

4321

Abstract

In this paper, a fast pixel-level adapting background

detection algorithm is presented. The proposed

background model records not only each pixel’s historical

background values, but also estimates the efficacies of

these values, based on the occurrence statistics. It is

therefore capable of removing the least useful background

values from the background model, selectively adapting to

background changes with different timescales, and

restraining the generation of ghosts. A further control

process adjusts the individual decision threshold for each

pixel, and reduces high frequency temporal noise, based on

a measure of classification uncertainty in each pixel.

Evaluation results based on the ChangeDetection.net

database are presented in this paper. The results indicate

that the proposed algorithm outperforms the majority of

earlier state-of-the-art algorithms not only in terms of

accuracy, but also in terms of processing speed.

1. Introduction

Background detection is widely used in various

computer vision tasks, in particular, automated video

surveillance, crowd and traffic monitoring, to separate the

foreground, i.e. objects of interest, from the background. In

the past years, many background subtraction algorithms

have been proposed. The detection accuracy remains the

researcher's main focus, but even though it can be

improved, it is done at the expense of increased

computational power. The processing speed of the majority

of state-of-the-art background subtraction algorithms is less

than 24 fps (frames per second) for images with modest

resolutions, e.g. , on a commercial desktop CPU

[1]; sometimes a highly optimised GPU implementation is

required to process images at typical video frame rates.

Considering that separating foreground objects is clearly

only the first task in an overall computer vision system, this

speed disadvantage of many background subtraction

algorithms limits their usage in many applications,

especially those which operate with large amounts of data

obtained by distributed cameras. The aim of our work is to

design a background subtraction algorithm with

state-of-the-art detection accuracy, but at the same time one

that is computationally simple and efficient, making it

capable of real-time performance on a variety of hardware

platforms, especially those with limited computational

power and on-board memory, e.g. smart cameras. The

algorithm and the results of evaluating its performance on

the ChangeDetection.net database 2014 [2] are presented in

this paper.

2. Algorithm

The proposed algorithm, which is an extended version of

the AMBER algorithm presented in [8], follows the general

scheme of a pixel-based background detector [3-7], where a

background model for each pixel consists of a number of

background values, and a classification process is based on

matching the background model templates with the current

pixel values. Our main innovation is the introduction of a

simple yet effective scheme that allows us to perform

relatively robust classifications using only a small set of

adaptive templates (in contrast to [6, 7] that use a large

number of samples that model underlying distribution of

background values). An easily calculated estimate of the

template "efficacy" allows us to discard the least useful

templates (rather than automatically discarding the oldest

[4] or randomly chosen [6, 7] ones), and replace them with

new ones. The template ordering process, based on

efficacy, facilitates the operation on multiple time scales.

Furthermore, we introduce simple yet effective control

processes to eliminate noise and adjust detection

thresholds, based on an estimate of classification

uncertainty.

The proposed algorithm is designed to exploit pixel-level

parallelism. It is suitable both for general-purpose software

implementation, and for implementing on a variety of

hardware platforms, from GPUs and DSP vector

processors, to specialized parallel processors and

FPGA-based hardware accelerators on board embedded

camera systems. The computations described below are

carried out independently for each pixel of a video frame

(unless indicated otherwise, for global parameters).

2.1. Background Model and Detection Process

The background model of each pixel is composed by

K+1 templates: a “long-term” template () and K

“short-term” templates (…). Each template ()

A Fast Self-tuning Background Subtraction Algorithm

Bin Wang

School of Electronic and Electrical Engineering

The University of Manchester
bin.wang-2@postgrad.manchester.ac.uk

Piotr Dudek

School of Electronic and Electrical Engineer

The University of Manchester
p.dudek@manchester.ac.uk

395

4322

contains a background value and an efficacy counter .

The background templates are ordered by the model

maintenance process so that the efficacy (as indicated by

the corresponding value) decreases from to .

Template always contains the background value that has

been present at the corresponding pixel for the longest time.

Templates … store K different background values

that are likely to appear at that particular pixel on shorter

time scales. At a particular time some of the K templates

may be inactive (denoted by).

2.2. Classification and Adaptation

a) Classification: The detection process compares the

pixels in the current frame and the background values

stored in active templates. The process starts from template

 (i.e. the most effective template), and progresses though

the other templates in sequence. Initially, all pixels are

considered as foreground; when the pixel is matching any

template (judging with the decision threshold ε) this

pixel will be marked as background.

b) Template Update: To adapt to gradual background

changes, if a pixel is classified as a background pixel by a

template, the corresponding background value will be

updated towards the current pixel value using a running

average function with a learning rate α. For each template,

its efficacy counter is updated as well. The efficacy of

the first template that classified the pixel as background

pixel will be increased by one, while the efficacies of other

templates will be decreased by one. If becomes 0,

template becomes inactive, and is removed from further

processing, ready to be replaced by a new template. The

maximum values stored in and are saturated at

and respectively.

c) Low-resolution detection: To enhance the robustness

against minor high-frequency changes in the environment,

a low-resolution detection process is also implemented.

The current frame and the templates (only) are

down-sampled by averaging array values in a block.

The detection rules used in lower resolution detection are

the same as used in full resolution detection, except that

and are not updated during detection process. The

detection result generated by low-resolution detection is

then up sampled and combined with the full resolution

detection result, so that only pixels marked as foreground in

both detection results are considered the foreground.

2.3. Background Model Maintenance

Using the updating process for the background value as

described above provides the ability for the proposed

algorithm to adapt to gradual background changes.

However, to provide the ability to adapt to sudden

background changes, and to eliminate permanent

misclassification errors (e.g. ghosts), the algorithm needs to

have the ability to insert new background values into the

background model, and remove unused ones. In this

proposed algorithm, the selection of templates to be

replaced is based on their efficacies.

a) Template Ordering: This procedure is used to order

background model’s templates according to their efficacy,

and ensure the most effective background value is always

stored in and the least effective background value is

always stored in . A straightforward bubble sort process

is used to order the templates to . To ensure the

quality of the background values contained in the long-term

template , a more strict update policy is used. If a

background value stored in appears in the frame long

enough, which is determined by a threshold (),

and the corresponding background value in happens to

be less frequent (), the template is swapped

with , and is set to . The newly updated

background value will stay in the long-term template for a

time defined by the parameter , even though the updated

background value is absent at that particular pixel. A

relatively large will restrain the generation of ghosts.

b) Template Replacement: This process is used to

selectively include new background values into the model

(e.g. to adapt to long-term changes in the scene). It locates

the foreground pixels that have not changed for a relatively

long time, and selectively replaces the background value

stored in (which contains the least effective background

value for each pixel) with a new qualified background

value. To realize this function, the replacement process

utilizes an additional accumulation template, which

 a potential background value and an efficacy

counter . When a new foreground pixel is detected, the

distance between this pixel value nd is calculated, and

if this distance is smaller than the decision threshold then

 is increased by 1, otherwise is decreased by 1. For

the pixels with = 0, if the current frame pixel has been

classified as foreground, its value will be loaded into

and will be set to 1. If is greater than a preset

threshold , the value stored in is considered to be a

potential new background value. If it was directly

incorporated into the background model, all the long-term

changes in the frame would eventually be adapted to by the

Table.1 Parameters of the proposed algorithm used in the

evaluation part

Sections Parameters

2.1 K=3

2.2 a)

2.2 b)

2.2 c) N=4

2.3 a)

2.3 b)

2.4 a)

2.4 b)

396

4323

background model, which may be unacceptable in some

applications. To preserve temporarily static foreground

objects, a selective process is implemented here. The

potential background value with the efficacy counter

 will be inserted into the background model only if

the value of that pixel is already contained in at least

one of its neighbors’ background model, judging by the

decision threshold ε.

2.4. Global Control

The global control process introduced here provides the

proposed algorithm with two main functions: activity

control and pixel level decision threshold adaptation. These

two functions are realized by utilizing an uncertainty

measure (referred to as activity level) at each pixel.

a) Activity Control: This process is introduced to

suppress false positives in heavily noisy environments.

Comparing with the “blinking” detection process described

in [7], which records the activity (i.e. changing frequency

between background and foreground) of all the pixels on

the frame and deletes pixels with high activity from the

detection results, the proposed process only monitors a

subset of pixels, identified as noise-pixels, to reduce false

negatives. Here, noise-pixels are defined as the pixels that

have been marked as foreground during the full resolution

detection process, however, after low resolution detection,

they have been changed to background. If a noise-pixel

appears or disappears (i.e. blinks) between successive

frames, the activity level A of this pixel increases by ,

while A decreases by 1 for non-blinking pixels. Activity

level is limited in a range between 0 and and pixels

with activity greater than are eliminated from the

detection result. In this way, continuously blinking

noise-pixels will be eliminated from the detection results,

preventing the generation of false positives.

b) Pixel-level Decision Threshold Adaptation: The

decision threshold ε is the parameter that has the most

direct effect on the quality of the detection results. A

self-tuning pixel level decision threshold (based on the

noise level at each pixel) may help to generate more

accurate detection results, however, this benefit comes at a

cost of extra memory requirements and increased

computational complexity. Instead of building an

additional model for determining the decision threshold,

the proposed pixel-level decision threshold adaptation

process utilizes the already calculated activity level A of

each pixel (since it is a measure of noise level). After the

pixel-level decision threshold ε is initialized, it changes

according to the following rules: if is bigger than a

threshold then increases by ; if A is smaller than

a threshold then decreases by . To avoid ε

oscillating between two values, is set to a much larger

value than . The adaptation range of ε is limited

between and .

2.5. Parameters

In this paper, pixel values are represented as three

dimensional vectors in the color space.

Corresponding parameters (thresholds, limits) are also

three dimensional vectors. A single set of parameters, as

shown in Table.1, is used in all experiments. This set of

parameters has been determined using a combination of

heuristics and optimisations on a dataset, and is producing

accurate detection results in various scenarios. As many

parameters are related to the dynamics of adaptation, the

algorithm's performance is not particularly sensitive to the

exact values of these parameters.

3. Results

The proposed algorithm was evaluated using the 2014

ChangeDetection.net database and methodology [2]. This

database, containing 53 video sequences (in 11 categories),

covers various challenges in background detection

scenarios, e.g. shadows, ghosts, background changes,

camera jitter and movement in both outdoor and indoor

environments. Seven measurements, including Recall,

Specificity, False Positive Rate, False Negative Rate,

Percentage of Wrong Classifications (PWC), F-Measure

(also referred as F-1) and precision, are used in [2] to

determine comprehensive evaluations on different features

of each algorithm. Two final benchmarks, average ranking

and average ranking across categories, are used to give

final ranks according to each algorithm’s performance.

Detailed evaluation results of the proposed algorithm for

each category of the 2014 database are included in Table.2.

Some detection results obtained by the algorithm are shown

in Fig.1.

4. Discussion

The evaluation results indicate that the proposed

algorithm gives a relatively even performance for all the

categories of the database. Generally speaking, the noisy

regions of the input frames are clean in the detection results,

and the detected objects are very close to the objects in the

ground truth.

Comparing to other categories in the evaluation database,

the proposed algorithm is less effective for category “PTZ”.

That’s mainly because we make an assumption of a static

camera. Due to the considerations of increasing processing

speed and maintaining pixel-level parallelism (avoiding

long-distance communications between pixels), the

proposed algorithm is not suitable for camera pan/tilt/zoom

scenarios. This is consistent with our main motivation, to

design a simple, fast and efficient background subtraction

algorithm with state-of-the-art performance for all

platforms, especially these platforms with limited

computational power and memory.

Average performance of the proposed algorithm

397

4324

comparing with six other algorithms is shown in Table.3. It

can be seen that the proposed algorithm outperforms the

other algorithms in most measurements, especially in PWC

(percentage of wrong classification) and F-1 (F-Measure)

which offer overall evaluations of the detection results.

References

[1] P. M. Jodin, E. Porikli, J. Konrad and P. Ishwar,

ChangeDetection.net Video Database 2012 and evaluation

result, (28/03/2014), Internet: www.changedetection.net;

[2] N. Goyette, P. M. Jodoin, F. Porikli, J. Konrad and P. Ishwar,

“Changedetection.net: A New Change Detection Benchmark

Dataset”, in Proc. IEEE Workshop on Change detection

(CDW-2012) at CVPR-2012, Providence, RI, 16-21 Jun.,

2012;

[3] C. Stauffer and W. Grimson, “Adaptive Background Mixture

Models for Real-Time Tracking”, IEEE Computer Society

Conference on Computer Vision and Pattern Recognition,

Jun.23-25, 1999;

[4] A. Elgammal, D. Harwood and L. Davis. "Non-parametric

model for background subtraction." Computer

Vision—ECCV 2000. Springer Berlin Heidelberg, 2000.

751-767;

[5] K. Kim, T. H. Chalidabhongse, D. Harwood and L. Davis,

“Real-time Foreground Background Segmentation using

Codebook Model”, Real-Time Imaging, Volume 11, Issue 3,

pp. 167-256, June 2005;

[6] O. Barnich and M. Van Droogenbroeck, “Vibe: A Universal

Background Subtraction Algorithm for Video Sequences”,

IEEE Transactions on Image Processing, 20(6):1709-1724,

June, 2011;

[7] M.Hofmann, P. Tiefenbacher and G. Rigoll, “Background

Segmentation with Feedback: The Pixel-based Adaptive

Segmenter”, Computer Vision and Pattern Recognition

Workshops (CVPRW), 2012 IEEE Computer Society

Conference on. IEEE, 2012;

[8] B. Wang and P. Dudek, “AMBER: Adapting

Multi-Resolution Background Extractor”, IEEE

Internatinoal Conference on Image Processing, ICIP 2013,

Melbourne, Australia;

Table.2 Detailed evaluation results of the proposed algorithm for each category of the evaluation dataset

Scenarios Recall Specificity FPR FNR PWC F-1 Precision

PTZ 0.5162 0.8808 0.1192 0.4838 12.4397 0.1575 0.2085

Bad Weather 0.6782 0.9989 0.0011 0.3218 0.6379 0.7698 0.9010

Baseline 0.8784 0.9973 0.0027 0.1216 0.9233 0.8813 0.8980

Camera Jitter 0.6505 0.9938 0.0062 0.3495 1.9125 0.7107 0.8493

Dynamic Background 0.9177 0.9956 0.0044 0.0823 0.4837 0.8436 0.7990

Intermittent Object Motion 0.7617 0.9866 0.0134 0.2383 2.7784 0.7211 0.7530

Low Frame Rate 0.4727 0.9935 0.0065 0.5273 2.5607 0.4338 0.5943

Night Vision 0.6498 0.9469 0.0531 0.3502 5.9872 0.3593 0.3150

Shadow 0.8298 0.9914 0.0086 0.1703 1.7537 0.8128 0.8098

Thermal 0.7071 0.9940 0.0061 0.2929 1.6264 0.7597 0.8514

Turbulence 0.7508 0.9997 0.0003 0.2492 0.1936 0.8175 0.9018

Table.3 Average performance comparisons of 7 background subtraction algorithms

Algorithms Recall Specificity FPR FNR PWC F-1 Precision

Proposed Algorithm 0.7103 0.9799 0.0201 0.2897 2.8450 0.6606 0.7165

KNN 0.6650 0.9802 0.0198 0.3350 3.3200 0.5937 0.6788

GMM|Stauffer&Grimson 0.6846 0.9750 0.0250 0.3154 3.7667 0.5707 0.6025

Mahalanobis distance 0.1644 0.9931 0.0069 0.8356 3.4750 0.2267 0.7403

KDE-ElGammal 0.7375 0.9519 0.0481 0.2625 5.6262 0.5688 0.5811

GMM|Zivkovic 0.6604 0.9725 0.0275 0.3396 3.9953 0.5566 0.5973

Euclidean Distance 0.6803 0.9449 0.0551 0.3197 6.6542 0.5161 0.5480

Input Images Ground Truth Detection Result

Fig.1 Detection Results generated by the proposed algorithm

398

