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Abstract

In many visual surveillance applications the task of per-
son detection and localization can be solved easier by using
thermal long-wave infrared (LWIR) cameras which are less
affected by changing illumination or background texture
than visual-optical cameras. Especially in outdoor scenes
where usually only few hot spots appear in thermal infrared
imagery, humans can be detected more reliably due to their
prominent infrared signature. We propose a two-stage per-
son recognition approach for LWIR images: (1) the applica-
tion of Maximally Stable Extremal Regions (MSER) to de-
tect hot spots instead of background subtraction or sliding
window and (2) the verification of the detected hot spots
using a Discrete Cosine Transform (DCT) based descrip-
tor and a modified Random Naive Bayes (RNB) classifier.
The main contributions are the novel modified RNB clas-
sifier and the generality of our method. We achieve high
detection rates for several different LWIR datasets with low
resolution videos in real-time. While many papers in this
topic are dealing with strong constraints such as consid-
ering only one dataset, assuming a stationary camera, or
detecting only moving persons, we aim at avoiding such
constraints to make our approach applicable with moving
platforms such as Unmanned Ground Vehicles (UGV).

1. Introduction

Person detection and localization is an important part of
many camera-based safety and security applications such as
search and rescue, surveillance, reconnaissance, or driver
assistance. However, achieving a high rate of correct detec-
tions with only few false positives or negatives at the same
time is still a challenge due to low resolution, changing
background, or runtime requirements. Furthermore, when
visual-optical cameras are used, strong variation in illumi-
nation, background, and human appearance complicate the
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Figure 1. Motivation: person in visual-optical and LWIR image.

problem even more, which leads to complex solutions us-
ing very high dimensional feature spaces to find and se-
lect the few discriminative features among them [4, 19, 34].
Thermal long-wave infrared (LWIR) cameras can provide
a better fundament for person detection especially in com-
plex outdoor scenarios with masking background texture or
lack of illumination. In such scenarios the thermal signa-
ture of persons is more prominent compared to the visual-
optical signature [16]. An example coming from the Ob-
ject Tracking and Classification Beyond the Visible Spec-
trum (OTCBVS) dataset OSU Color-Thermal Database [°]
is shown in Fig. 1. Although there is some variation in ther-
mal signatures, too, this variation is smaller even across dif-
ferent cameras and datasets compared to visual-optical im-
ages. Gradient-based methods such as HOGs [7] try to nor-
malize visual-optical signatures but this leads again to com-
plex approaches when aiming to detect humans reliably in
low resolution [4, 34].

In this paper, we propose an approach for person detec-
tion and localization with a moving thermal infrared cam-
era mounted on an Unmanned Ground Vehicle (UGV). In
contrast to many other papers [5, 6, 8, 9, 13, 22, 33, 35]
we avoid constraints such as the assumption of a stationary
camera or the detection of persons in motion only. Mov-
ing and stationary persons can be recognized in real-time
in low resolution. Our approach consists of two stages: in
the first one, we use Maximally Stable Extremal Regions
(MSER) [24] to detect hot spots and normalize the scale to
16 x 32 pixels. In the second one, we distinguish between
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persons and clutter using machine learning algorithms. We
evaluate various state-of-the-art descriptor/classifier combi-
nations and propose a Discrete Cosine Transform (DCT)
based descriptor together with a novel modified Random
Naive Bayes (RNB) classifier providing better classification
performance and generality compared to SVM, AdaBoost,
and Random Forest. Besides our own dataset with a mov-
ing camera, we evaluate three OTCBVS datasets [8, 9, 25]
acquired by stationary cameras. The main contributions
compared to previous work lie in the first-time analysis of
promising descriptors with LWIR images which perform
well in the visual-optical domain [10, 19], the modified
RNB classifier, and the generality of our approach to per-
form well on three out of four different datasets.

The remainder of the paper is organized as follows: lit-
erature related to human detection in LWIR images is re-
viewed in Section 2. Hot spot detection is described in Sec-
tion 3 and classification in Section 4. Experimental results
are given in Section 5. We conclude in Section 6.

2. Related Work

We limit our review of related work to approaches for
person recognition in thermal infrared images. We do not
consider near infrared (NIR), which is popular in driver as-
sistance systems [ 7] but needs active illumination. Fusion
of visual-optical and infrared images is not discussed here
but promising as long as the visual-optical images are of
good quality [9, 22]. Person tracking is not reviewed, too.

Many approaches for person recognition in thermal in-
frared images are dealing with strong constraints such as
considering only one specific dataset, assuming a stationary
camera, or detecting only moving persons [5, 0, 8,9, 13,22,

, 33, 35]. The authors use own datasets for their experi-
ments [21, 31, 33, 36] or the OTCBVS benchmark datasets:
the OSU Thermal Pedestrian Database [5, 0, 8, 13, 23, 20,

, 33, 35], the thermal IR subset of OSU Color-Thermal
Database [13, 21, 22, 33], and the Terravic Motion IR
Database [260]. Regions of interest (ROIs) are detected ei-
ther with background subtraction [5, 6, 8, 9, 13, 22, 33, 35],
keypoint detectors [21], sliding window [23, 26, 36], or
thresholding methods such as MSER [31]. All approaches
except of background subtraction can be applied with a
moving camera.

These ROIs can be verified using machine learning algo-
rithms. Chen et al. [5] apply a method for unsupervised
category learning called fuzzy Adaptive Resonance The-
ory (ART) neural networks to separate object and back-
ground pixelwise. Davis and Keck [8] calculate gradient
magnitudes in four different directions and automatically
learn a weighted filter bank using AdaBoost classifier. Li
et al. [23] use a combination of Histogram of Oriented
Gradient (HOG) features with geometric constraints and a
linear Support Vector Machine (SVM) classifier. Dai et

al. [6] sequentially exploit shape features, which are clas-
sified with an SVM, and appearance features, which are
used for PCA-based localization. Leykin et al. [22] model
and recognize human motion after tracking. Miezianko and
Pokrajac [26] use histogram ratios of second-order gradient
model patches and a linear SVM. Teutsch and Miiller [31]
propose a descriptor based on Hu moments, central mo-
ments, and Haralick features followed by SVM classifica-
tion. Jiingling and Arens [21] use Speeded Up Robust Fea-
tures (SURF) to detect and classify body parts and assem-
ble them with an Implicit Shape Model (ISM). Zhang et
al. [36] compare Edgelet and HOG features classified with
either cascaded AdaBoost or cascaded SVMs. The evalu-
ation shows similar results on both visual-optical and in-
frared videos. Finally, Zhang et al. [35] use level set-based
contour tracking.

3. Hot Spot Detection

According to Section 2, three methods are applicable for
hot spot detection: keypoint detection, sliding window, and
MSER. Keypoint detection is prone to detect only few or no
keypoints for low resolution objects. This leads to partial or
missed detections. The sliding window approach is time-
consuming especially when many different object scale lev-
els are considered. Thus, we choose MSER detection due
to its low computational demand [28] and ability to detect
persons as a whole in high or low resolution.

MSERs are the result of a blob detection method based
on thresholding and connected component labeling [24].
The application of MSER detection in this paper follows the
assumption that the body temperature of persons in LWIR
images is generally higher than the temperature of the sur-
rounding background. This is true for many outdoor scenar-
ios. Additional MSERs will be detected for background hot
spots such as warm engines, open windows and doors, or
areas heated up by the sun. Depending on the number and
size of hot spots, merged detections will appear affecting
the human blob shape. We use the following hierarchical
MSER approach in order to handle such merged detections
of either several persons or persons with background.

In general, the human appearance in LWIR images is not
homogeneously bright due to clothes and other effects. In-
stead, there are smooth gray-value transitions inside the hu-
man blob and in case of a merge also to surrounding bright
background regions. When the gray-values are not totally
homogenous inside the merge region, the merge can be re-
solved by considering multiple detected MSERs for each
hot spot. This is possible since an MSER detection does not
have a global optimum but several local optima ¢* [24]. The
detection result is a chain of MSERs where each successor
is a superset of the predecessors. Each MSER can belong to
a body part, a whole person or a merged region. Thus, the
MSERs associated with all possible solutions ¢* are consid-

210



ered for hot spot classification to find the MSERs that most
likely contain a person. Teutsch and Miiller [3 1] allow only
one MSER per hot spot resulting in a high rate of missed
persons due to background merges.

4. Hot Spot Classification

The aim of classification is to verify the detected hot
spots. Not only persons but also open doors and windows,
vehicle engines, or animals will be detected. Machine learn-
ing algorithms are used to distinguish between persons and
clutter. In order to achieve reliable results fast, appropriate
features for setting up an object descriptor and a well-fitting
classifier providing high generality are necessary.

4.1. Features

In surveillance applications, persons can usually be far
away from the camera leading to low resolution. We con-
sider this by scaling all hot spots to 16 x 32 pixels for size
and appearance normalization and using features that are
suitable for such low resolution appearances. We could in-
troduce different scaling levels with respect to the object
distance, but we want to assess the suitability of our con-
sidered descriptor/classifier combinations especially for the
difficult case of low resolution. Since there can be dozens
of MSERs in one image, we focus on descriptors that are
very fast to calculate but promising regarding the results
they achieved in their field of application:

e Moments [31]: This descriptor is a feature mix of in-
variant moments consisting of Hu moments, central
moments, and Haralick features. The idea is to cap-
ture the holistic character of the object blob shape in
the hot spots. The descriptor size is 178.

e Discrete Cosine Transform (DCT) [12]: Since halo ef-
fects [5, 13, 35] and motion blur [3 1] appear regularly
and can affect the object appearance, we try to handle
that with a local DCT-based descriptor. DCT is calcu-
lated in 8 x 8 pixel blocks and the first 21 DCT coef-
ficients are kept. The block stride is 4 pixels to have
overlapping blocks. The final descriptor is set up by
concatenation of the DCT coefficients of each block.
Other block sizes and strides led to worse performance
than the chosen parameters. The descriptor size is 441.

e Histograms of Oriented Gradients (HOG) [7]: HOGs
are expected to suffer from halo effects and motion
blur. We achieved best results by using 8 x 8 blocks
with 4 pixels block stride and 9 histogram bins. The
descriptor size is 756.

e Integral Channel Features (ICF) [10]: Gradient magni-
tudes are calculated and subdivided in seven gradient
orientation images. While the first image contains all

magnitudes, the other six images contain only the mag-
nitudes of specific gradient orientations. Local sums
are calculated in randomly picked rectangular regions
along all seven images and concatenated to set up the
descriptor. These local sums are called first-order fea-
tures [10]. We achieved better results compared to con-
ventional Haar features. The descriptor size is 2000.

e Multi-LBP [19]: Local Binary Patterns (LBP) are cal-
culated in four different quantizations. We choose
16 x 16 pixels for block size and 8 for block stride
since very small blocks as proposed by Heng et
al. [19] caused too strong locality leading to worse
generality. In the original paper, the combination
of Multi-LBP together with a ShrinkBoost classifier
achieved very good results for the visual-optical low
resolution Daimler-Chrysler pedestrian classification
dataset [27]. The descriptor size is 3072.

4.2. Classification

Besides the evaluation of state-of-the-art classifiers such
as SVM, Boosting [15], and Bagging [2], we analyze the
modified version of a Random Naive Bayes (RNB) clas-
sifier [29]. There are two motivations: (1) handling the
merge of multiple hot spots and (2) achieving higher gener-
ality across different datasets or in case of slight appearance
variation. Merged multiple hot spots of persons and clutter
are in many cases still separable by MSER but lead to an
appearance where some body parts are not observable any-
more [35]. Another problem when dealing with new sam-
ples coming from the same or different cameras is that not
all features may still fit to the learned model. Slight changes
in appearance or pose can make most features still fit but
few of them not fit to the model anymore. This can lead to
worse classification performance if the feature space is con-
sidered as a whole (e.g., SVMs). Decision Trees as used in
classification meta-algorithms such as bagging or boosting
provide better generality since features are considered sepa-
rately. However, non-optimal depth values can lead to over-
fitting or underfitting, feature selection and splitting values
may be biased, and there is an oversensitivity to the training
set, to irrelevant attributes, and to noise [30].

The Naive Bayes (NB) classifier can provide good
classification performance and generality across different
datasets even when the assumption of conditional indepen-
dence of the used features is obviously violated by a wide
margin [11]. Actually, we think it is an advantage that NB
considers features independently: even if few features do
not fit to the model at all, the classifier decision may still be
correct since these features will cause low likelihoods for
both person and clutter and, thus, do not significantly affect
the classification decision. Instead, the classifier will focus
more on the features fitting to its model. Note that this is
happening on-line.



The NB classification decision is given by:
classyp(f) = arg max{P ci) H (file)}

where f = (f1,..., fn)? is the feature vector, P(c;) is the
prior probability for class ¢; with ¢ € {0,1} and P(f; | ¢;)
is the likelihood for feature f; given class ¢;. The prod-
uct [ ] of these likelihoods is based on the naive assumption
that the features f; of a descriptor are conditionally inde-
pendent. Many different likelihood models can be used de-
pendent on the distribution of the training samples for each
feature. Since standard distributions such as Gaussian or
Log-Gaussian do not fit well to the distributions of many
of our used features, we achieved best results by using nor-
malized, smoothed class-conditional histograms h; as like-
lihood model for each feature f;. In order to weaken the
violated assumption of conditional independence of the fea-
tures, Independent Component Analysis (ICA) [20] can be
applied to the feature vector prior to classification. Since the
unsupervised training of ICA can lead to worse class sepa-
rability when using the transformed feature vectors, Bres-
san and Vitria [3] propose to use a Class-Conditional ICA
(CC-ICA). We adopt this idea leading to the following for-
malization:

n

classyg(W,if) = argmax{P (¢i) H

(VY @

where W is the class-conditional unmixing matrix calcu-
lated by FastICA [20] and fjw ¢ denotes the feature f; trans-
formed by W;.

When it comes to the idea of using NB as weak classifier
for classification meta-algorithms, it is recommended not to
use it for AdaBoost [32] but for approaches similar to Ran-
dom Forest [29, 18]. We use a Random Forest framework
with few adoptions from boosting as seen in Algorithm 1.
For training of each weak classifier, typical RNB or Ran-
dom Forest meta-algorithms use a random selection of fea-
tures, bootstrap aggregation for selection of training sam-
ples, and majority voting for the final decision [2]. The Out-
Of-Bag (OOB) set of not selected training samples for each
weak classifier can be used to reject the current classifier if
it is too weak. We use these approaches but add some novel
ideas: we train and apply CC-ICA for each weak classifier.
Furthermore, we do not use majority voting but the sum of
weighted posteriors for the overall decision. The weight
wy, for each classifer NBy, is calculated similar to AdaBoost
but by using the OOB set only instead of the whole training
data. While majority voting would cause a discrete decision
function, the posteriors P;, induce a continuous decision
function. Since each object usually gets multiple detected
MSERS, non-maximum suppression is applied to find the

\]

Algorithm 1 Modified Random Naive Bayes classifier
1: forb=1to B do
. Generate bootstrap B from training set 7

2

3 Choose m features randomly
4 Calculate W? with CC-ICA using B

5:  Train weak classifier NBy, using B after CC-ICA
6

7

8

9

Calculate error e, with OOB set 7\ B
(1 eb)

Set classifier weight w, = 5 - In o
if e, > t then
: Reject classifier NB,,
10: b=b-1
11:  endif
12: end for

13: return arg max; {3, wy - Py(c; | WPE)}

best hypothesis. If two bounding boxes show strong over-
lap, the one with the higher posterior sum is kept. For some
datasets, the performance is slightly increased if previously
false classified samples were added randomly to the current
bootstrap. A typical parameter setup is B = 1000 weak
classifiers, m = 10 features per weak classifier, ¢ = 0.6 as
acceptance threshold (see Algorithm 1), and P(c;) = 0.5
for ¢ € {0, 1} as prior probability.

5. Experimental Results

Since we apply supervised learning of the classifier mod-
els, we separate each of the used datasets in disjoint training
and test sets. Table 1 provides some information about the
four datasets and the sequences used for training. Partial
or merged detections of persons do not appear in this table.
They were not considered for classifier training since we
want to detect complete persons. Sequences 1-3 of the OSU
Color-Thermal Pedestrian Database show the same location
while sequences 4-6 show a different one. The Terravic Mo-
tion IR dataset represents a mixture of very different scenes
where sequences 8-13 show the same forest location.

The MSER results calculated for the training and test
datasets were labeled manually for person or background
MSERs (cf. two right-most columns in Table 1). Figure 2
shows some example person and background MSERs in the
four datasets. The appearance of person and background
hot spots varies across and inside the datasets.

Since the large amount of background MSERs in OSU
Color-Thermal and Terravic Motion IR dataset is caused by
the same background hot spots due to the stationary camera,
we balance the training sets and randomly pick 25,000 and
20,000 background samples when learning the model.

For each MSER we calculate each of the descriptors de-
scribed in Section 4.1 and classify it with various classifiers.
We use an SVM with Radial Basis Function (RBF) kernel
and 3-fold cross validation, Real AdaBoost with 1,000 de-
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Table 1. Evaluated datasets with numbers of images and sequences, subsets used for training, and number of (hierarchical) MSERs.

. . . training # person / # background MSERs
image size | #images | #seq. —
sequences training \ test
AMROS 360x288 6,742 2 1 1,067 / 4,005 2,066 /415
OTCBVS OSU Thermal 360x240 286 10 1-3 781 /361 2,033 /453
OTCBVS OSU Color-Thermal || 320x240 8,544 6 1-3 24,797 /252,003 | 14,549 /255,100
OTCBVS Terravic Motion IR 320%240 25,355 18 8-13 27,823 /124,891 | 13,270/ 255,804
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Figure 2. MSERSs of persons (upper) and background (lower) for
datasets AMROS (upper left), OSU Thermal (upper right), OSU
Color-Thermal (lower left), and Terravic Motion IR (lower right).

cision trees of depth 1, Gentle AdaBoost with 1,000 deci-
sion trees of depth 3, and Random Trees with 1,000 decision
trees. Further classifiers such as Linear SVM or k-Nearest
Neighbor (kNN) were tested, too, but performed worse. All
classifiers were taken from the OpenCV library [1]. We
also evaluate three versions of our modified RNB classifier:
without ICA, with standard ICA, and with CC-ICA.

The results are shown in Table 2. We calculated Re-
ceiver Operating Characteristic (ROC) curves for each de-
scriptor/classifier combination for each dataset and display
the Area Under Curve (AUC) for a compact presentation of
our results. Significant difference in classification perfor-
mance is given for the first two decimal places of each AUC
value, with the third and fourth the results are becoming
more and more similar. For each descriptor the best clas-
sifier performance is displayed with red AUC values. The
best individual result for each dataset is underlined. Across
all four datasets, DCT and ICF descriptors perform best
while the classifier performance shows some variation. For
three out of four datasets the combination of DCT descrip-
tor and RNB classifier with CC-ICA achieves the best in-
dividual performance. Furthermore, the results confirm the
conclusions of Bressan and Vitria [3] and Fan and Poh [14]
that CC-ICA can improve NB classifier performance. For a
better visualization of this result, we calculated mean ROC
curves and variances across the four datasets for DCT de-
scriptor and the three RNB variants in Fig. 3. CC-ICA +

Mean ROC curve for DCT descriptor and RNB variants
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Figure 3. Comparison of Random Naive Bayes variants.

RNB performs best especially for false positive (FP) rates
of less or equal 6 %.

Since the results for OSU Color-Thermal and Terravic
Motion IR datasets are significantly worse compared to
AMROS and OSU Thermal, we try to improve the per-
formance by adding training samples from other datasets.
Therefore, all training and test samples of AMROS (7,553
samples), OSU Thermal (3,628), and Terravic Motion IR
(421,788) are added to the training set of OSU Color-
Thermal (276,800). To avoid one dataset dominating the
whole training set, the subsets coming from OSU Color-
Thermal and Terravic Motion IR are limited to 10,000 sam-
ples each by random sampling without replacement. The
OSU Color-Thermal test set remains the same. We only
chose DCT and ICF as descriptors since they provide the
best tradeoff between performance and runtime. In Table 3,
the results are presented as AUC values together with the
AUC change compared to Table 2. While the performance
of SVM decreases since it is considering the whole feature
space, the performance of AdaBoost, Random Trees, and
RNB increases proving the generality of these approaches.
The same experiment was conducted for Terravic Motion
IR with similar results as seen in Table 3.

The final classification results for DCT descriptor are
presented with ROC curves in Fig. 4. We compare SVM,
Random Trees, Gentle AdaBoost, and modified RNB with
CC-ICA. Our proposed combination of DCT descriptor and
modified RNB classifier performs best in three of the four
considered datasets. As seen in the ROC curves, more than
90 % of the persons are classified correctly with a FP rate
of 1% for AMROS and OSU Thermal while around 80 %
true positives (TPs) are achieved with 1 % false positives
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Table 2. Area Under Curve (AUC) comparison for 5 descriptors, 7 classifiers, and 4 datasets.

classifier
dataset descriptor Real Gentle Random ICA + | CC-ICA
SYM AdaBoost | AdaBoost Trees RNB RNB + RNB
MOMENTS [31] || 0.9776 0.9931 0.9893 0.9785 | 0.9960 | 0.9979 | 0.9967
DCT [12] 0.9870 0.9903 0.9843 0.9729 | 0.9994 | 0.9994 | 0.9995
AMROS HOG [7] 0.9707 0.9713 0.9762 0.9703 | 0.9614 | 0.9661 | 0.9702
ICF [10] 0.9947 0.9916 0.9949 0.9938 | 0.9933 | 0.9942 | 0.9952
Multi-LBP [19] 0.9226 0.9349 0.9286 0.9140 | 0.9661 | 0.9480 | 0.9508
MOMENTS [31] || 0.9685 0.9674 0.9742 0.9716 | 0.9471 | 0.9855 | 0.9910
OTCBVS DCT [12] 0.9859 0.9920 0.9882 0.9876 | 0.9916 | 0.9726 | 0.9944
OoSuU HOG [7] 0.9863 0.9888 0.9916 0.9918 | 0.9941 | 0.9923 | 0.9932
Thermal ICF [10] 0.9909 0.9874 0.9803 0.9346 | 0.9541 | 0.9243 | 0.9676
Multi-LBP [19] 0.9745 0.9750 0.9696 0.9598 | 0.9667 | 0.9486 | 0.9527
MOMENTS [31] || 0.9367 0.6828 0.6542 0.6701 | 0.8856 | 0.9434 | 0.9496
OTCBVS DCT [12] 0.9289 0.9657 0.9827 0.8568 | 0.9433 | 0.9559 | 0.9584
OoSu HOG [7] 0.9946 0.9832 0.9854 0.9318 | 0.8783 | 0.8549 | 0.8957
Color-Thermal ICF [10] 0.9863 0.9891 0.9942 0.9401 | 0.9344 | 0.9443 | 0.9506
Multi-LBP [19] 0.9725 0.9554 0.9672 0.8105 | 0.9654 | 0.9553 | 0.9584
MOMENTS [31] || 0.7906 0.8606 0.9108 0.8859 | 0.7520 | 0.7898 | 0.8079
OTCBVS DCT [12] 0.9640 0.9473 0.9419 0.9075 | 0.9599 | 0.9675 | 0.9698
Terravic HOG [7] 0.9224 0.9173 0.9387 0.9141 | 0.8861 | 0.8674 | 0.8935
Motion IR ICF [10] 0.9567 0.9523 0.9570 0.9448 | 0.9631 | 0.9495 | 0.9553
Multi-LBP [19] 0.9648 0.9627 0.9503 0.8899 | 0.9641 | 0.9544 | 0.9670
Table 3. Area Under Curve (AUC) improvement compared to Table 2 for two datasets by training with all four datasets.
classifier
dataset descriptor Real Gentle Random ICA CC-ICA
SVM AdaBoost | AdaBoost Trees RNB + RNB + RNB
OTCBVS DCT[17] 0.8916 0.9724 0.9858 0.9350 0.9751 0.9744 0.9768
OoSuU —0.0373 | +0.0068 | +0.0031 | 40.0782 | +0.0318 | 4+0.0185 | +0.0148
Color-Thermal ICF [10] 0.9858 0.9702 0.9786 0.9486 0.9561 0.9765 0.9758
(N-Training) —0.0005 | —0.0189 —0.0156 | +0.0085 | +0.0217 | +0.322 | +0.0252
OTCBVS DCT [17] 0.9571 0.9655 0.9716 0.9305 0.9778 0.9825 0.9830
Terravic —0.0069 | 4+0.0182 | +0.0297 | +0.0230 | +0.0179 | 40.0150 | +0.0132
Motion IR ICE [10] 0.9527 0.9667 0.9771 0.9781 0.9586 0.9647 0.9696
(N-Training) —0.0040 | 40.0144 | +0.0201 | +0.0333 | —0.0045 | 40.0125 | +0.0143

for OSU Color-Thermal and Terravic Motion IR. As there
are more hot spot merges and motion blur effects in the AM-
ROS dataset compared to the OTCBVS datasets, we assume
this to be the reason for the big performance difference of
CC-ICA RNB compared to the other classifiers.

The classification performance is sufficient for scenes
where about 1-5% of wrongly classified background
MSERs is acceptable. This is not the case for sequences
4-6 of OSU Color-Thermal, the indoor scene (sequence 1),
and the forest location (sequences 14-16) of Terravic Mo-
tion IR. Here we have up to 100 background MSERs per
image. Even with a FP rate of 1 % there are still more FPs
than TPs. The combined results for MSER detection and

RNB classification for all scenes except for the mentioned
ones are presented in Table 4. We achieve high TP rates of
83-98 % with MSER detection and a large amount of FPs
in the background. The false negative (FN) rate is 1-17 %.
With RNB classification the FN rate is not rising signifi-
cantly while the FP rate can be reduced to 2-14 %. Figure 5
depicts some results. The left column shows the detections
classified as persons (red boxes) and background (green
boxes) while the right column visualizes recognized per-
sons only. The example image from OSU Color-Thermal
(row 3) shows the problem of a too large amount of back-
ground MSERs. The non-optimized processing rate on an
Intel Xeon with 3.60 GHz is 10-25 Hz.
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Figure 4. Evaluation results: best ROC curves for DCT descriptor for each dataset.
Table 4. Overall results (GT = Ground Truth, TP = True Positives, FP = False Positives, FN = False Negatives).
test dataset GT MSER detection MSER + RNB
TP \ FP \ FN TP \ FP \ FN
AMROS 780 767 10,349 13 740 64 40
(100%) || 98.33% | 1,327% | 1.67% 9487% | 821% 5.13%
695 610 514 85 608 94 87
OTCBVS OSU Thermal (100%) || 87.77% | 73.96% | 12.23% || 87.48% | 13.53% | 12.52%
OTCBYVS Terravic Motion IR 1,515 1,265 42,685 250 1,250 35 265
(without indoor scene / forest scene) || (100%) || 83.50% | 2,817% | 16.50% || 82.51% | 2.31% | 17.49%
6. Conclusions and Future Work References

We presented an approach for detecting persons in real-
time in LWIR images acquired by a moving camera. We
focused on low resolution person appearances in outdoor
surveillance scenarios where it is difficult to recognize per-
sons with visual-optical cameras due to masking back-
ground texture or lack of illumination. Our holistic ap-
proach consists of MSER hot spot detection and subsequent
hot spot classification using a DCT-based descriptor and a
modified Random Naive Bayes (RNB) classifier. Since we
use MSER detection instead of background subtraction and
features which are tolerant of motion blur, our approach is
applicable with a moving camera. Promising results were
achieved for three out of four datasets. However, scenes
with many hot spots and around 100 background MSERs
per image can cause too many false positives. Some ideas
for future work are using cascaded classifiers, learning mod-
els in different scale, fusion with other methods, or the in-
troduction of tracking.
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