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Abstract

We propose the use of a robust pose feature based on
part based human detectors (Poselets) for the task of ac-
tion recognition in relatively unconstrained videos, i.e., col-
lected from the web. This feature, based on the original
poselets activation vector, coarsely models pose and its
transitions over time. Our main contributions are that we
improve the original feature’s compactness and discrim-
inability by greedy set cover over subsets of joint configu-
rations, and incorporate it into a unified video-based ac-
tion recognition framework. Experiments shows that the
pose feature alone is extremely informative, yielding per-
formance that matches most state-of-the-art approaches
but only using our proposed improvements to its compact-
ness and discriminability. By combining our pose feature
with motion and shape, we outperform state-of-the-art ap-
proaches on two public datasets.

1. Introduction
Action recognition still remains challenging due to great

intra and inter variance of classes, cluttered and occluded
background, etc., despite numerous recent advances. Many
researchers extract local image and video features from
video sequences, separate them into clusters, and generate
histogram-based representations. Interest points are often
extracted by methods such as Harris3D [9], Hessian [19],
etc, to capture shape and motion of local points. HOG [8],
silhouettes [8], and SIFT [12] are commonly used as shape
features. As a motion feature, most researchers use opti-
cal flow [8] or other custom representations of space-time
volumes, e.g., Liu et al. [12] use flat gradients within 3D
cuboids.

While pose-based action recognition methods have also
been studied [7], they have generally underperformed meth-
ods based on shape and motion features on difficult “in-the-
wild” videos such as those obtained from YouTube. This is
because pose estimation remains a difficult problem in un-
controlled settings and even state-of-the-art pose estimation
approaches are relatively brittle.
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Figure 1. Illustration of our proposed posed descriptor and its use
for action recognition. In (a) the 13 joint pose configuration space
is split into subsets of joints, whose smaller space of configurations
we cover greedily with poselet models. This ensures that common
and rare configurations are represented (covered). This improves
action recognition which models transitions through pose configu-
rations. Given an image, poselet activations are obtained, as usual,
grouped by mutual consistency, and assembled into an activation
vector, which is rescored to incorporate the context provided by
mutually consistent activations. In (b) we depict the use of the
proposed descriptor in a histogram based video representation.

In this work, we use a pose feature based on poselets,
which captures human pose without the need for exact lo-
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calization of joint locations, but instead relies on the rep-
resentation and detection of coarse qualitative poses (e.g.,
standing, bending) which are learned automatically from
training data. Poselets [2, 4] are discriminative part mod-
els constructed to be tightly clustered in the configuration
space of joints as well as in the appearance space of im-
ages, and which have been successfully used for detecting
people [2, 4], describing human attributes [3], and recogniz-
ing human actions [13, 21, 22] in single images. As more
poselets are used by an object detector, the detector’s ac-
curacy increases, but its efficiency decreases proportionally
with the number of poselets.

While a small number of poselets might be sufficient for
detection, for action recognition it becomes important to
cover the space of pose variations more completely, since
actions are generally modeled as transitions through pose
space. However, the standard poselets training procedure
requires too many poselets to adequately represent the pose
space for action recognition. This leads to a loss in effi-
ciency, increases the feature descriptor size, and ultimately
leads to poor action recognition performance (as shown in
our experiments). This motivates us to modify the pose-
let training procedure with the following goals in mind: (1)
increase the coverage of the space of poses, and (2) main-
tain efficiency by making the set of poselets more com-
pact. To accomplish this we partition the 13 joints into
overlapping subsets (depicted in Figure 1), and instead of
randomly selecting image rectangles to define poselets as
in [4], we select seed rectangles using greedy set-cover to
ensure that most joint configurations in each subset are ad-
equately detected by a poselet. Our proposed greedy set
cover algorithm ensures that each part–defined as a sub-
set of joints–should generate poselets that cover the entire
range of its configurations while avoiding redundant pose-
lets (each poselet should detect at least one new configura-
tion that is not detected by another poselet).

Given a test video, we obtain a pose descriptor from our
compact set of poselets by constructing activation vectors
from mutually consistent activations as in [4], and rescore
activations using the context encoded by this vector. We
construct activation vectors for each root activation and cre-
ate a codebook based histogram representation using all
root activations that have a high enough confidence after
context rescoring. We incorporate the proposed pose fea-
tures in existing action recognition [12] with traditional mo-
tion and shape features.

Figure 1 depicts our approach. To summarize, our contri-
butions are the following: 1) we improve the compactness
and discriminability of the original poselets by a training
process that applies greedy set cover to the smaller config-
uration spaces of joint subsets, and 2) we are the first to our
knowledge to successfully use pose as a feature for ”in-the-
wild” video-based action recognition.

We evaluate our approach on two benchmarks: YouTube
sports dataset [15] and YouTube action dataset [12]. Our
experiments show that the proposed pose feature provides
significant complementary information to the motion and
shape features. In fact, the pose feature alone nearly
matches state-of-the-art results, while the combination with
either shape or motion alone improves over the state-of-the-
art, and the combination of all three types of feature out-
performs all other alternatives. In fact, on the YouTube Ac-
tion dataset, our proposed approach outperforms the state-
of-the-art by over 10%. Our experiments demonstrate the
importance of our modified training procedure to effectively
incorporate poselet features into a video-based action recog-
nition framework.

In section 2, we discuss related work. In section 3 and 4,
we describe details of semantic pose features and incorpo-
rating features into an action recognition framework, re-
spectively. In section 5, we present the experimental re-
sults that demonstrate the performance of our approach. We
present our concluding remarks in section 6.

2. Related Work
Since the literature on action recognition is vast, we de-

scribe only recent works in this section. Liu et al. [12]
extract motion and shape features from videos, construct
a compact yet discriminative visual vocabulary using an
information-theoretic algorithm, and generate a histogram-
based video representation. While this approach is effec-
tive, it does not make use of pose features. We extend
this approach by incorporating our proposed pose feature to
their features and followed the framework for action recog-
nition proposed by [12]. Xie et al. [20] explore the use
of deformable part models (DPM) for incorporating hu-
man detection and pose estimation into action recognition.
Similar to our method, their work is also based on human
poses but our part models are trained to discriminate be-
tween various poses of a person, unlike DPM’s, which are
trained to discriminate between patches in which a person is
present or absent. Le et al. [10] learn features directly from
video using independent subspace analysis that is robust to
translation and selective to frequency and rotation changes.
Todorovic [17] views a human activity as a space-time rep-
etition of activity primitives and models the primitives and
their repetition by a generative model-graph. Sadanand and
Corso [16] propose action bank, consisting of action detec-
tors sampled according to classes and viewpoints.

Our proposed pose feature is based on the poselets
framework introduced by Bourdev and Malik [4]. Pose-
lets are discriminative part detectors constructed from tight
clusters in the configuration space of the human articulated
body as well as in the appearance space of images. At
test time, poselet activations are detected by multi-scale
sliding windows, and persons are detected by Max Margin
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Hough Voting [4] or by clustering mutually consistent acti-
vations [2]. Poselets have been employed to improve results
in various vision applications, including segmentations [2],
subordinate categorization [6], attribute classification [3],
pose [11, 13] and action recognition [13, 21, 22]. Unlike all
of these extensions of poselets which are applied to static
images, our method extends the use of poselets to action
recognition on video sequences, producing results that im-
prove on the current state-of-the-art.

3. Training Parts and Context Rescoring
3.1. Motivation

Poselets are successfully used in detecting humans [4] as
well as recognizing actions [13] in still images but have not
been used for video-based action recognition. While a small
number of poselets might be sufficient for detection, for ac-
tion recognition it becomes important to cover the space of
pose variations more completely, so that we can observe and
model transitions through the pose space. However, if the
number of poselets is increased, person detection by clus-
tering consistent activations may be impractical since the
clustering complexity is quadratic in the number of poselet
activations.

We modify the poselet training procedure in three ways
to improve its effectiveness and efficiency. First, we man-
ually select three sets of joints predictive of pose and in-
troduce three parts that cover the extents of those joints in
each set. We also select a set of joints corresponding to the
head and torso that are stable and are suitable for use as a
root for our model (similar to the root in DPM models [7],
which serves as a coarse description of the person). Sec-
ond, we modify the procedure for selecting a poselet seed,
replacing random selection with greedy set cover to satisfy
the following criteria:

1. effectiveness: each part should generate poselets that
cover the entire range of its potential configurations,

2. efficiency: poselets should not be redundant.

Third, instead of clustering pairs of mutually consistent
poselets to obtain detections of people, we use all root ac-
tivations as potential human detections, and rescore them
out by training a classifier on the feature vector contain-
ing the activation scores of the root candidate and of the
parts consistent with that root candidate. This yields a clus-
tering process whose computational requirements increase
linearly (instead of quadratically) with the number of part
activations, allowing for the use of a larger number of pose-
lets in our framework.

3.2. Definition of Parts and Training Poselets

Definition of parts: We follow the definition of the root
and the parts in [21] employing a four part star structured
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Figure 2. Joints annotation (left) and definition of root and parts
(right).

Combination of joints Proc. dist Coverage

l shoulder-l elbow-l hip-l knee 0.6178 0.5255
l shoulder-l elbow-l hand-l hip 1.1526 0.5658
head-l shoulder-l hip-l knee 0.4509 0.5461
head-l shoulder-l elbow-l hip 0.5980 0.6266
head-l shoulder-l elbow-l hip 0.2490 0.6637
head-l shoulder-l elbow-l hip-l knee 0.4789 0.5238
head-l shoulder-l elbow-l knee-l hip 0.7819 0.5641
head-l shoulder-r shoulder-l hip-r hip 0.1390 0.6566
Table 1. Combinations of joints which appear in more than 50 %
of YouTube sports dataset [15] are selected and procrustes dis-
tance among configurations of each combination are computed.
The joints that define our root (in bold) achieve the best trade-off
between joint location stability and dataset coverage.

model to express human pose for recognizing actions. The
root is defined by the head, shoulders, and hips and the three
parts are defined by pairs of limbs: (head, right shoulder,
right elbow, right hand), (head, left shoulder, left elbow, left
hand), and (hips, knees, feet) (Fig. 2). Table 1 shows the
average procrustes distance among pairs of training config-
urations, as well as the coverage of poselets trained on these
joints. The table provides the experimental support for us-
ing the combination of the head, shoulders, and hips as a
root. Only the activation vector of the root is rescored and
used in the descriptor, since its coverage is high while the
joints belonging to the root are relatively stable, as shown
by the low procrustes distance among the root joints.
Training poselets: The appearance variations of the root
and each part are captured by multiple poselets trained by
covering the configuration space of each part. Each poselet
is trained by the process described in [2]. The patch (seed
of a poselet) chosen in the poselet selection step (described
in section 3.3) collects 250 patches that have similar local
joint configuration and uses them as positive examples for
training. The patch size is set to one of 96 x 64, 64 x 64, 64
x 96 and 128 x 64 according to the aspect ratio of the area
that covers the joints comprising a part. We use the distance
metric D(P1, P2) = Dproc(P1, P2) + λDvis(P1, P2)
proposed by [2], where Dproc and Dvis are the Procrustes
distance between joint configurations of both patches and a
visibility distance which is set to the intersection over union
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of joints present in both patches, respectively. We train a lin-
ear SVM classifier with positive examples and negative ex-
amples that are randomly selected from images which con-
tain no person. We collect false positives with highest SVM
scores as hard negatives (10 times as many as the number
of positive examples) and retrain the linear SVM classifier.
This process is iterated three times.

After training the poselets, we extract activations by a
multi-scale sliding window scheme applied to the training
images. Each activation is then labeled as a true positive,
false positive, or unknown, using ground-truth annotations
of people and their joints. For each training image, we de-
termine matches between detections and ground-truth by
comparing the detected bounding box to the ground-truth
bounding box that encloses the ground-truth joints, as well
as computing the Procrustes distance between the predicted
joint locations (using the seed patch joint locations) and the
ground-truth joint locations. Note that when computing the
Procrustes distance, we exclude rotation because detecting
by sliding window does not consider rotation. The latter
labeling criterion, not used in [2], discards any false detec-
tion whose bounding box matches a ground-truth bounding
box but whose associated joint locations are far from the
ground-truth joint locations. Each activation which has an
intersection over union with ground-truth more than 0.5 and
whose Procrustes distance between joints is less than 0.3 is
labeled as true positive. If the intersection over union with
ground-truth is less than 0.1, the activation is labeled as a
false positive for the purpose of the subsequent stages. Oth-
ers remain unlabeled. Figure 3 shows some examples of
activations labeled as true positives and unknown. Assum-
ing that the joint distribution is Gaussian as in [2], the mean
and variance of each joint are computed over true positive
poselet activations, allowing each poselet to have an associ-
ated distribution over the position of joints.

3.3. Poselet Seed Selection

Our goal is to generate a set of poselets for each part that
covers all appearance variations of that part over its configu-
ration space. If we randomly choose poselet seeds and train
on the nearest neighbors of those seeds as in [2, 4], we find
that many of the training samples are not detected by the
trained poselet (or by any other poselet), i.e., many of the
training samples are not “covered” by the set of poselets. In
addition to requiring that each training sample is covered by
at least one poselet, we also require that the poselet covers
at least one training sample that is not covered by any other
poselet, otherwise the poselet would be redundant.

We introduce the poselet seed selection to generate an
effective and efficient set of poselets by considering these
two aspects. The poselet seed selection is an iterative pro-
cess consisting of two steps: (i) seed selection and (ii) set
update, and each step considers each aspect, respectively.

True positives

Unknown (Procrustes dist. between joints > 0.3)

Unknown (Intersection / Union < 0.5)

Figure 3. Examples of activations labeled as true positives and un-
known. The top-left image shows a seed window for part 1 and
a configuration of its joints. In the right column, 15 examples (5
for true positives, 10 for unknown activations) are shown in a right
of the seed. White and red bounding boxes depict a groundtruth
and detected window, respectively. In the third column, the con-
figuration of its joints are depicated in a top-left corner of each
image.

Denote that P is a set of poselets, and C is a list of training
sample IDs that are covered by P . The set T of training
patches is obtained from the physical joints annotated in the
training set by enclosing the annotated joints with a bound-
ing box (plus a suitable amount of padding). First, in the
seed selection step, a patch not included in C is randomly
selected and its poselet is trained. If a poselet is trained, ex-
ample IDs containing any of its true positive activation are
added to C. Second, the set update step identifies and re-
moves poselets that are redundant (a poselet is redundant if
all the patches it covers are already covered by other pose-
lets). Given the coverage set C, a small size P is obtained
by approximately solving a set cover problem, which is to
identify the smallest subset which still covers all elements.
We use a greedy algorithm to approximately solve the set
cover problem. First, we sort all poselets in P in an ascend-
ing order according to the size of the subset covered by the
poselets. Then, starting with the poselet with the smallest
coverage, we remove any poselet from P if it is redundant.

3.4. Context Rescoring

After training the set of poselets to detect the root
and the parts, we rescore activations by exploiting con-
text among activations of the root and the parts. This
step removes activation vectors that are not consistent with
the detected human pose. We use labels of activations
detected in training dataset for context rescoring. For
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Figure 4. PR curves for performance of (a) root #52, (b) part 1
#51, and (c) part 3 #58 on YouTube action dataset. Red lines are
obtained before context rescoring while blue lines are after con-
text rescoring. Typical performance is shown for three randomly
selected parts.

each root activation we obtain a set of consistent part
activations, where consistency between root and part ac-
tivation is measured by the symmetrized KL (Kullback-
Liebler) divergence of their empirical joint distributions
dr,p = 1

K

∑
kDSKL(N

k
r , N

k
p ), where DSKL(N

k
r , N

k
p ) =

DKL(N
k
r ||Nk

p ) + DKL(N
k
p ||Nk

r ). Here, Nk
r and Nk

p are
the empirical distributions of the kth joint of root and part,
respectively. We treat root and part as consistent if dr,p is
below a threshold. For each root activation, we construct an
activation vector consisting of the root poselet confidence
score concatenated with a vector of the confidence scores of
all part poselets. The score of the root activation is placed in
the first bin and all consistent activations of parts are placed
in their own bins according to the poselet type; multiple
consistent activations of the same type are detected, but only
the maximum score is entered in the appropriate bin. The
remaining bins are filled with zero.

Then, we train a linear SVM classifier with activation
vectors and their labels. At test time, root activations that
are classified as false positives are discarded, and part acti-
vations with no mutually consistent root are also discarded
as false positives. Figure 4 demonstrates that this context
rescoring step effectively improves the precision-recall per-
formance of both root and part poselet detectors by discard-
ing many false positives; in the figure, root #52, part 1 #51,
and part 3 #58 were arbitrarily chosen and have typical per-
formance.

4. Video Representation

We extend the framework of [12] to include our pro-
posed pose feature in addition to motion and shape features.
For all features, initial histogram-based video representa-
tions are generated via bag-of-visual words (BoVW). Af-
ter the initial representation is generated for each video se-
quence, compact yet discriminative visual vocabularies are
obtained by feature grouping. A multi-class SVM classi-
fier is trained using as input the concatenated visual word
counts for each of the three features. Details about extract-

ing motion, shape, and pose features are given in section 4.1
and the method for learning semantic visual vocabulary is
described in section 4.2

4.1. Motion, Shape, and Pose Features

To complement our proposed pose feature, we select mo-
tion and shape features that achieve the best performances
in [1, 12] on public datasets consisting of unconstrained
videos.
Motion feature: We use the spatio-temporal interest point
detector and descriptor proposed by Dollar et al. [5], which
is described as being advantageous over other methods such
as 3D Harris-Corner detector for action recognition in [12].
Shape feature: The shape feature uses the root position
to compute a 3-level pyramid HOG around the root which
shows the best performance among shape descriptors. [1]
The region of interest side length is set to double the maxi-
mum value between the root’s width and height.
Pose feature: We extract activations of root and parts by
multi-scale sliding window and rescore root activations by
context rescoring, using the activation vector constructed
from all other mutually consistent poselet activations. Root
activation vectors that are sufficiently confident after con-
text rescoring (confidence > 0) are used as pose descrip-
tors. The first bin in the activation vector corresponding
to the root activation is excluded from the descriptor, since
the root activation score is used only to confirm whether or
not the root and consistent parts fit the particular qualitative
pose model.

For each type of feature, we generate the histogram rep-
resentation based on independent features via BoVW, which
converts all features to ”codewords” using k-means based
on their descriptions.

4.2. Learning Semantic Visual Vocabulary

The initial vocabulary obtained by grouping similar fea-
tures based on their appearance is far from semantically
meaningful and its performance is sensitive to the size of
the vocabulary, containing many redundant codewords that
do not improve discrimination. We construct a compact yet
discriminative visual vocabulary for each type of feature as
proposed by [12]. A vocabulary is made compact by com-
bining two bins of a BoVW if their class distributions are
close to each other. Here, the distance between two dis-
tributions, p1 and p2 is measured by Jensen-Shannon (JS)
divergence:

JSπ(p1, p2) =
∑
i=1,2

πiKL(pi,
∑
j=1,2

πjpj),

π1 + π2 = 1, (1)

where KL(·) is the KL divergence.
Let C = c1, c2, · · · , cL and X = x1, x2, · · · , xM

represent classes and codes, respectively. Let X̂ =
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Figure 5. Confusion matrix for the YouTube sports [15] data set using combined feature with motion, pose, and shape feature.

x̂1, x̂2, · · · , x̂K be the updated clusters of X . A semantic
visual vocabulary can be obtained by minimizing the loss
of mutual information (MI),Q(X̂) = I(C;X)−I(C; X̂)):

Q(X̂) =

K∑
i=1

π(x̂i)JS({p(C|xt) : xt ∈ x̂i}), (2)

where π(x̂i) =
∑
xt∈x̂t

πt, πt = p(xt) is the prior. By
equation 1, the mutual information is changed to

Q(X̂) =

K∑
i=1

π(x̂i)
∑
xt∈x̂i

πtKL(p(C|xt), p(C|x̂i)). (3)

The semantic representation X̂ is generated by iterations
of computing priors π(x̂i), i = 1, 2, · · · ,K and updating
clusters i∗(xt) = argminjKL(p(C|xt), p(C|x̂i)). A ter-
mination condition of the iteration is Q(X̂) < ε.

5. Experiments
We evaluate our framework on two benchmarks:

YouTube sports dataset [15] and YouTube action dataset
[12]. For both datasets, we follow the original authors’ set-
ting for evaluation. The multi-class linear SVM is used as
the classifier for action recognition with vectors combining
semantic representations of motion, pose, and shape fea-
ture. Each feature is normalized by L2 norm. Finally, we
evaluate the boost in performance provided by our proposed
poselet seed selection versus the original scheme proposed
in [2]. All clustering parameters, including the size of the
initial and semantic vocabulary, are obtained automatically
by cross validation.

5.1. Experiments on YouTube Sports Dataset

The YouTube sports dataset [15] consists of a set of ac-
tions collected from various sports which are typically seen
in broadcast media. For each feature, we set the initial vo-
cabulary size to 500 and the semantic vocabulary size to
100. During training, we store for each poselet the video

Method Accuracy (%)
Wang et al. [18] 85.6
Le et al. [10] 86.5
O’Hara and Draper [14] 91.3
Todorovic [17] 92.1
Sadanand and Corso [16] 95.0
Shape 71.3
Motion 75.3
Pose 76.7
Pose + Shape 84.7
Motion + Shape 86.7
Motion + Pose 90.7
Motion + Pose + Shape 96.0

Table 2. Recognition rates on the YouTube sports data set.

sequence from which its training images were selected. For
clustering, we set the portion of coverage to 0.8, resulting
in 123, 120, 120, and 123 poselets for the root and the three
parts, respectively.

Figure 5 shows the confusion matrix for classification
using motion, pose, shape, and hybrid (combination of all
three) features. The motion feature is useful for classifying
actions in which human locations change significantly, e.g.,
diving, horseback riding, and running. On the other hand,
the pose feature outperforms others for actions consisting of
distinctive poses, e.g., arm pose after golf swing or lifting
and pose of legs when skating. For walking, the shape fea-
ture yields the best classification performance since walking
does not involve particularly distinctive motions or poses.
In table 2, the recognition rates using pose feature are the
highest among the three types of features. Using a hybrid
of motion, pose, and shape features yields an improvement
in performance over Sadanand and Corso [16], the state-of-
the-art.

5.2. Experiments on YouTube Action Dataset

We also evaluate our framework on the challenging
YouTube action dataset [12] consisting of 11 action classes.
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 0.71        0       0.03    0.03     0.02     0.05       0      0.03     0.01    0.08     0.04

 0.01     0.91        0         0          0         0       0.01    0.04        0      0.01     0.02 

 0.01     0.01     0.90       0       0.01       0          0         0       0.01    0.06        0 

 0.01        0          0      0.92        0      0.02        0      0.02        0      0.02     0.01 

 0.01     0.01        0      0.01    0.89     0.01        0         0       0.01    0.02     0.04 

 0.04     0.01     0.01    0.01       0       0.84     0.01    0.03     0.01    0.02     0.02 

 0.01     0.02        0         0         0         0       0.85     0.02     0.06       0       0.04 

 0.06        0          0      0.01    0.02    0.05        0       0.79     0.05    0.01     0.01 

 0.02        0          0         0      0.01       0       0.02        0       0.95       0          0 

 0.08        0       0.01    0.01       0         0       0.01     0.01        0      0.88        0 

 0.01        0          0      0.03    0.02    0.04     0.05        0       0.01       0       0.84 

Figure 6. Confusion matrix for the YouTube action [12] data set
using combined feature with motion, pose, and shape feature.

Method Accuracy (%)

Liu et al. [12] 71.2
Zhang et al. [23] 72.9
Le et al. [10] 75.8

Shape 52.3
Motion 62.2
Motion + Shape 72.9
Pose 74.6
Pose + Shape 76.0
Motion + Pose 83.5
Motion + Pose + Shape 86.2

Table 3. Recognition rates on the YouTube action data set. We
outperform the state-of-the-art by over 10%.

For clustering, we select 100 poselets for the root and each
part. Here, we set the size of the initial vocabulary and se-
mantic vocabulary to 1000 and 100, respectively.

Figure 6 shows the confusion matrix for the YouTube
action dataset. Based on the confusion matrix, our frame-
work has the worst performance on basketball shooting and
walking. Because the pose observed during shooting in bas-
ketball is similar to swinging an arm in tennis or spiking in
volleyball, most of the miss-classified video sequences are
classified into those classes. The reason for the low classifi-
cation performance for walking is likely the same as for the
previous dataset. In table 3, our framework outperformed
other algorithms by approximately 10.4%. Interestingly,
using pose feature alone provides recognition rates which
matches all the state-of-the-art. Figure 7 shows some exam-
ples of pose features for a qualitative evaluation.

5.3. Boost by Poselet Seed Selection

In this section, we compare our proposed poselet seed se-
lection process against the random selection process of [2]
in performance. The proposed selection process results in

random selection proposed
number of poselets 400 800 1200 486

covered set (%)
root 56.1 60.6 62.3 80.1

part 1 48.7 54.4 56.5 80.0
part 3 53.3 59.3 61.7 80.1

recognition rate (%) 63.3 67.3 71.3 76.7
Table 4. Top rows: the percentage of the training dataset covered
(see text) as the number of total poselets is varied. Bottom row:
the resulting action recognition rates. The right column shows the
coverage and recognition rates of our proposed selection approach.

a set of poselets that cover 80% of the training examples (a
training sample is covered if the poselet detector yields an
activation that overlaps sufficiently with the training sam-
ple), which results in a final recognition rate of 76.7 on the
youtube sports dataset [15]. The sizes of the poselets set for
root, part 1, and part 3 are 123, 120, and 123, respectively.
Part 1 and 2 are mirrored versions of each other, thus yield-
ing a total of 486 poselets. Table 4 shows the performance
over various numbers of poselets chosen by random selec-
tion versus our approach. As the number of poselet grows,
the coverage of the training dataset and recognition rate im-
proves but does not match the recognition rate obtained by
our proposed poselet seed selection until training reaches
300 poselets for the root and each part (for a total of 1200
for the root and the three parts, as in [3]).

6. Conclusion
We proposed a robust pose feature based on poselets that

is suitable for use in action recognition tasks involving rel-
atively unconstrained videos. We have shown that various
modifications of the poselet training process improve the
representation power of the set of poselets, generating a set
of features that can be seamlessly combined with existing
shape and motion features. Experiments show that our pro-
posed pose feature provides significant information alone;
when in addition to motion and shape, we obtain state-of-
the-art results.
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Evaluation of local spatio-temporal features for action recog-
nition. In BMVC, 2009.

[19] G. Willems, T. Tuytelaars, and L. V. Gool. An efficient dense
and scale-invariant spatio-temporal interest point detector. In
ECCV, 2008.

[20] Y. Xie, H. Chang, Z. Li, L. Liang, X. Chen, and D. Zhao.
A unified framework for locating and recognizing human ac-
tions. In CVPR, 2011.

[21] W. Yang, Y. Wang, and G. Mori. Recognizing human actions
from still images with latent poses. In CVPR, 2010.

[22] B. Yao, X. Jiang, A. Khosla, A. L. Lin, L. Guibas, and L. Fei-
Fei. Human action recognition by learning bases of action
attributes and parts. In ICCV, 2011.

[23] Y. Zhang, X. Liu, M.-C. Chang, W. Ge, and T. Chen. Spatio-
temporal phrases for activity recognition. In ECCV, 2012.

366


