7± 23.0 13.6± 0.4
K rej 711.2± 263.8 12446.8± 3226 35.2± 10.2 128.0± 19.7 3.0± 0.1
models 214.1± 53.7 2104.8± 451.3 21.8± 1.8 36.4± 3.3 10.6± 0.3
VPM 49± 1.4 42.4± 2.3 29.6± 2.1 100.4± 3.6 294.3± 3.6
error 0.87 0.87 2.08 2.35 2.38
time(ms) 4.93 3.78 0.2873 0.07323 0.02511

C: ε = 0.23,
N = 1317

I 301.0± 0.0 300.56± 0.3 211.4± 1.2 210.9± 1.3 202.9± 1.4
K 4.8± 0.1 7.5± 0.3 4.7± 0.1 6.3± 0.2 5.0± 0.1
K rej 0.3± 0.0 0.5± 0.0 0.3± 0.0 0.4± 0.1 2.3± 0.0
models 4.5± 0.1 4.9± 0.3 4.4± 0.1 3.9± 0.2 2.7± 0.1
VPM 372.6± 4.5 593.5± 17.5 435.1± 6.6 694.9± 16.8 1215.7± 7.8
error 0.80 0.8 0.98 1.42 1.35
time(ms) 6.33 6.3 0.1127 0.07363 0.03406

D: ε = 0.34,
N = 495

I 146.2± 0.1 146.3± 0.1 137.0± 1.0 139.6± 1.1 136.7± 1.2
K 14.0± 0.4 16± 0.5 5.1± 0.1 5.8± 0.1 5.5± 0.1
K rej 3.7± 0.1 4.2± 0.2 1.9± 0.0 2.0± 0.0 2.7± 0.0
models 10.3± 0.3 10.8± 0.4 3.2± 0.1 3.0± 0.1 2.8± 0.1
VPM 103.4± 2.3 111.4± 3.4 307.3± 5.4 342.1± 5.9 482.4± 1.5
error 1.16 1.16 5.72 5.70 5.87
time(ms) 2.73 2.68 0.07764 0.04241 0.016903

Table II: Performance result of Homography estimation as in [10]. (I) is the number of inliers found. (K) and (K rej) are
the number of samples drawn and the number of samples rejected by the degeneracy test. (models) is the number of total
hypotheses, (VPM) the number of verification per model. The symmetrical reprojection (error) is measured w.r.t. the ground
truth. (time) indicates the execution time per frame in ms. Note that all reported results are averaged over a total of 500
runs.
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Figure 3: Per-frame average cycle count for each H-estimator

framework would similarly benefit from our optimized im-
plementation.
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