
Offline 1000-Class Classification on a Smartphone

Yoshiyuki Kawano and Keiji Yanai
The University of Electro-Communications, Tokyo

1-5-1 Chofugaoka, Chofu-shi, Tokyo, 182-8585 Japan
{kawano-y,yanai}@mm.inf.uec.ac.jp

Abstract

In this demo, we propose an offline large-scale image
classification system on a smartphone. The proposed system
can classify 1000-class objects in the ILSVRC2012 dataset
in 0.270 seconds. To implement a 1000-class object clas-
sification system, we compress the weight vectors of linear
classifiers, which leads only slight performance loss.

1. Introduction

Due to recent rapid progress of smartphones such as
iPhone and Android phones, they have obtained enough
computational power for real-time image recognition. Cur-
rently, a quad-core CPU is common as a smartphone’s CPU,
which is almost equivalent to a PC’s CPU released several
years ago in terms of performance. Taking advantage of
high computational power of latest smartphones, standalone
real-time object recognition systems on a smartphone has
become possible [4, 5], which can classify 100-class foods.
However, due to memory resource limitation on a smart-
phone, the number of classes to be classified was 100 at
most.

In this demo, we propose an offline large-scale image
classification system on a smartphone, which can classify
1000-class objects in the ILSVRC2012 dataset. It carried
out all the processing steps on a smartphones without any
communication to external servers. To implement a 1000-
class object classification system, we compress the weight
vectors of linear classifiers, which leads only slight per-
formance loss. The system implemented on a latest quad-
core smartphone takes only 0.270 seconds for a 1000-class
recognition.

2. Proposed System

The basic processing flow is the same as the state-of-the-
art large-scale image recognition [8] and real-time mobile

image recognition [4]. Firstly, we extract local features such
as HOG patches and color patches, secondly code them into
Improved Fisher Vectors (IFV) [7] with Spatial Pyramid
Matching (SPM) [6] after applying PCA to each of the lo-
cal features, and thirdly classify coded vectors with linear
classifiers in a one-vs-rest manner.

The problem to implement a 1000-class classification
system on a smartphone is a large amount of weight vec-
tors of trained linear classifiers. When using FV, SPM and
multiple features, the dimension of feature vectors tends to
be high. In case of this work, the total dimension of feature
vectors is 17,920. To represent weight vectors of linear clas-
sifiers for 1000 classes in the “float” representation which
requires four bytes for one real value, the total amount of
memory for them is 71.7MB, which is too much for a smart-
phone. In this work, to reduce it, we compress the weight
vectors. Note that in our work, recognition on 1000 cat-
egories is carried out on a smartphone, while training on
1000 categories is performed on PCs.

As local features in the demo system, we use densely
sampled RootHOG patches and Color patches. RootHOG
is an element-wise square root of the L1 normalized HOG,
which is inspired by “RootSIFT” [1]. Color patches are the
same as [4]. After extracting local features, according to
Improved Fisher Vectors (IFV) [7], we code them into IFV.

For training, we use AROW [2] as an online learning
method. Although training is carried out on cluster PCs, the
amount of training data is very large, and then, we com-
press training samples with Product Quantization (PQ) [3]
following to [8]. Only the sample is uncompressed, when it
is needed to update the parameters.

For classification on a smartphone, the problem is
that 1000-class classification with one-vs-rest linear clas-
sifiers with high dimensional Fisher Vector requires a large
amount of classifier weights. To solve it, we adopt a scalar-
based quantization method for weight vectors of linear clas-
sifiers. In the demo system, we compress each element of

1193



the weight vectors into 4 bits, which enables us to reduce
the required memory to 1/8. To classify images in a one-
vs-rest manner, only relative descending order of the out-
put values of the classifiers is important. Since we adopt
scalar-based quantization, it is enough for classification to
compute a dot product between a compressed weight vector
and a FV-coded feature vector.

3. Implementation

Before FV coding, we reduce the dimension RootHOG
and Color patches into 32-d and 24-d, respectively. Then,
we code them into FV with the GMM with 64 Gaussians
and Spatial Pyramid level 1 (1x1+2x2). As results, the total
dimensions of FV are 10240 for RootHOG-FV and 7680
for Color-FV, respectively. For feature fusion, we simply
add two output values of linear classifiers on each class.

We implement a system as a multi-threaded system for
a quad-core smartphone. Refer to Kawano et al. [4], we
parallelize feature extraction for RootHOG Patch and Color
Patch features. Extraction of local descriptors, applying
of PCA with them, encoding them into Fisher Vector with
power normalization and L2 normalization, and evaluation
of 1000 classifiers are carried out over 2 cores in parallel for
each feature. Moreover, in the same way as [4], we compute
all the constant values which can be calculated in advance.
Regarding the weights of the classifiers, we store two 4-
bit compressed vectors into one-byte memory, and separate
them on demand in classification time.

4. Experiments

In the experiment, as a large-scale image dataset, we use
the ILSVRC2012 dataset which consists of 1000 classes.
We evaluate the results of 1000-class classification with the
top-5 classification rate, which represents the rate that a
ground-truth label is found in the top-5 classes in the de-
scending order of the output values of the classifiers.

With the setting mentioned in the previous section, we
obtained 47.9% with original “float” weights and 48.7%
with compressed “4-bits” weights for the top-5 rate for
1000-class (Table 1). The required memory for linear clas-
sifier weights were 71.7MB for “float” weights and 9.0MB
for “4-bit” weights. This shows compression of 1/8 on
weight vectors leads only 0.8 point loss, which have not
been explored before.

In the experiment, we use Samsung Galaxy Note II
(1.6GHz 4-core CPU, 4 threads, Android 4.1) for measuring
recognition time for 1000 classes. With 4-core implementa-
tion, it took 0.270 seconds in one-time recognition of 1000
classes of ILSVRC.

Table 1. Comparison on the top-5 classification rate and the re-
quired memory to store weight vectors.

float(32bit) compressed(4bit)

Rate 48.7% 47.9%
Memory 71.7MB 9.0MB

5. Conclusions

In this demo, we proposed an offline large-scale im-
age classification system running on a smartphone. We
have proved that mobile large-scale image classification re-
quires no communication to external servers. To realize
that, we proposed a scalar-based compression method for
weight vectors of linear classifiers. In the experiment, we
showed that compressing the weights to 1/8 leaded to only
0.80% performance loss for 1000-class classification with
the ILSVRC2012 dataset. For future work, we will exam-
ine and analyze weight vector compression more compre-
hensively and deeply.

References

[1] R. Arandjelovic and A. Zisserman. Three things every-
one should know to improve object retrieval. In CVPR,
pages 2911–2918, 2012. 1

[2] K. Crammer, A. Kulesza, and M. Dredze. Adaptive
regularization of weight vectors. Machine Learning,
91(2):155–187, 2013. 1

[3] H. Jégou, M. Douze, and C. Schmid. Product quantiza-
tion for nearest neighbor search. IEEE Trans. on PAMI,
33(1):117–128, 2011. 1

[4] Y. Kawano and K. Yanai. Rapid mobile object recog-
nition using fisher vector. In Proc. of Asian Conference
on Pattern Recognition, 2013. 1, 2

[5] Y. Kawano and K. Yanai. Real-time mobile food recog-
nition system. In Proc. of CVPR Workshop on Mobile
Vision, 2013. 1

[6] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags
of features: Spatial pyramid matching for recognizing
natural scene categories. In CVPR, pages 2169–2178,
2006. 1

[7] F. Perronnin, J. Sánchez, and T. Mensink. Improving
the fisher kernel for large-scale image classification. In
ECCV, 2010. 1

[8] J. Sánchez and F. Perronnin. High-dimensional signa-
ture compression for large-scale image classification. In
CVPR, pages 1665–1672, 2011. 1

194


