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Abstract

Real-time, low-resource corridor reconstruction using a
single consumer grade RGB camera is a powerful tool for
allowing a fast, inexpensive solution to indoor mobility of
a visually impaired person or a robot. The perspective and
known geometry of a corridor is used to extract the impor-
tant features of the image and create a 3D model from a sin-
gle image. Multiple 3D models can be combined to increase
confidence and provide a global 3D model. This paper
presents our results on 3D corridor modeling using single
images. First a simple but effective 3D corridor modeling
approach is introduced which makes very few assumptions
of the camera information. Second, a perspective based
Hough transform algorithm is proposed to detect vertical
lines in order to determine the edges of the corridor. Fi-
nally, issues in real-time implementation on a smartphone
are discussed. Experimental results are provided to vali-
date the proposed approach. This work has the potential to
also function in environments with properties analogous to
corridors such as highways, sidewalks, city blocks, etc.

1. Introduction
In the world built by humans, hallways are everywhere.

As such, there are many cases where the information about
the corridor is important. For one, robots are continually
becoming more common. A mobile robot needs to be able
to navigate its environment. If that environment involves
the inside of a building, its likely the robot will frequently
encounter hallways. Furthermore, hallway detection can be
used to help visually impaired people avoid the walls as well
as find the doors and cross section corridors necessary to
take them to their destination.

The most common way to extract the information on
a corridor in computer vision currently is to use a range
sensor and perform the computations necessary to find the
walls of the corridor. Unfortunately, these methods require
relatively expensive equipment, heavy processing, and high
energy consumption. This makes the method impractical

for a robot that needs to move quickly, a wearable sys-
tem that need to be built cheaply, or a blind person who
doesnt want to carry a laptop on their back processing data
all day. The most recent relatively low-cost 3D sensors are
the RGB-D sensors, such as Microsoft Kinect and Asus
Xtion Pro, but their sensing ranges are quite limited (0.5
to 4 meters) and are not very suitable for corridor detec-
tion. We propose a high speed, low resource, long range,
inexpensive solution to these needs. Effective portable cor-
ridor detection capabilities with nothing more than a single
consumer camera such as a webcam or the cameras found
on a smartphone. This is done through the detection, local-
ization and 3D reconstruction of corridors from individual
images, while multiple images can provide more detailed
and confident information. Furthermore, as the RGB cam-
era does not have a range limitation as the range sensors
do, the methods described here can be combined with data
already retrieved from range sensors to make assumptions
about what the camera can see beyond the range sensors
limits.

We have made the following three contributions for en-
abling a visually impaired people to navigate in a typical
corridor scenario. First a simple but effective 3D corridor
modeling approach is introduced which makes very few as-
sumptions of the camera information: we only need to as-
sume know camera height and it is without a rolling angle,
and the 3D information of the corridor and the floor plan
is obtained by utilizing the vanishing point of all the hori-
zontal lines. Second, an efficient perspective based Hough
transform (PBHT) algorithm is proposed to rapidly detect
vertical lines in order to determine the edges of the cor-
ridor. The algorithm efficiently makes full use of the 3D
information obtained via vanishing point analysis so verti-
cal lines near and far are all used for determine the edges
of the corridor. Finally, issues in real-time implementation
on a smartphone are discussed, including model represen-
tations, computation costs and communications with blind
users. Experimental results are provided to validate the pro-
posed approach.

The rest of paper is organized as follows: First, Section 2
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discusses what’s been done in the past, how it relates to what
we did in our research, and what we’ve done new. Next,
Section 3 gives an overview of the approach used in this
paper. Section 4 describes the algorithms used to model the
corridors in detail. Then experiment results are shown in
Section 5. Finally, conclusions are provided at Section 6.

2. Related Work
The he majority of existing corridor detection methods

use range sensor data to extract corridor information. The
most detailed indoor modeling methods use point cloud data
gathered by 3D range sensors [5]. This 3D data can of-
ten be processed more quickly by reducing the point clouds
to surfaces [12]. Other range methods use 2D laser range
sensors to provide a faster, less resource intensive approach
[12]. These range sensor methods use powerful hardware
to extract precise position data without the need to interpret
information based on a RGB image. The most recent low-
cost RGB-D sensors, such as Microsoft Kinect and Asus
Xtion Pro, can obtain depth maps in real-time, but their
sensing ranges are quite limited (0.5 to 5 meters) and are not
very suitable for corridor detection and 3D measurements of
over 10 meters long. Our approach allows for fast, efficient
processing without the need for 3D equipment. Further-
more, our methods can be used in conjunction with a range
sensor to provide initial data and make decisions about the
environment beyond the range sensors limit, while the range
data can be processed slower to give more detailed results.

The use of a single RGB camera to detect doors has been
used extensively in existing research [10][14]. The means
used to find the frames of the doors in these methods is sim-
ilar to the extraction of corridors in our approach. In partic-
ular, the vanishing point is used to determine a perspective
so that important feature lines can be extracted. The ma-
jor differences between the method given in this paper and
the door detection are the means by which the features are
found. While these related works use simple edge detection
and a search for a specific shape, our method utilizes our
PBHT and the characteristics of a hallway to gather impor-
tant features (such as corridor boundaries as well as vertical
lines) in the image. We then generate 3D information from
these features using well established methods [2].

Past research has been done on allowing a robot to
quickly move through a corridor [9]. However, these past
methods rely on existing 3D maps of the corridors which the
robot matches its currently surroundings with. The method
described in this paper expands on this by requiring no pre-
vious knowledge. Other fast corridor detection is done with
powerful laser range sensors [8][7] leading to cumbersome
equipment being required.

Detection of corridor vanishing points to determine the
direction of the hallway has been extensively studied [6].
We build on these methods by utilizing and creating a model

Figure 1. 3D wireframe model of a corridor, with boundaries be-
tween the two side walls and the floors, and the frames of doors.

Figure 2. A typical image of a corridor. The direction of the cor-
ridor is detected by finding the vanishing point of horizontal lines
(in pink), the boundaries of the corridor (the yellow lines below
the vanishing point) via the detection of vertical structures (the
blue lines). 3D measurements (X,Y,Z) are also labeled for a few
vertical lines (in cm).

of the hallway and its features such as doors, turns and cor-
ners of the hallways.

Other research has previously used the properties of en-
vironments similar to hallways to perform 3D reconstruc-
tion [13][1][3][4]. However, our method extends this by
using the perspective to improve results at a distance. Even
though incorporating perspective into a Hough transform is
not a new idea [11], existing approaches attempt a more
general solution in which performance suffers. Our method
is designed efficiently for the detection and 3D measure-
ments of corridors using a smartphone so that useful results
can be used in applications such as the guidance of the vi-
sually impaired.
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3. Overview Of Our Approach

While most uses of 3D reconstruction require multiple
viewpoints, a range sensor, or some other special imaging
component, our methods can perform the task using a sin-
gle image. This is due to the nature of a hallway (Figure
1, Figure 2). Even though there are plenty of differences
from one hallway to the next, the feature of having (mostly)
straight walls makes the single image processing possible.
From the cameras point of view, many of the lines found
in an image run to a vanishing point. More specifically,
the lines which define the boundaries between the floor to
the walls and the walls to the ceiling are lines that go to
the vanishing point. Furthermore, lines that perpendicular
to the hallway (e.g. doorframes, floor tiles, etc.) will ap-
pear as lines parallel to one another that do not go to the
vanishing point. To perform the reconstruction, we begin
by performing a canny edge detection. The result is then
put through a Hough transformation to produce a map of
lines. Taking into account the special vanishing point fea-
ture of a corridor, we are able to determine that the posi-
tion of the vanishing point will be where the most lines
from the Hough transformation converge. From here, we
search for surface feature, parallel lines which do not run
towards the vanishing point. This is done using a perspec-
tive based Hough transformation (PBHT) which retrieves
line segments. This PBHT is specially built based on the
perspective of the image and computationally efficient for
smartphone implementations. That is, in the hallway image
there may be strongly defined lines (such as doorframes)
far down the hallway, yet they would be normally excluded
from a regular Hough transform because these lines are so
much smaller than lines physically closer to the camera. To
account for this, the Hough transform adds a weighting bi-
ased towards objects closer to the vanishing point. The line
segments found serve two purposes. First, the line segment
will lie on one of the surfaces, so the end of this segment
can be used to estimate which line that passes through the
vanishing point defines the boundary between one surface
to the next. Second, the line segment can be used to find
features. The most obvious example of this is the line that
outlines a door or connecting hallway. Since the number of
points and lines used in the algorithms are small, the com-
putation is efficient. From this information, a 3D wireframe
model of the hallway can be built.

4. Corridor Modeling Algorithms

We will give describe the mathematical model of a 3D
corridor as the foundation of our algorithms in detecting
vanishing points and boundaries of the corridor. Then the
algorithm for vanishing point detection will be presented,
followed by the description of our proposed perspective
based Hough Transform algorithm.

Figure 3. Corridor Detection And Modeling: The Geometry

Once a 3D wireframe model has been generated, the data
can be analyzed. Features on the surfaces of the walls, floor,
and ceiling can now be compared with relative distances.
Particularly, important features such as doorways/openings
may be extracted. Furthermore, a set of wireframe data
easily combines with another set of wireframe data. Two
such sets quickly provide absolute distances and increases
the confidence of the data.

4.1. 3D Corridor Modeling

We assume the height of the camera (H) is known (e.g.
at the height of a users chest) and the focal length is F . We
also assume that the camera is leveled in the horizontal di-
rection (along the X axis), or the rolling angle of the camera
can be estimated using the on-board sensor and images rec-
tified, so that we only have a heading angle (α) and a tilt
angle (β) relative to the corridor (Figure 3). If the vanishing
point of the corridor axis is v = (x0, y0, F ) representing
in the camera coordinate system, then the heading and tilt
angles of the camera can be calculated as:

α = atan
(x0
F

)
, β = atan

(y0
F

)
(1)

The normal of the ground plane in the camera coordinate
system is n = (0, F,−y0). Define the magnitude of the
normal vector as n = |n|. Since the camera is leveled, then
the plane equation can be written as:

FY − y0Z = nH (2)

Hence, given a floor image point (x, y), the 3D coordinates
of the corresponding point can be calculated as:

(X,Y, Z) =
nH

F (y − y0)
(x, y, F ) (3)

when y 6= y0. Otherwise the ground plane equation would
be Y = H , and the corresponding 3D point would be sim-
ply H

y (x, y, F ) From this, the distance of Z each image
point on the floor can be estimated. The location and the
width of the corridor, and the location/width of each door
can be calculated. The width of a door can be calculated as
the distance between two endpoints of the door frames on
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the floor. The distance of each edge of the corridor can be
calculated as the perpendicular distance of the camera cen-
ter to the 3D line of the edge once the 3D coordinates of two
points on the lines are obtained.

4.2. Vanishing Point Detection

First we need to determine the vanishing point of the cor-
ridor image. This vanishing point and the characteristics of
a corridor shape are essential to generate the 3D model from
a single image.

The canny edge detection in our implementation begins
with a noise reduction using a 5x5 gaussian filter. Next, a
pair of convolution masks are applied in both the x and y di-
rections using the 3x3 Sobel operators. From this a gradient
intensity map of the image is generated. A non- maximum
suppression is applied which sets all points to zero which
are not part of the local maximum. This results in only thin
lines (edges) remaining. The canny edge detection termi-
nates after filtering pixels based on thresholds. The detec-
tion results in an edge map. Such an edge map is generated
for each of red, green, and blue versions of the image in-
dividually, then the maps are combined into a single edge
map.

The edge map then is then subjected to a standard Hough
transformation. Every edge point is used to add to an accu-
mulator array specified by polar coordinates. If each bin of
the array which exceeds a given threshold specifies an ex-
isting line. The result of the transform is a list of lines given
in polar coordinates.

The pixels of the image are then surveyed to find which
pixel has the most lines passing through or near it within a
given buffer distance. Based on the characteristics of a cor-
ridor, this location is determined to be the vanishing point
of the image. The vanishing point of the corridor is noted
as (x0, y0)

4.3. Perspective Based Hough Transformation

Next our method extracts the surface feature lines from
the image. To do this we propose a perspective based Hough
transformation (PBHT). Most of the Hough Transform ap-
proaches including the one that incorporated perspective-
invariance proposed in [11] cannot meet the real-time re-
quirements. Our PBHT is a modified method of the progres-
sive probabilistic Hough transformation (PPHT)[13]. The
use of PPHT has several advantages over a standard Hough
transformation. It is generally faster as it only needs to add
a portion of the total points to the accumulator, it results in
a finite line segment rather than an infinite line, and it can
be stopped early and still present information on the most
prominent lines.

In addition to use the efficiency of the PPHT algorithm,
the PBHT weights voting values based on the proposed
line’s normal distance from the vanishing point. This al-

lows for features at a distance to be more correctly recog-
nized as significant despite their small relative pixel size on
the image, therefore it integrates both advantages in accu-
racy and efficiency in a unified algorithm. The algorithm
works by first randomly selecting a point to vote. After a
vote has been cast, we check the bins to see if the current
values would be achieved by random noise. More specifi-
cally, from the total value N allocated to all bins, does any
bin exceed a threshold of s. The threshold s changes as
votes are cast. Once a line is found, the values of the points
on that line are removed from the bins and other points sup-
porting that line are removed from the map of points which
have not yet voted.

Every pixel votes into exactly one bin for each θ value.
This allows us to only require analysis along the ρ dimen-
sion of the accumulator. The value allocated to each bin is
based on the shortest distance of the line defined by that bin
to the vanishing point. The value attributed to the bin based
on a line distance is proportional to

v =
1

d+ c
(4)

where d is the shortest distance of the line from the vanish-
ing point and c is a constant based on the size of the image.
Since we are only searching for vertical lines in the PBHT,
this is equivalent to using the distance information of these
vertical lines: the closer a line to the vanishing point, the
larger the distance of the line to the camera. This constant
prevents extremely small numbers of pixels close to the van-
ishing point from being considered lines.

The PBHT algorithm works in detail as follows:

1. If the input image is empty, end the algorithm.

2. Update the accumulator with random pixel from the
input image.

3. For each line that passes through the pixel, get the dis-
tance of that line to the vanishing point. Update the
accumulator with values inversely proportional to the
distance.

4. Remove the pixel from the input image.

5. Check if the bin with the highest value of the bins mod-
ified by the new point exceeds the threshold. If not, go
to step 1.

6. Search the given line for the longest number of contin-
uous pixels which do not have a gap larger than a given
threshold.

7. Remove the pixels in the line segment from the in-
put image and subtract the vote values for each bins
of those which have already voted.
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8. If the line segment total vote value exceeds a given
threshold value, add it to the output line list.

9. Go to step 1.

The steps which are significant from a computational
complexity point of view are 3 and 9. Step 9 represents
the overall loop on each pixel in the image. While step 3 di-
minishes in time consumption with each loop of step 9, it is
the still the computational heavy step in the process. These
two factors combined results in a O(n) = n · log(n), where
n is proportional to the number of pixels in the image.

Once the surface line segments have been found, the
transition from floor to the walls is found based on the end
points of the line segments. A simple linear regression of
the end points is taken and the line from the original Hough
transformation which most closely matches the result is de-
termined to be the transition line.

5. Experimental Results And Discussion

5.1. Experimental Results

In our tests, the center of the image and the focal length
are determined simply by using the metadata of the image.
The center is simply calculated as the middle of the image
and the focal length is converted into pixels using the size
of the sensor target.

In our first example (shown in Figure 2), the image center
and focal length are Cimage = (610px, 457px) and F =
343px. Based on these parameters we find the vanishing
point V = (53px, 92px). Therefore, the heading and tilt
angles of the camera can be calculated, using Eq. (1) and
Eq. (2), as α = 4.41◦ and β = 7.64◦. This means the
heading angle is almost straight forward and there is only a
slight tilt. From here, the normal of the ground is calculated
as n = (0, 343px,−92px).

The calculated 3D position for several of the door
features are given in the table below. Note that
one of the points is 16 meters away, which is not
possible to obtain by a RGB-D sensor or a typi-
cal stereovision system with short baseline length.

Left Side Right Side
X (cm) Y (cm) Z (cm) X (cm) Y (cm) Z (cm)

108 -89 154 -118 -150 262
110 -150 263 -120 -150 346
111 -150 350 -124 -150 831
114 -150 606
114 -150 828
115 -150 1622
In our second example (Figure 4), we have a more com-

plex scene then in the first. Lockers provide many addi-
tional features and pillars of unconventional shape affect
the data. The image center and focal length are Cimage =

Figure 4. Example 2: A corridor with a bank of lockers. Red lines
are all lines which voted for the accepted vanishing point. Blue are
the detected vertical line features. Yellow are the transitions from
the floor to the walls. Purple are from the walls to the ceiling.

Figure 5. Example 3: Heading to one side of a corridor with a
large obstacle. The color of the lines have the same meaning as in
Figure 4.

(246px, 185px) and F = 181px. Based on these param-
eters we find the vanishing point V = (−15px, 47px).
Therefore, the heading and tilt angles of the camera can be
calculated, using Eq. (1) and Eq. (2), as α = 2.37◦ and
β = 7.40◦. This means the heading angle is almost straight
forward and there is only a slight tilt. From here, the normal
of the ground is calculated as n = (0, 181px,−47px).

The calculated 3D position for several of the door fea-
tures are performed, but the results will be omitted from
this point on for the sake of space.

In our third example (Figure 5), we have much of the
hallway obfuscated by a water fountain. Here is a situation
where multiple images/wireframe models combined would
help determine the correct information. The image center
and focal length are Cimage = (300px, 200px) and F =
269px. Based on these parameters we find the vanishing
point V = (−178px,−18px). Therefore, the heading and
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Figure 6. Example 4: A hallway with many students standing.

Figure 7. Example 5: A hallway with a few people walking and
strange wall features.

tilt angles of the camera can be calculated, using Eq. (1)
and Eq. (2), as α = 18.31◦ and β = 1.92◦. This means
the heading angle is far off center and there is almost no
tilt. From here, the normal of the ground is calculated as
n = (0, 269px,−18px).

In our forth example (Figure 6), we have a hallway with
many students congregated. The image center and focal
length are Cimage = (512px, 342px) and F = 311px.
Based on these parameters we find the vanishing point
V = (−56px, 4px). Therefore, the heading and tilt angles
of the camera can be calculated, using Eq. (1) and Eq. (2),
as α = 5.14◦ and β = 0.37◦.

In our fifth example (Figure 7), we have a few peo-
ple in the hallway with some strange features on the
walls. The image center and focal length are Cimage =
(241px, 213px) and F = 152px. Based on these parame-
ters we find the vanishing point V = (68px, 59px). There-
fore, the heading and tilt angles of the camera can be cal-
culated, using Eq. (1) and Eq. (2), as α = 12.61◦ and
β = 10.98◦.

5.2. Discussions on Time Performance and Integra-
tion

We have generated 3D wireframe models of the corri-
dor from a single image. The wireframe models will be
matched based on the relative positions of the prominent
feature lines such as the edges of doorframes. Because
the geometric characteristics of a corridor are simple, the
matching of these 3D models requires very little process-
ing. The major computation cost is in 3D modeling (includ-
ing edge detection, two rounds of Hough transformation,
for vanishing point detection and for corridor/door detec-
tion, and 3D measurements). Using images from a video
taken by an iPhone, our current implementation on a laptop
using C++ has an average processing time of 110 millisec-
onds. This uses reduced resolution (640x360) images for
faster processing. The memory usage of the program be-
ing run on the laptop has been limited to match that of the
iPhone 5 (1.0 GB). The laptop has a processor whose speed
(2.4 GHz) is twice that of the iPhone 5s (1.2 GHz). From
this its reasonable to assume that an iPhone implementa-
tion would take approximately twice as long to process an
image (200 milliseconds). At the writing of the paper, an
optimized iPhone implementation is underway.

The axis of the corridor has lines which are parallel that
represent the transition from the walls to the floor and fea-
ture lines, such as the door frames, intersect these lines
but are perpendicular to them. Thus, the matching prob-
lem is reduced to matching the distances between the fea-
ture lines. Furthermore, full 3D maps of the corridor can
be created and referenced. Since from each single image,
the 3D measurements of the corridor (the floors and doors,
turns, etc) have been obtained, we will use the location mea-
surement data (such as accelerometer and magnetic compo-
nents) from a smartphone to roughly align the local models
and then by matching the local floor and door models, we
refine the localization results and generate a global 3D wire-
frame model. Information about the device/user can also be
interpreted from the data. The differences in capture times
and change in frame of the images allows for a determina-
tion of speed. Since the position of the camera is easily
found relative to the 3D model of the corridor, our method
can even be used to provide real-time 3D SLAM in a corri-
dor using only the hardware of a smartphone.

Due to the low processing requirements and power con-
sumption, our method makes 3D reconstruction of a corri-
dor in real-time possible on a basic smartphone. With the in-
creasing ubiquity of such devices, the techniques proposed
here open up many useful applications. Even a beginner
in amateur robotics would have access to a smartphone and
this allows even the most inexpensive of mobile robots a
method by which to navigate corridors. A visually impaired
person would not need any special equipment to find their
way through a building using this method; all they need to
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do is take out their phone to get real-time information on
their heading. Such a low resource technique would allow
such navigation techniques to leave the labs where they’re
being researched and actually be used in real world applica-
tions.

While we have discussed the advantages of our pro-
posed method in cases where there are low resources, the
power of the proposed techniques in high resource appli-
cations should not be overlooked. Even with more ad-
vanced robotics equipment, combining real-time 3D mod-
eling along with high speed mobility is a difficult task.
On high power equipment, our technique should produce
more than enough 3D models despite any high speeds. Fur-
thermore, 3D range sensors always have distance limita-
tions where our proposed methods have virtually no dis-
tance limit. Therefore, our method can also be used, with
very little additional computation, to produce preliminary
results for information beyond the range of the 3D sensors.

6. Conclusions And Future Work
In this paper, we have a presented a real-time, low re-

source 3D corridor reconstruction method from a single
camera. We have also proposed the perspective based
Hough transformation algorithm which allows for the fast
reconstruction found in this paper. We have shown that
by exploiting the characteristics of a corridor, accurate 3D
models can be generated quickly with low resources.

In future work, this method can be used in a wide range
of applications. It provides a powerful robotics navigation
system from nothing more than a smartphone. The visually
impaired can be guided through a corridor to find the doors
they are seeking simply by using their phone as well.

Additionally, this work has the potential to function in
environments with properties analogous to corridors such as
highways, sidewalks, city blocks, etc. More generally, the
techniques of using existing human-made structural proper-
ties to model surroundings can be used in a wide variety of
situations.
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