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Abstract 
 

In this paper, a fast pixel-level adapting background 

detection algorithm is presented. The proposed 

background model records not only each pixel’s historical 

background values, but also estimates the efficacies of 

these values, based on the occurrence statistics. It is 

therefore capable of removing the least useful background 

values from the background model, selectively adapting to 

background changes with different timescales, and 

restraining the generation of ghosts. A further control 

process adjusts the individual decision threshold for each 

pixel, and reduces high frequency temporal noise, based on 

a measure of classification uncertainty in each pixel. 

Evaluation results based on the ChangeDetection.net 

database are presented in this paper. The results indicate 

that the proposed algorithm outperforms the majority of 

earlier state-of-the-art algorithms not only in terms of 

accuracy, but also in terms of processing speed. 

 

1. Introduction 

Background detection is widely used in various 

computer vision tasks, in particular, automated video 

surveillance, crowd and traffic monitoring, to separate the 

foreground, i.e. objects of interest, from the background. In 

the past years, many background subtraction algorithms 

have been proposed. The detection accuracy remains the 

researcher's main focus, but even though it can be 

improved, it is done at the expense of increased 

computational power. The processing speed of the majority 

of state-of-the-art background subtraction algorithms is less 

than 24 fps (frames per second) for images with modest 

resolutions, e.g.        , on a commercial desktop CPU 

[1]; sometimes a highly optimised GPU implementation is 

required to process images at typical video frame rates. 

Considering that separating foreground objects is clearly 

only the first task in an overall computer vision system, this 

speed disadvantage of many background subtraction 

algorithms limits their usage in many applications, 

especially those which operate with large amounts of data 

obtained by distributed cameras. The aim of our work is to 

design a background subtraction algorithm with 

state-of-the-art detection accuracy, but at the same time one 

that is computationally simple and efficient, making it 

capable of real-time performance on a variety of hardware 

platforms, especially those with limited computational 

power and on-board memory, e.g. smart cameras. The 

algorithm and the results of evaluating its performance on 

the ChangeDetection.net database 2014 [2] are presented in 

this paper. 

2. Algorithm 

The proposed algorithm, which is an extended version of 

the AMBER algorithm presented in [8], follows the general 

scheme of a pixel-based background detector [3-7], where a 

background model for each pixel consists of a number of 

background values, and a classification process is based on 

matching the background model templates with the current 

pixel values. Our main innovation is the introduction of a 

simple yet effective scheme that allows us to perform 

relatively robust classifications using only a small set of 

adaptive templates (in contrast to [6, 7] that use a large 

number of samples that model underlying distribution of 

background values). An easily calculated estimate of the 

template "efficacy" allows us to discard the least useful 

templates (rather than automatically discarding the oldest 

[4] or randomly chosen [6, 7] ones), and replace them with 

new ones. The template ordering process, based on 

efficacy, facilitates the operation on multiple time scales. 

Furthermore, we introduce simple yet effective control 

processes to eliminate noise and adjust detection 

thresholds, based on an estimate of classification 

uncertainty. 

The proposed algorithm is designed to exploit pixel-level 

parallelism. It is suitable both for general-purpose software 

implementation, and for implementing on a variety of 

hardware platforms, from GPUs and DSP vector 

processors, to specialized parallel processors and 

FPGA-based hardware accelerators on board embedded 

camera systems. The computations described below are 

carried out independently for each pixel of a video frame 

(unless indicated otherwise, for global parameters). 

2.1. Background Model and Detection Process 

The background model of each pixel is composed by 

K+1 templates: a “long-term” template (   ) and K 

“short-term” templates (        …  ). Each template (  ) 
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contains a background value    and an efficacy counter   . 

The background templates are ordered by the model 

maintenance process so that the efficacy (as indicated by 

the corresponding    value) decreases from    to    . 

Template    always contains the background value that has 

been present at the corresponding pixel for the longest time. 

Templates       …   store K different background values 

that are likely to appear at that particular pixel on shorter 

time scales. At a particular time some of the K templates 

may be inactive (denoted by     ).  

2.2. Classification and Adaptation 

a) Classification: The detection process compares the 

pixels in the current frame and the background values 

stored in active templates. The process starts from template 

   (i.e. the most effective template), and progresses though 

the other   templates in sequence. Initially, all pixels are 

considered as foreground; when the pixel is matching any 

template     (judging with the decision threshold ε) this 

pixel will be marked as background. 

b) Template Update: To adapt to gradual background 

changes, if a pixel is classified as a background pixel by a 

template, the corresponding background value    will be 

updated towards the current pixel value using a running 

average function with a learning rate α. For each template, 

its efficacy counter    is updated as well. The efficacy of 

the first template that classified the pixel as background 

pixel will be increased by one, while the efficacies of other 

templates will be decreased by one. If    becomes 0, 

template    becomes inactive, and is removed from further 

processing, ready to be replaced by a new template. The 

maximum values stored in    and    are saturated at    

and    respectively. 

c) Low-resolution detection: To enhance the robustness 

against minor high-frequency changes in the environment, 

a low-resolution detection process is also implemented. 

The current frame and the templates (only          ) are 

down-sampled by averaging array values in a     block. 

The detection rules used in lower resolution detection are 

the same as used in full resolution detection, except that    

and    are not updated during detection process. The 

detection result generated by low-resolution detection is 

then up sampled and combined with the full resolution 

detection result, so that only pixels marked as foreground in 

both detection results are considered the foreground. 

2.3. Background Model Maintenance 

Using the updating process for the background value as 

described above provides the ability for the proposed 

algorithm to adapt to gradual background changes. 

However, to provide the ability to adapt to sudden 

background changes, and to eliminate permanent 

misclassification errors (e.g. ghosts), the algorithm needs to 

have the ability to insert new background values into the 

background model, and remove unused ones. In this 

proposed algorithm, the selection of templates to be 

replaced is based on their efficacies. 

a) Template Ordering: This procedure is used to order 

background model’s templates according to their efficacy, 

and ensure the most effective background value is always 

stored in    and the least effective background value is 

always stored in   . A straightforward bubble sort process 

is used to order the templates     to   . To ensure the 

quality of the background values contained in the long-term 

template   , a more strict update policy is used. If a 

background value stored in    appears in the frame long 

enough, which is determined by a threshold    (     ), 

and the corresponding background value in    happens to 

be less frequent (     ), the template    is swapped 

with    , and    is set to     . The newly updated 

background value will stay in the long-term template for a 

time defined by the parameter   , even though the updated 

background value is absent at that particular pixel. A 

relatively large   will restrain the generation of ghosts. 

b) Template Replacement:  This process is used to 

selectively include new background values into the model 

(e.g. to adapt to long-term changes in the scene). It locates 

the foreground pixels that have not changed for a relatively 

long time, and selectively replaces the background value 

stored in     (which contains the least effective background 

value for each pixel) with a new qualified background 

value. To realize this function, the replacement process 

utilizes an additional accumulation template, which 

         a potential background value    and an efficacy 

counter   . When a new foreground pixel is detected, the 

distance between this pixel value  nd    is calculated, and 

if this distance is smaller than the decision threshold   then 

   is increased by 1, otherwise    is decreased by 1. For 

the pixels with   = 0, if the current frame pixel has been 

classified as foreground, its value will be loaded into    

and    will be set to 1. If    is greater than a preset 

threshold   , the value stored in    is considered to be a 

potential new background value. If it was directly 

incorporated into the background model, all the long-term 

changes in the frame would eventually be adapted to by the 

Table.1 Parameters of the proposed algorithm used in the 

evaluation part 

Sections Parameters 

2.1 K=3   

2.2 a)                       

2.2 b)                        

2.2 c) N=4   

2.3 a)              

2.3 b)          

2.4 a)                       

2.4 b) 
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background model, which may be unacceptable in some 

applications. To preserve temporarily static foreground 

objects, a selective process is implemented here. The 

potential background value with the efficacy counter 

      will be inserted into the background model only if 

the value of that pixel    is already contained in at least 

one of its neighbors’ background model, judging by the 

decision threshold ε.  

2.4. Global Control 

The global control process introduced here provides the 

proposed algorithm with two main functions: activity 

control and pixel level decision threshold adaptation. These 

two functions are realized by utilizing an uncertainty 

measure (referred to as activity level) at each pixel.  

a) Activity Control: This process is introduced to 

suppress false positives in heavily noisy environments. 

Comparing with the “blinking” detection process described 

in [7], which records the activity (i.e. changing frequency 

between background and foreground) of all the pixels on 

the frame and deletes pixels with high activity from the 

detection results, the proposed process only monitors a 

subset of pixels, identified as noise-pixels, to reduce false 

negatives. Here, noise-pixels are defined as the pixels that 

have been marked as foreground during the full resolution 

detection process, however, after low resolution detection, 

they have been changed to background. If a noise-pixel 

appears or disappears (i.e. blinks) between successive 

frames, the activity level A of this pixel increases by     , 

while A decreases by 1 for non-blinking pixels. Activity 

level is limited in a range between 0 and      and pixels 

with activity greater than    are eliminated from the 

detection result. In this way, continuously blinking 

noise-pixels will be eliminated from the detection results, 

preventing the generation of false positives. 

b) Pixel-level Decision Threshold Adaptation: The 

decision threshold ε is the parameter that has the most 

direct effect on the quality of the detection results. A 

self-tuning pixel level decision threshold (based on the 

noise level at each pixel) may help to generate more 

accurate detection results, however, this benefit comes at a 

cost of extra memory requirements and increased 

computational complexity. Instead of building an 

additional model for determining the decision threshold, 

the proposed pixel-level decision threshold adaptation 

process utilizes the already calculated activity level A of 

each pixel (since it is a measure of noise level). After the 

pixel-level decision threshold ε is initialized, it changes 

according to the following rules: if   is bigger than a 

threshold     then   increases by     ; if A is smaller than 

a threshold      then   decreases by     . To avoid ε 

oscillating between two values,      is set to a much larger 

value than     . The adaptation range of ε is limited 

between      and     . 

2.5. Parameters 

In this paper, pixel values are represented as three 

dimensional vectors in the       color space. 

Corresponding parameters (thresholds, limits) are also 

three dimensional vectors. A single set of parameters, as 

shown in Table.1, is used in all experiments. This set of 

parameters has been determined using a combination of 

heuristics and optimisations on a dataset, and is producing 

accurate detection results in various scenarios. As many 

parameters are related to the dynamics of adaptation, the 

algorithm's performance is not particularly sensitive to the 

exact values of these parameters. 

3. Results 

The proposed algorithm was evaluated using the 2014 

ChangeDetection.net database and methodology [2]. This 

database, containing 53 video sequences (in 11 categories), 

covers various challenges in background detection 

scenarios, e.g. shadows, ghosts, background changes, 

camera jitter and movement in both outdoor and indoor 

environments. Seven measurements, including Recall, 

Specificity, False Positive Rate, False Negative Rate, 

Percentage of Wrong Classifications (PWC), F-Measure 

(also referred as F-1) and precision, are used in [2] to 

determine comprehensive evaluations on different features 

of each algorithm. Two final benchmarks, average ranking 

and average ranking across categories, are used to give 

final ranks according to each algorithm’s performance. 

Detailed evaluation results of the proposed algorithm for 

each category of the 2014 database are included in Table.2. 

Some detection results obtained by the algorithm are shown 

in Fig.1. 

4. Discussion 

The evaluation results indicate that the proposed 

algorithm gives a relatively even performance for all the 

categories of the database. Generally speaking, the noisy 

regions of the input frames are clean in the detection results, 

and the detected objects are very close to the objects in the 

ground truth. 

Comparing to other categories in the evaluation database, 

the proposed algorithm is less effective for category “PTZ”. 

That’s mainly because we make an assumption of a static 

camera. Due to the considerations of increasing processing 

speed and maintaining pixel-level parallelism (avoiding 

long-distance communications between pixels), the 

proposed algorithm is not suitable for camera pan/tilt/zoom 

scenarios. This is consistent with our main motivation, to 

design a simple, fast and efficient background subtraction 

algorithm with state-of-the-art performance for all 

platforms, especially these platforms with limited 

computational power and memory. 

Average performance of the proposed algorithm 
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comparing with six other algorithms is shown in Table.3. It 

can be seen that the proposed algorithm outperforms the 

other algorithms in most measurements, especially in PWC 

(percentage of wrong classification) and F-1 (F-Measure) 

which offer overall evaluations of the detection results. 
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Table.2 Detailed evaluation results of the proposed algorithm for each category of the evaluation dataset 

Scenarios Recall Specificity FPR FNR PWC F-1 Precision 

PTZ 0.5162 0.8808 0.1192 0.4838 12.4397 0.1575 0.2085 

Bad Weather 0.6782 0.9989 0.0011 0.3218 0.6379 0.7698 0.9010 

Baseline 0.8784 0.9973 0.0027 0.1216 0.9233 0.8813 0.8980 

Camera Jitter 0.6505 0.9938 0.0062 0.3495 1.9125 0.7107 0.8493 

Dynamic Background 0.9177 0.9956 0.0044 0.0823 0.4837 0.8436 0.7990 

Intermittent Object Motion 0.7617 0.9866 0.0134 0.2383 2.7784 0.7211 0.7530 

Low Frame Rate 0.4727 0.9935 0.0065 0.5273 2.5607 0.4338 0.5943 

Night Vision 0.6498 0.9469 0.0531 0.3502 5.9872 0.3593 0.3150 

Shadow 0.8298 0.9914 0.0086 0.1703 1.7537 0.8128 0.8098 

Thermal 0.7071 0.9940 0.0061 0.2929 1.6264 0.7597 0.8514 

Turbulence 0.7508 0.9997 0.0003 0.2492 0.1936 0.8175 0.9018 

 
Table.3 Average performance comparisons of 7 background subtraction algorithms 

Algorithms Recall Specificity FPR FNR PWC F-1 Precision 

Proposed Algorithm 0.7103 0.9799 0.0201 0.2897 2.8450 0.6606 0.7165 

KNN 0.6650 0.9802 0.0198 0.3350 3.3200 0.5937 0.6788 

GMM|Stauffer&Grimson 0.6846 0.9750 0.0250 0.3154 3.7667 0.5707 0.6025 

Mahalanobis distance 0.1644 0.9931 0.0069 0.8356 3.4750 0.2267 0.7403 

KDE-ElGammal 0.7375 0.9519 0.0481 0.2625 5.6262 0.5688 0.5811 

GMM|Zivkovic 0.6604 0.9725 0.0275 0.3396 3.9953 0.5566 0.5973 

Euclidean Distance 0.6803 0.9449 0.0551 0.3197 6.6542 0.5161 0.5480 

 

Input Images Ground Truth Detection Result 

   

   

   

   

   

   
Fig.1 Detection Results generated by the proposed algorithm 
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