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Abstract—In this paper, we present a framework to roughly
reconstruct the 3D occupancy scenario of an indoor space
using color-controllable light and distributed color sensors. By
applying randomly generated perturbation patterns onto the
input of the LED fixtures, and measuring the changes of the
sensor readings, we are able to recover the light transport
model (LTM) of the room. Then a variant of the inverse Radon
transform is applied on the LTM to reconstruct the 3D scene.
The reconstructed scene by our algorithm can faithfully reveal
the occupancy scenario of the indoor space, while preserving
the privacy of human subjects. An occupancy-sensitive lighting
system can be designed based on this technique.

Keywords-occupancy scenario; controllable light; light trans-
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I. INTRODUCTION

In traditional vision, cameras and depth sensors are widely

used to capture images, videos, and depth maps of a scene.

An image, whether gray-level, RGB, or depth, has a 2D

structure, which describes the spatial distribution of the

scene. A lot of high-level information can be inferred from

such data, which enables numerous applications such as ob-

ject tracking, event detection, and traffic surveillance. How-

ever, in some applications, human-readable high-resolution

images are not only unnecessary, but also an information

security concern. For example, if we want to monitor the

occupancy of a room for the task of intelligent lighting

control, we only need a very rough estimation about which

part of the room is occupied. Using cameras will raise the

concern of privacy — people just feel uncomfortable being

monitored by a camera, not to mention that the security of

camera networks can be compromised.

In such cases, low-level sensors could be good alter-

natives. Also, these sensors are generally much cheaper

than cameras. However, the output of a low-level sensor

is usually only a few numeric values, rather than a 2D-

structured image. This makes it very difficult to infer high-

level information. Reconstructing a 3D scene from these 1D

signals is an extremely ill-posed and challenging problem.

However, if the light can be controlled, and color sensors

are employed, we are able to measure the sensor outputs

under different lighting conditions. With repeated measure-

ments, we are able to construct a model for the spatial

transport of the light. Such a model captures rich information

of the 3D space, and can be used to roughly estimate the 3D

scene. Once we are able to reconstruct the 3D scene, we can

use this information to monitor and control the environment.

We are particularly interested in the intelligent control of

energy-saving and occupancy-sensitive light delivery.

II. TESTBED SETUP

A. The Smart Room

To validate this idea, we established a smart lighting

room as our testbed. This room has one window and two

doors, and is 85.5 inches wide, 135.0 inches long, and

86.4 inches high (Figure 1a). This testbed is equipped with

twelve color controllable LED light fixtures mounted in the

ceiling (Figure 1c). For each fixture, we can specify the

intensity of three color channels: red, green, and blue. The

input to each channel is scaled to lie in the range [0, 1].
We also place twelve Seachanger wireless Colorbug sensors

(Figure 1b) on the walls of this room (Figure 1d), six on

each side. Each color sensor has four output channels: red,

green, blue and white. We use the Robot Raconteur software

[1] for communication: The software connects to the color

sensors with Wi-Fi, and sends input signals to the fixtures

via Bluetooth. This same smart room has been used for a

number of other investigations, including lighting control

algorithms [2], [3], [4] and visual tracking systems [5].

B. The Occupancy-Sensitive Lighting System

The final goal of our system is to achieve occupancy-

sensitive smart lighting. In other words, when the occupancy

of the room changes, the system should produce the lighting

condition that best suits this occupancy scenario to maxi-

mize comfort and minimize energy consumption. Here by

“occupancy” we mean the number and spatial distribution

of people in the room. For this purpose, there should be

a control strategy module and a scene estimation module,

and they work with two alternating stages: the sensing stage
and the adjustment stage (Figure 3). In the sensing stage,

the scene estimation module collects the sensor readings

to estimate the scene; in the adjustment stage, the control

strategy module decides what lighting condition should be

produced based on the reconstructed scene. How to design

the control strategies is beyond the scope of this paper. Here

we focus on the scene estimation module.
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Figure 1: The testbed setup. (a) The coordinate system of the room. (b) The Seachanger wireless Colorbug sensor. (c) Twelve

color controllable LED fixtures illuminate the room from the ceiling. (d) Color sensors are placed on the walls.

III. LIGHT TRANSPORT MODEL

Since the current configuration of our testbed has twelve

LED fixtures of three channels each, the input to the

system is an m1 = 36 dimensional signal x. Because we

have twelve color sensors, each with four channels, the

measurement is an m2 = 48 dimensional signal y. We

have performed experiments to show that there is an affine

relationship between x and y:

y = Ax+ b, (1)

where A ∈ R
m2×m1 and b ∈ R

m2 . The matrix A is called

the light transport matrix, and the vector b is the sensor

output with respect to the ambient light. When we set the

input to a given level x0, the output of the sensors is y0 =
Ax0+b. Now if we add a small perturbation δx to the input,

the new output becomes y0+δy = A(x0+δx)+b. By simple

subtraction, we can cancel out b, and get

δy = Aδx, (2)

which is equivalent to the linear light transport model (LTM)
introduced in [6]. Here we call x0 the base light, which is

determined by the control module.

IV. PERTURBATION-MODULATED MEASUREMENT

A. Solve for A

If we measure y0 once, and measure y0 + δy many

times with different δx, then we get a linear system to

solve for A. In other words, we perturb the input to the

LED fixtures x0 with randomly generated m1-dimensional

signals δx1, δx2, . . . , δxn, and measure the m2-dimensional

changes of the sensor readings δy1, δy2, . . . , δyn. Let X =
[δx1, δx2, . . . , δxn] and Y = [δy1, δy2, . . . , δyn], where

X ∈ R
m1×n and Y ∈ R

m2×n. Now the linear system

becomes Y = AX . If we make many measurements to

ensure n > m1, then this overdetermined linear system can

be solved by the pseudo-inverse:

A = Y XT(XXT)−1. (3)

Figure 2: The concept of perturbation-modulated measure-

ment.

B. Perturbation Modulation

As introduced in Section II-B, the smart lighting system

works with two alternating stages: sensing and adjustment.

During the sensing stage, perturbations δx are added to the

base light x0, and δy is measured. Then in the adjustment

stage, matrix A is computed, the scene is reconstructed, and

the control module gradually changes the base light to a

new one, which is determined according to the reconstructed

scene. In such a system, the base light changes slowly within

a large range, while the perturbation changes quickly, and

ideally imperceptibly, within a small range (Figure 2). This

is analogous to amplitude modulation (AM) in electronic

communications, where low-frequency information rides on

a high-frequency carrier. The difference is that, in our

system, the intensity of the carrier, or the base light, is the

low-frequency component.

C. Requirements for Perturbation Patterns

For accurate recovery of the light transport matrix and the

comfort of human subjects, we identify three requirements

on the perturbation patterns:

1) The perturbation patterns must be rich in variation to

capture sufficient information from the scene.
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Figure 3: Two stages of the lighting system. (a) In the sensing stage, the scene estimation module measures sensor outputs

under different lighting conditions. (b) In the adjustment stage, the control module uses the reconstructed scene to determine

what base light should be produced.

2) The magnitude of the perturbation must be small

enough not to bother humans in the room.

3) The magnitude of the perturbation must be large

enough to be accurately measured by the color sensors.

To meet the first requirement, randomly generated patterns

are usually good enough. If we define the magnitude of the

perturbations as ρ = max
i

||δxi||∞, then the choice of ρ is a

trade-off. In our work, we set ρ = 0.025 (based on a range

of [0, 1]) such that perturbations are not easily noticed by

human subjects, but are easily sensed by our current color

sensors.

V. RECONSTRUCTION ALGORITHM

Let the light transport matrix of an empty room be A0.

At run time, the light transport matrix is A, and we call

E = A0−A the difference matrix. Matrix E is also m2×m1,

and each entry of E corresponds to one fixture channel

and one sensor channel. If one entry of matrix E has a

large positive value, it means that the light paths from the

corresponding fixture to the corresponding sensor are very

likely blocked. From any given fixture to any given sensor,

there are numerous diffuse reflection paths and one direct

path, which is the line segment connecting the fixture and

the sensor (Figure 4a). Obviously, the direct path is the

dominating path, if one exists. Thus a large entry of E may

most likely imply the corresponding direct path has been

blocked by the change of occupancy.

A. Aggregation of E

Though each entry of E corresponds to one direct path,

the opposite is not true, since each LED fixture or sensor

has multiple channels. Assume the number of LED fixtures

is NL, and the number of sensors is NS . We aggregate the

m1 × m2 matrix E to an NS × NL matrix Ê, such that

the mapping from the entries of Ê to all direct paths is a

bijection. In our experiments, m1 = 3NL = 36 and m2 =

R 

G 

B 

W 

R G B 

Σ 
Figure 5: Aggregating the difference matrix E to Ê on same

channels. This diagram shows the aggregation on a 4 × 3
submatrix of E.

4NS = 48. The aggregation is performed on each fixture-

sensor pair as a summation over three color channels: red-to-

red, green-to-green, and blue-to-blue (Figure 5), or simply:

Êi,j = E4i−3,3j−2 + E4i−2,3j−1 + E4i−1,3j . (4)

B. Volume Rendering

After aggregation, now if Ê has a large entry at (i, j),
then we believe the direct path from fixture j to sensor i is

very likely blocked, though we are still not sure where the

blockage happens on this path. By assuming the occupancy

is continuous and smooth, we also believe that any position

that is close to this direct path is also likely being occupied.

If two or more such direct paths intersect or approximately

intersect in the 3D space, then it is most likely that the

blockage happens at their intersection, as shown in Figure

4b.

Based on this philosophy, we now describe our recon-

struction algorithm. Let P be an arbitrary point in the 3D

space, and di,j(P ) be the point-to-line distance from point P
to the direct path from fixture j to sensor i. The confidence
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Figure 4: (a) Light paths from one fixture to one sensor. (b) Intersecting blocked light paths imply blockage at the intersection.

of point P being occupied is C(P ), which is computed by:

C(P ) =

NS∑
i=1

NL∑
j=1

Êi,jG (di,j(P ), σ)

NS∑
i=1

NL∑
j=1

G (di,j(P ), σ)

, (5)

where G(·, ·) is the Gaussian kernel:

G(a, σ) = exp

(
− a2

2σ2

)
. (6)

The denominator in Eq. (5) is a normalization term for the

non-uniform spatial distribution of the LED fixtures and the

sensors. The σ is a measure of the continuity and smoothness

of the occupancy. If we discretize the 3D space and evaluate

Eq. (5) at every position P (x, y, z), we are able to render a

3D volume V (x, y, z) = C(P (x, y, z)) of the scene, which

is also called the 3D confidence map.

C. Connection with Radon Transform

Our reconstruction method is partially inspired by the

well-known Radon transform, or more precisely, the inverse

Radon transform, which has been successfully applied to

the reconstruction of computed tomography (CT), mag-

netic resonance imaging (MRI), positron emission tomog-

raphy (PET), single photon emission computer tomography

(SPECT), and even radar astronomy [7], [8]. Given a con-

tinuous function f(x, y) on R
2, its Radon transform Rf is

a function defined on each straight line L = {(x(t), y(t))}
in R

2:

Rf(L) =

∫
L

f(x(t), y(t))dt. (7)

Since a straight line can be uniquely defined by two param-

eters, Rf is also a function on R
2. The original function f

can be reconstructed by the inverse Radon transform, which

comprises a ramp filter and a back-projection. An example

is shown in Figure 6. In our reconstruction algorithm Eq.

(5), the denominator corresponds to the ramp filter, and the

Radon 
transform 

inverse 
Radon 

transform 

Figure 6: Radon transform on the Shepp-Logan phantom [9].

summation over all direct light paths corresponds to the

back-projection.

In computed tomography, multiple X-ray sources and

sensors can be rotated around the object to create numer-

ous lines, and 3D images can be acquired slice by slice.

However, in our problem, with only twelve LED fixtures

and twelve sensors, the light paths are very sparse (Figure

8), which makes reconstruction much more challenging than

other problems that could be solved by a standard Radon

transform.

VI. EXPERIMENTAL RESULTS

To validate our method, we divide the smart room into

six regions, and create different occupancy scenarios by

occupying one or two regions with human subjects and

furniture. We discretize the 3D space to voxels of size

1×1×1 inch3, and render 3D volumes of size 87×136×88.

For the Gaussian kernel we set σ = 20.0 inches. In the

sensing stage, n = 40 perturbation patterns are used.

A. Reconstruction Results

In Figure 7 we show the reconstruction results for scenar-

ios where one or two regions are occupied. It is interesting to

see that although the precision of the reconstructed volume

is very low, the reconstruction quality is good enough for

the control module to determine which part of the room

is occupied, and what kind of light should be delivered. If

better reconstruction quality is required, one simple solution

is to increase the number of color sensors.
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Figure 8: 144 direct light paths in the smart room.

B. Complexity Analysis

Assume the number of voxels in one volume is NP . The

number of direct light paths is NL · NS . To render one

volume, we have to evaluate Eq. (5) for NP voxels, and the

number of operations is NP ·NL ·NS in total. In one opera-

tion, we need to compute the point-to-line distance and the

Gaussian kernel. In our experiments, NP = 87× 136× 88,

NS = 12, and NL = 12. Thus the number of operations is

about 150 million. Our rendering algorithm is implemented

in C++. On a Macintosh with 2.5 GHz Intel Core i5 CPU and

8 GB memory, the direct algorithm takes about 18 seconds

to render one volume.

C. Accelerations

One way to accelerate the rendering is to pre-compute

the point-to-line distances and the Gaussian kernels, and

keep them in memory. When rendering a new volume, we

still need to perform NP · NL · NS operations, but each

operation is simply one multiplication and one addition. In

this way, on the same machine, pre-computation takes about

18 seconds, but rendering one volume takes only 2 seconds.

One trade-off is that such a hashing-based optimization

uses much more memory. If each Gaussian kernel is stored

as a 64-bit double-precision floating point number, then it

requires about 1 GB memory to keep 150 million Gaussian

kernels. To further accelerate the rendering to achieve real-

time performance, parallel computing on a GPU could be

used.

VII. CONCLUSIONS

We have presented a 3D scene estimation framework

based on perturbation-modulated light and distributed color

sensors. This 1D signal to 3D volume problem is extremely

ill-posed and very challenging. By recovering the light

transport model from the sensor output changes under ran-

domly perturbed light, we successfully applied an inverse

Radon transform alike algorithm to roughly reconstruct the

3D scene. The reconstructed occupancy maps suffice for

intelligent control of light delivery, but are coarse enough

to protect the privacy of human subjects. Though the exper-

iments are carried out with visible light and color sensors,

it is very promising to generalize this framework to other

types of light and sensors beyond the visible spectrum.
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Figure 7: Reconstruction results for different occupancy scenarios. Each row is one scenario. Column 1: a diagram of

the ground truth scenario; Column 2: images captured by four cameras in the room during measurement; Column 3: the

reconstructed 3D volume; Column 4: the integral of the reconstructed volume on z-axis, to be compared with the ground

truth.
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