
Space-variant image deblurring on smartphones
using inertial sensors
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Abstract—Low-light hand-held photography requires long ex-
posures and leads to space-variant blur degradation. Removing
blur without any information about the camera motion is a
computationally demanding and unstable process. In this demo
system, we use rotational inertial sensors (gyroscopes) to detect
the motion trajectory of the camera during exposure and then use
it as a base for removing blur from the acquired photographs.
The demo is a close-to-real-time deblurring technology, imple-
mented on an Android smartphone.

Index Terms—space-variant deconvolution; gyroscope; mobile
phone;

I. INTRODUCTION

Image stabilization (IS) technology, common in modern
cameras, can compensate only for motion of a small extent
and speed. In this work we target mobile phones which are
rarely equipped with IS. Deblurring the image offline using
mathematical algorithms is often the only option.

Arbitrary camera motion blur can be modeled by space-
variant (SV) convolution and the deblurring process is referred
to as SV deconvolution [1]. Camera motion blur is SV for
several reasons. First, it is caused by the camera projection
itself. Phone cameras are usually equipped with wide-angle
lenses (field of view around 60◦), which distort objects close
to image borders. The blur caused by rotation around x and y
axes is therefore different in the image center and borders. The
SV blur are particularly noticeable when rotation around z axis
is significant. Second, the camera-object distance influences
the blur caused by camera translation and the knowledge of
depth map is thus necessary. However, phone cameras have
a focal length of a few millimeters and the scene projected
into the camera image plane moves by less then a pixel if the
objects are more then 2m away, so the camera translation in
such cases can be neglected [2]. We will thus focus on purely
rotational motion of the camera, which has several additional
advantages. Gyroscopes are sufficiently accurate for angular
speed estimation but drift. We use gyroscope data to estimate
rotation and compensate for a drift by either calibration of a
still camera or considering accelerometers during motion.

Another reason for SV blur, unrelated to camera motion
but intrinsic to camera hardware design, is rolling shutter
[3]. In image sensors on mobile devices, contrary to systems
with mechanical shutter, values of illuminated pixels are read
successively line by line while the sensor is exposed to light.

The readout from the CMOS sensor takes several tens of
milliseconds, which results in a picture not taken at a single
moment, but with a slight time delay between the first and last
row of pixels. The rolling shutter effect is therefore another
cause of space variance as the blur depends on the vertical
position in the image. To model accurately the blur at every
position, it is necessary to shift the exposure-time window in
which the gyroscope data are fetched according to the vertical
position.

Our work demonstrates the use of built-in inertial sensors
in smartphones for accurate blur estimation. The proposed
solution is simple and practical. It removes blur induced by
camera rotation and simultaneously overcomes rolling-shutter
effect, which, to our knowledge, has not been considered in
the deconvolution problem before. As a testing platform we
have chosen a Samsung Galaxy S II smartphone with Android
operating system.

A similar system was proposed by Joshi et al. in [4] but they
have designed an expensive measuring apparatus consisting of
a DSLR camera and an external inertial module, and perform
image deblurring offline on a computer. Contrary to low-
cost cameras, rolling shutter is not present in DSLR cameras.
Sindelar et al. [2] tested simple deconvolution running on
smartphones, but they have considered only space-invariant
blur, which limits applicability of their solution.

II. THE DEMO SYSTEM

The tested device is equipped with all the apparatus needed
for our demo system, namely a relatively high-quality camera,
inertial sensors, fast CPU (ARM Cortex-A9) and enough RAM
to perform computations. A block diagram of the deblurring
application is in Fig. 1.

We first perform offline calibration to obtain camera intrin-
sic parameters, rolling shutter delay and gyroscope drift.

During the photo acquisition, samples of angular velocity
are recorded using the embedded gyroscopes, which are after-
wards trimmed to match the exposure period. Integrating the
position track from the recorded gyroscope data allows us to
render a correct blur at every pixel of the image. To perform
full image deblurring with SV blur would be computationally
very expensive and not feasible on a mobile device. Instead, we
split the image into overlapping patches and generate one blur
for each patch. We use a division to 6× 8 squares with 25%
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Fig. 1. The block diagram of the smartphone application: During camera
exposure, the application records data from the built-in gyroscopes. The data
are processed and blurs are estimated. The captured photo is divided into
overlapping patches, Wiener deconvolution is performed on every patch and
the reconstructed patches are blended to generate the sharp photo. The whole
process, entirely done on the smartphone, takes around 10s.

overlap in every directions. Each patch is then reconstructed
individually using the Wiener filter and the corresponding blur.
To avoid ringing artifacts around patch borders, edge tapering
is applied prior to filtering. Due to patch overlaps, we blend
the reconstructed patches by weighting them with Hamming
windows, which results in virtually seamless images.

The intensity values of the reconstructed image sometimes
lie outside the working bit-depth range (0-255), therefore we
added optional normalization with clipping of outliers. The
normalization is especially useful in the case of larger blurs
and scene with high luminance.

For the Fourier transformation, we use the FFTW library
ported to ARM CPUs, supporting two cores and a SIMD
instruction set (NEON). FFTW proved to be remarkably fast
on the tested smartphone.

The acquired images with native camera resolution of
3264×2448 are by default scaled down to 2048×1536 to take
advantage of better performance of FFTW when the image size
is a factor of small primes.

The Wiener filtering consists of several FFTs: one for the
blur and two (forward and backward for inverse) for each color
channel. That yields a total of 7 FFT operations for each patch.
The deconvolution of the image enlarged by the overlaps takes
about 7s; the whole process starting from the camera shutter
is done in a little over 10s. This includes image resizing, blur
estimation, compressing and saving the original and deblurred
image files.

We have identified several issues that hamper our solution.
Correct synchronization of camera shutter with the gyroscope
samples is critical. Even a few millisecond error can produce
annoying artifacts. We managed to find a good synchronization
mechanism for our test device, which will be unfortunately
hard to port to other models, because Android provides no
general aid for precise camera handling. Gyroscope drift is
substantial and without any compensation results in a biased
blur estimator. Correct calibration is still an open question.

Fig. 2. Examples of captured and reconstructed images using our demo
system. Best viewed on a computer screen and zoomed in.

Internal image post-processing done by the phone presents
another serious problem for deconvolution. Since the original
raw data from the image sensor are not available, we are forced
to work with JPEG (compressed) images, which are processed
by gamma correction and most likely also by unidentifiable
image enhancement steps. We have employed the inversion of
gamma correction, which indeed improves the results to some
degree. Three examples of performance are in Fig. 2. See more
examples and a demo video in supplementary materials.
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