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Abstract

Light field rendering is a widely used technique to gener-

ate novel views of a scene from novel viewpoints. Interpola-

tive methods for light field rendering require a dense de-

scription of the scene in the form of closely spaced images.

In this work, we present a simple method for dense view

interpolation over general static scenes, using commonly

available mobile devices. We capture an approximate focal

stack of the scene from adjacent camera locations and in-

terpolate intermediate images by shifting each focal region

according to appropriate disparities. We do not rely on fo-

cus distance control to capture focal stacks and describe an

automatic method of estimating the focal textures and the

blur and disparity parameters required for view interpola-

tion.

1. Introduction

We present a dense view interpolation method for mobile

devices in which a few images of the scene are captured in

the form of focal stacks, and novel views of the scene are

generated by interpolating the focal textures generated from

these focal stacks. We use a model in which the scene is as-

sumed to consist of a set of focal planes. From the captured

focal stack at each viewpoint, an all-in-focus representation

of the view is generated by merging the focused regions of

each focal slice into one image. The focused regions are

then shifted by automatically estimated disparities to gener-

ate novel views from novel viewpoints.

Synthesis of novel views for a given scene relies on ei-

ther geometric estimation of the scene elements or image-

based rendering [5, 9]. While geometric methods rely on

accurate estimation of the depth of scene elements, image

based methods generate novel views by interpolating a set

of captured images. Light field rendering is an image based

method which uses dense sampling of light rays for novel

view synthesis. For aliasing free light field rendering, a very

high sampling density of camera locations is necessary, as

described by Chai et al. [2].

In order to achieve a dense sampling of scene light rays,

it is useful to capture images at sparse camera locations

and interpolate a dense set of intermediate images between

them. We use an iterative method to estimate the focal tex-

tures at each camera location and interpolate these focal

textures based on appropriate disparity estimates to gener-

ate the intermediate images. Dense view interpolation for

a scene consisting of two manually-identified depth layers

was presented by Kubota et al. [6]. Levin et al. [8] en-

hanced this idea by capturing a focal stack of the scene and

generating novel views of the scene from different view-

points within the aperture area by geometrically shifting

each focal slice with its appropriate disparity.

In our case, we model the scene as consisting of multiple

focal regions, but do not need to capture an exhaustive focal

stack. We also do not need to identify the focal regions man-

ually. We use a mobile device to capture an adaptive focal

stack of the scene from adjacent camera positions and adap-

tively estimate the disparity and blur parameters required

for accurate view interpolation between the camera posi-

tions. We use mobile devices as they are highly accessible

and they tightly integrate optical lenses, electronic sensors

and versatile computing. Such a combination is ideal for

computational photography which often requires adaptive

optical sensing and embedded computing [1].

2. Imaging and Interpolation Model

We assume that the scene consists of objects at n dif-

ferent depth-of-field regions and we capture focal stacks

from several adjacent camera locations. The imaging model

treats each captured image as a combination of ideal focal

textures located at n focal regions of the scene.

A focal stack gi is a set of differently focused images

captured using a camera with a finite aperture. The scene

consists of n focal textures f i
j at each of the n focal planes

captured in the focal stack. These focal textures at a given

camera location Ci can be understood as

f i
j(x, y) =

{

f i(x, y) if zi(x, y) = j

0 otherwise

}

(1)
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where f i
j is the jth focal texture, f i the ideal all-in-focus

image at the camera location Ci, and zi(x, y) ∈ [1, n] is

the index of the focal slice at which the pixel (x, y) is max-

imally in focus. The true f i
j textures are unknown. The

focal stack gi can be modeled as a sum of these textures

convolved with appropriate blur kernels as

gik =

n
∑

j=1

hkj ∗ f
i
j , k ∈ [1, n] , (2)

where hkj represents the blur kernel (usually a Gaussian of

blur radius Rkj) between the focal planes k and j with hkk

being a delta function. Equation 2 is an extension of [6] and

approximates the focal stack using the focal textures and

blur kernels. This linear imaging model may not be correct

at depth discontinuities, but does not produce significant in-

terpolation artifacts. With known blur kernels, Equation 2

consists of n equations in n unknown f i
j textures.

Once the f i
j textures are estimated, the all-in-focus im-

age f i can be evaluated as

f i = f i
1 + f i

2 + f i
3 + . . .+ f i

n . (3)

Our objective is to compute the all-in-focus image at an

arbitrary intermediate location, between two focal stacks

from locations Ci and Ci+1. We parameterize the location

using the fraction α of the distance between them, with a

value of 0 at Ci and a value of 1 at Ci+1.

The focal textures f i
j and f i+1

j can be interpolated to

generate the intermediate image as shown in Figure 1. The

f i
j textures are shifted forwards by αdj and the f i+1

j tex-

tures are shifted backwards by −(1− α)dj , where dj is the

disparity of the jth focal texture between camera locations

Ci and Ci+1. The disparity dj can be either horizontal or

vertical based on the change in position from Ci to Ci+1.

The interpolated forward and backward all-in-focus images

for a horizontal shift can be generated similar to Equation

3 by first shifting the f i
j textures and then adding them to

generate the all-in-focus intermediate image:

f ′(x, y;α) =

n
∑

j=1

f i
j(x− αdj , y) (4)

f ′′(x, y;α) =

n
∑

j=1

f i+1
j (x− (α− 1)dj , y) (5)

A similar expression can be derived for shifts between ver-

tically separated camera positions.

The all-in-focus image fα at the intermediate location α

can be approximated using a weighted average of f ′ and f ′′

[6] as

fα(x, y) = (1− α)f ′(x, y;α) + αf ′′(x, y;α). (6)

Figure 1. All-in-focus image at α is interpolated from images at

Ci and Ci+1. Scene objects denoted by O1 to O6 and focal zones

denoted by F1 to F3. The focal slices are refined from the captured

focal stack such that F1 ∪ F2 ∪ . . . ∪ Fn covers the entire desired

range and F1 ∩ F2 ∩ . . . ∩ Fn is negligible.

3. Capturing the Focal Stack

The focal stack gi is a set of differently focused images

captured at camera location Ci. A focal stack can be used

for generating all-in-focus views by depth-of-field exten-

sion, for post-capture refocusing over the scene, for gen-

eration of arbitrarily refocused images and also for view in-

terpolation by shifting the focal regions by correct amounts.

Ideally, a focal stack is captured by controlled motion of the

camera lens relative to the camera sensor by predefined dis-

tances. The distance of lens motion in each step is decided

such that a minimal number of images are captured while

ensuring that the entire depth variation of the visible scene

is covered, as described in [11]. It is possible to implement

such a capture mechanism on certain DSLR cameras which

enable live control of focal length and aperture settings, and

on certain Linux based mobile phones which allow for pro-

grammatically controlling the lens focus distance [10]. This

control is however not available on a large number of mobile

devices and cameras in which there is no explicit program-

matic control of the lens focus distance like most Android

based smartphones. The Android SDK provides a function

call to only retrieve the focus distance of the camera but the

function returns unreliable and incorrect results on several

devices.

We present a simple method to capture a focal stack on

devices that do not possess explicit focus distance control.

Most cameras and smartphones are equipped with auto-

focus and touch based manual-focus features which can fix

the focus of the camera based on the user’s desired focus

location. We make use of this focus control mechanism in

order to capture a set of images with different focus settings

and emulate a focal stack from these captured images.

In order to capture images focused at different locations

in the scene, we divide the visible scene into sixteen dif-
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Figure 2. The focal stack is captured using 16 focus regions.

ferent rectangular regions as shown in Figure 2. Images

are captured by sequentially setting the focus area to each

of these regions. After capturing these images, the image

slices that might be redundant (due to different rectangu-

lar focus regions mapping to the same physical focus dis-

tance) are eliminated by measuring absolute image differ-

ences between the captured slices. As the redundant images

are similar in both the focused and defocused regions, ana-

lyzing pixel differences works well even though there might

be small misalignment between the captured images due to

camera shake. The focal stack is thus emulated as a set

of a few images having different focus distances, without

any explicit order between the images and without explicit

knowledge of the focus distance itself. Thus, interpolation

of the focal textures based on geometric disparities simi-

lar to [8] is not directly possible. However, with explicitly

estimated disparities for each focal slice between adjacent

camera locations, it becomes possible to interpolate inter-

mediate views.

4. Focal Textures and View Interpolation

To handle scenes with unknown number of focal regions,

we need to estimate the number of focal regions in the

scene. We assume that the number of images remaining

after eliminating redundant focal slices corresponds to the

different visible focal regions in the scene. For view inter-

polation, we need to estimate the textures f i
j , the disparities

dj , and the blur radii Rkj from the available focal stack gi.

Figure 3. The focal stack at a certain Ci consisting of three focal

slices, along with the sharpness index map built over the stack.

We capture a focal stack gi at different camera locations

Ci such that there is a small horizontal or vertical separa-

tion between any two adjacent camera locations. Each focal

stack gi at Ci is explicitly registered to the first focal slice

gi1. This is done in order to eliminate magnification errors

due to focus/defocus and to account for camera motion dur-

ing capture. The time taken for the described focal stack

capture mechanism is relatively large as many images are

being captured with a change in focal settings after each

capture. This can possibly lead to misalignment in the focal

slices. In order to register the focal stack, we use the En-

hanced Correlation Coefficient [3] algorithm, which uses a

modified correlation coefficient model to accurately register

images suffering from photometric distortions. Registering

the focal stack ensures per-pixel alignment of the stack.

4.1. Sharpness Index Map

In order to estimate the blur and disparity parameters re-

quired for view interpolation, we make use of a sharpness

index map built over the focal stack. In the index map, each

pixel across the stack is labeled to the focal texture at which

the weight wk is maximized, where

wk(x, y) = ν(Pk(x, y, d)) (7)

represents the variance of a patch of size d centered at the

pixel in the gik image [11]. Thus, the index map for any

focal stack labels each pixel of the registered stack to the

image where it appears maximally sharp (in-focus). Figure

3 shows the index map built from the focal stack. The index

map so generated can now be used to automatically build

rectangular focal templates required for further parameter

estimation.

4.2. Estimating Disparities

We can identify the disparity dj between adjacent cam-

era locations for every focal plane j using the index map.

We use template matching based on FFT correlation, us-

ing automated selection of templates. For each focal image

gik, we use the index map to locate a set of rectangles in

which all pixels are labeled to the same focal region, simi-

lar to connected component analysis over pixels. We collect

these rectangles in a list sorted by size. We select the largest

located rectangle as the focal template and match it in the

same focal image of the next camera position gi+1
k to esti-

mate the disparity dk between the two camera locations for

that layer. The focal templates extracted from the index map

are shown in Figure 4.

The disparity estimation method may fail for uniform

textured regions if pixels do not register correctly to their

true focal region. Also, if the template is large, then it

may be partially occluded in the adjacent image because of

change in camera position. To solve this, we discard tem-

plate matches with a high vertical disparity when the cam-

era movement between Ci and Ci+1 is horizontal and vice

versa, or if the disparity for a focal region is abnormally
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Figure 4. The focal templates for the three focal regions extracted

from the sharpness index map by generating a list of uniform index

rectangles sorted by size.

large or small compared to neighboring focal disparities,

and use the next largest rectangular template.

4.3. Blur kernel estimation

The blur kernels hkj can also be estimated automati-

cally once we have extracted focal templates for each fo-

cal region. They are estimated by sequentially blurring the

template with incremental blur radii until the best match

is found. The blur radii are estimated for every Rkj pair

but we assume that the defocus blur between the focal lay-

ers k and j would be constant for the two focal slices i.e.

Rkj = Rjk. Thus for a scene consisting of three focal re-

gions, three blur parameters of R12, R13 and R23 are esti-

mated. The defocus blur over the chosen templates is shown

in Figure 5. Small errors in blur estimation have been em-

pirically shown to cause little or no interpolation artifacts

[6].

Figure 5. The first focal template extracted from the f i

1, f
i

2 and

f i

3 textures. The defocus blur between focal regions is estimated

using these templates.

4.4. Solving for Focal Textures

Once the focal stack gi is aligned due to explicit registra-

tion and the dj and hkj parameters are estimated, we solve

Equation 2 in the frequency domain to estimate the f i
j tex-

tures as follows

Gi
k =

n
∑

j=1

HkjF
i
j , k ∈ [1, n] (8)

Figure 6. The focal stack at a certain Ci along with the all-in-focus

image.

F , G and H are the Fourier transforms of the f textures,

the images g and the kernels h respectively, with Hii = 1.

Equation 8 gives a system of n equations in n unknowns,

where each variable is a matrix in the frequency domain.

In [6], the acquired equation is a system of two equations

in two variables and interpolated views are generated us-

ing linear filtering of the input images without explicitly

identifying the F images, but filter corrections are applied

to eliminate artifacts caused by Hkj filter divergence at DC.

We require a general solution for Equation 8 with n fo-

cal layers. We iteratively solve for the F textures in the

frequency domain. We use an iterative method similar to

[7] but solve for the focal textures in the frequency domain

as expensive convolution operations in each linear equation

are replaced by per-element matrix multiplication. After k

iterations:

F
i,k
1 = Gi

1 − [H12F
i,k−1
2 +H13F

i,k−1
3

+ . . .+H1nF
i,k−1
n ]

F
i,k
2 = Gi

2 − [H21F
i,k
1 +H23F

i,k−1
3

+ . . .+H2nF
i(k−1)
n ]

. . .

F i,k
n = Gi

n − [Hn1F
i,k
1 +Hn2F

i,k
2

+ . . .+Hn(n−1)F
i,k
n−1] (9)

where F
i,k
j represents the F i

j texture after the kth iteration.

We apply the Gauss-Seidel iterative method to a system of

linear equations in non-square matrices in the frequency do-

main [4]. Such a solution assumes a prior on the F textures.

We use the sharpness index map to segment each gij image

into a prior f i
j texture. Thus, all the pixels labeled to certain

index j are picked from the focal stack image gij to generate

f
i,0
j . This estimates all the focal textures as a collection of

best focused pixels at that focal plane. We solve Equation

9 using these priors and compute the inverse Fourier trans-

form of the F matrices to estimate the f i
j textures at each

camera location. This solution of f i
j textures does not re-

quire any explicit control over the blur kernels as in [6] and
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Figure 7. Horizontally interpolated all-in-focus images at α = 0, 0.2, 0.4, 0.6, 0.8, 1.0. Expanded views of the images are shown below

each image. Different focal textures being shifted by their appropriate disparity is visible.

is scalable to many focal layers. The overall procedure in-

volving the estimation of focal textures and interpolation is

described in the following algorithm

Algorithm 1 PROCEDURE

1: Capture an approximate focal stack at each Ci. Evalu-

ate number of visible focal layers n.

2: Register each image in gi to gi1.

3: Estimate the sharpness index map over the focal stack.

4: Estimate the disparity dj between adjacent stacks for

each layer j.

5: Estimate blur radii Rkj .

6: Solve Equation 2 for f i
j .

7: Interpolate to get the α images.

4.5. View Interpolation

Once the f i
j textures are computed, we can interpolate

novel α views between any two camera locations using

equations 4 and 5. The all-in-focus image can be estimated

using Equation 3. As an example consider four clockwise

camera locations forming a square C1−4. An intermediate

image at α and β (horizontal and vertical shifts) can be es-

timated by first interpolating the (f1
j ,f2

j ) and (f3
j ,f4

j ) along

the horizontal direction using equations 4,5 and then corre-

spondingly along the vertical direction. Thus the interpo-

lation is composed of three sets of focal texture shifts and

summation. The overall interpolation can be written as:

fαβ =(1− α)(1− β)f1 + α(1− β)f2

+ (1− α)βf3 + αβf4 (10)

where

f i =

n
∑

j=1

f i
j(x− αdxj , y − βd

y
j ) i ∈ [1, 4] (11)

The steps 1 − 6 in the described Algorithm 1 can be

computed as pre-processing steps in the background once

the focal stacks are captured and the interpolation in step 7
requires lesser computational resources and can be applied

actively based on the user’s α, β input. Generating a set of

dense interpolated views of the scene can also enable novel

view generation using light field rendering from novel view-

points that are not explicitly on the camera plane.

5. Experiments

We experiment with an HTC One X mobile device which

is equipped with a quad-core 1.5GHz Nvidia Tegra 3 pro-

cessor having an inbuilt ULP GeForce GPU. We use the

OpenCV for Tegra 2.4.5 library with the Tegra GPU en-

abled for all OpenCV primitive image processing and core

function calls. This device uses an 8MP camera which has

a maximum aperture of f/2. The camera can capture 5 shots

per second in burst mode without any intermediate auto-

focus calls. For capturing the focal stack however, there

is a need to adjust the focus after each image and it thus

takes about 0.8 to 0.9 seconds to capture an image. Our fo-

cal stack is a set of 16 images where each 1280x760 image

is focused on a different rectangular region of the visible

scene. We find a 4x4 block to be the ideal size for the fo-

cus regions as it captures most of the elements in the scene

and also has a reasonable capture time. 3x3 or 5x5 blocks
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would lead to objects being missed from focus and large

capture times respectively. For two slices i and j, j is clas-

sified as redundant if the sum of absolute pixel differences

of i and j is less than 10% of the maximum pixel difference

across the stack for i. Pixel differences are estimated at half

the image resolution for computational efficiency. The re-

dundant image removal can also be pipelined with camera

focus adjustment for each shot during capture.

We capture a focal stack at four camera locations lying

on the edges of a 1.5cm square at an overall capture time of

about one minute. The focal stacks are then registered and

the pixel difference approach is reapplied to eliminate any

redundant image that might not have been identified with-

out per-pixel alignment. This step helps in case of signifi-

cant camera shake during capture. The index map is built at

one camera location and the focal templates for each focal

texture are isolated.

The disparity and blur parameters are estimated using

the focal templates. Since the relative distance between the

camera positions is low, we can reuse the same templates to

identify disparities between all camera locations. Also, the

blur kernels are dependent on the distance of the scene ob-

jects from the camera and thus for planar movement of the

camera along the square, the blur kernels are constant at all

four camera locations. Estimating the index map, the blur

radii and the focal templates is thus done once and takes

about 2 minutes. Image registration, disparity estimation

and focal texture estimation takes about 10, 15 and 40 sec-

onds respectively per camera location. The focal textures

at each camera location are estimated by processing each

color channel independently using Equation 9. The overall

capture and processing time is about 2.5 to 3 minutes per

camera location.

The interpolation of novel views is performed in near-

real-time based on user input by shifting the focal textures

by the appropriate disparities and merging them to generate

the intermediate view. The processing involving the gener-

ation of focal textures can be fully computed on the device.

However, considering the time taken for processing and the

fact that the battery usage for a mobile device should be

as low as possible, this approach can also be extended to a

cloud based framework, where the device captures, regis-

ters and removes the redundancies from the focal stack, and

the resulting images are uploaded to a cloud service which

processes and feeds the focal textures back to the device

for real-time view interpolation. The results of all-in-focus

view generation and interpolation are shown in Figures 6,7.

6. Conclusion & Future Work

We have demonstrated a method of using mobile devices

to capture focal stacks over a general scene and apply inter-

polative synthesis over the estimated focal textures to gen-

erate novel views. The method can enable a general user

to capture a scene with small control of camera positions

and view it later in a light field rendering framework from

novel interpolated viewpoints. As mobile devices become

equipped with larger aperture cameras, this method would

enable more accurate view interpolation as each focal layer

would correspond to a narrow depth-of-field and the method

itself is scalable to many focal layers. We are working on a

quick focus estimation method which would enable captur-

ing a focal stack in a significantly shorter amount of time,

by analyzing the focal information in the scene before cap-

ture.
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