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Abstract

Recently plenoptic cameras have gained much attention,
as they capture the 4D light field of a scene which is useful
for numerous computer vision and graphics applications.
Similar to traditional digital cameras, plenoptic cameras
use a color filter array placed onto the image sensor so
that each pixel only samples one of three primary color val-
ues. A color demosaicing algorithm is then used to gen-
erate a full-color plenoptic image, which often introduces
color aliasing artifacts. In this paper, we propose a dic-
tionary learning based demosaicing algorithm that recov-
ers a full-color light field from a captured plenoptic im-
age using sparse optimization. Traditional methods con-
sider only spatial correlations between neighboring pixels
on a captured plenoptic image. Our method takes advan-
tage of both spatial and angular correlations inherent in
naturally occurring light fields. We demonstrate that our
method outperforms traditional color demosaicing methods
by performing experiments on a wide variety of scenes.

1. Introduction
A traditional camera cannot distinguish between differ-

ent rays incident on a pixel. A light field camera, on the

other hand, captures the complete 4D set of rays propa-

gating from scene to camera aperture. The captured 4D
light field contains richer scene information than a tradi-

tional 2D image and can be used to synthesize photographs

from a range of different viewpoints or refocused at differ-

ent depths [8, 7, 14, 13].

A light field camera can be implemented as a planar

camera array [19], a mask based camera [18], or a lenslet-

array based camera [14]. Camera arrays [19] are large,

expensive, and require precise synchronization. Lenslet-

based “plenoptic” camera designs are currently very pop-

ular due to commercial availability from companies such as

Lytro [10] and Raytrix [16]. These cameras are portable, in-

expensive, and require only a single shot to capture a light

field. In this paper, we use a Lytro plenoptic camera to cap-

Figure 1. A Bayer color filter used to multiplex color information

onto a 2D sensor. The filter consists of repeatable two-by-two

grids of Blue-Green-Green-Red patterns. Bayer filters are used

for both conventional 2D cameras, and plenoptic cameras.

ture and process light fields. However, the methods pre-

sented in this paper can also be extended to other light field

camera designs.

Light field cameras typically capture colors in the same

way as traditional cameras: by placing a Color Filter Array

(CFA) on the sensor. For example, the Lytro camera uses

a Bayer type CFA (Fig. 1) that is also commonly used in

digital cameras, camcorders and scanners. The Bayer fil-

ter forces each pixel to capture only one red, green or blue

color component. For traditional 2D cameras, a color de-

mosaicing algorithm is used to restore missing spatial in-

formation, often incorporating an image prior to improve

performance [12]. The Lytro camera places an array of

around 300 × 300 microlenses over a 11 megapixel sen-

sor that is covered with a Bayer CFA. The captured light

field has an effective 300 × 300 spatial and 11 × 11 an-

gular resolution. However the Bayer pattern behind each

microlens introduces gaps in the full color light field: some

rays in each color channel are not measured (see Fig. 2). A

good color demosaicing algorithm is needed to recover this

missing information in order to avoid a loss in resolution.

Furthermore, since the loss of information is inherently 4D

(i.e. missing rays, not pixels) the algorithm should model

the captured signal as a 4D light field rather than a 2D im-

age.

In this paper, we present a learning based technique

for color demosaicing of light field cameras. We exploit
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Figure 2. The Bayer filter used in a plenoptic camera causes gaps

between the rays measured in each color channel. The area behind

a single lenslet is zoomed in to show the effect of the Bayer filter

on the captured light field. The bayer filter effectively applies a

subsampling matrix S to the full-color light field X , producing the

sensed light field Y . The sensed light field contains gaps: some of

the rays in each of the color channel are not measured.

the spectral, spatial and angular correlations in naturally

ocurring light fields by learning an over-complete dictio-

nary, and reconstruct the missing colors using sparse op-

timization. We perform experiments on a wide variety of

scenes, showing that our technique generates less artifacts

and higher PSNR compared with traditional demosaicing

techniques that do not incorporate a light field prior [12].

2. Previous Work

Color demosaicing algorithms for traditional cameras

have been carefully studied for several decades. Those algo-

rithms interpolate missing color values using methods that

exploit spectral and spatial correlations among neighbor

pixels. Examples methods include edge-directed interpo-

lation [9], frequency-domain edge estimation [5], level-set

based geometry inspired by image inpainting [6], dictionary

learning [11] and gradient-corrected interpolation [12].

A significant amount of research on plenoptic cameras

has been focused on modeling the calibration pipeline [4, 3]

and improving image resolution [2, 17]. However, these

methods use traditional demosaicing algorithms designed

for 2D images. But plenoptic cameras capture both spatial

and angular information about the scene radiance, and the

best performing algorithms will model captured images as

4D light fields rather than just traditional 2D images.

Recently, Yu et al. [20] proposed a demosaicing algo-

rithm for plenoptic cameras. Instead of demosaicing the

raw plenoptic image, they postpone the demosaicing pro-
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Figure 3. Overview of our approach: we learn the dictionary D
from a matrix of samples X . Each column in X is a vectorized ver-

sion of a block taken from a down-sampled full-color light field.

The dictionary is used to reconstruct an estimate of a full-color

light field X̂ from the captured bayer-filtered light field Y . The

solution is found by first finding the sparse coefficients α̂ that best

represent the light field in the dictionary basis.

cess until the final rendering stage of refocusing. This tech-

nique can generate less artifacts in a refocused image com-

pared with the classical approach. However, their work is

limited to the demosaicing of refocused images only. Our

paper reconstructs the entire full-color light field by exploit-

ing the spectral, spatial and angular correlations inherent in

naturally occurring light fields.

3. Our Approach
As shown in Fig. 3, our approach consists of two steps:

a training step followed by sparse reconstruction.

In the training step, we learn all the spatial, angular and

color correlations of rays in a light field from a database

of raw plenoptic images captured by a Lytro camera. To

generate ground truth full-color light fields, we downsam-

ple the raw Lytro images by a factor of 2, effectively re-

ducing angular resolution by the same factor. We rectify

the hexagonal-packed lenslet-array to a rectangle-packed

lenslet-array to obtain a canonical plenoptic image L(h,w).
From the canonical plenoptic image L(h,w) there is a sim-

ple mapping to the 4D light field L(p, q, u, v), where p, q
are the angular coordinates, and u, v are the spatial coordi-

nates. Next, we sample a set of 4D blocks from the light

field and lexicographically reorder to obtain a set of sample

vectors. Finally, we feed the sample vectors to the K-SVD
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learning algorithm [1], and learn an over-complete dictio-

nary that can be used to sparsely represent a 4D block of

the full-color light field.

In the reconstruction step, we use the learned dictionary

to reconstruct a full-color light field from a raw plenoptic

image. We rectify the plenoptic image and divide into a set

of T vectorized 4D blocks Y = [yi, . . . , yT ]. The image

formation model is then given by Y = SX , where S is the

Bayer-sensing matrix and X = [xi, . . . , xT ] is the set of

4D light field blocks reconstructed in full-color. We apply

the bayer-sensing matrix to the dictionary D and estimate

a set of sparse coefficient vectors α̂ = [αi, . . . , αT ] such

that Y ≈ (SD)α̂. Then we reconstruct the set of full-color

blocks X using linear combinations of atoms in the dictio-

nary: X̂ = Dα̂. Finally we reshape the matrix X into the

canonical plenoptic image.

3.1. Decoding

Due to design constraints, manufacturing artifacts, and

precision limitations, the microlens array of a Lytro cam-

era is not aligned perfectly to the pixel sensor grid; the

lens array pitch is a non-integer multiple of the pixel pitch,

and there are unknown rotational and translational offsets.

Further, the lenslet grid in a Lytro camera is hexagonally

packed and must be rectified. We slightly modified the

method proposed by Dansereau et al. [4] to decode a raw

Lytro image into a canonical plenoptic image. Note that for

our training set, we do not apply the demosaicing step used

by Dansereau et al. [4], but rather down-sample to obtain

the full color ground truth light field.

The canonical plenoptic image L(h,w), h ∈ {1, ...P ·
U}, w ∈ {1, ...Q · V }, is just a 2D representation of the

4D light field. The 4D light field L(p, q, u, v) measures

the rays that passes through the lenslet (u, v) falling on

to the relative pixel (p, q) within this lenslet, where in-

dices p ∈ {1, ..., P}, q ∈ {1, ...Q}, u ∈ {1, ..., U}, v ∈
{1, ...V }. The mapping between the canonical plenoptic

image L(h,w) and the light field L(p, q, u, v) is expressed

by the equations h = p+ (u− 1)U and w = q+ (v− 1)V .

3.2. Block Sampling

We are interested in finding the sparse representation of a

light field, i.e., finding a dictionary such that any light field

can be described as a sparse linear combination of the atoms

in that dictionary. Since a single captured light field consists

of around around 10 million measurements, it is impracti-

cal to find a dictionary capable of representing such a large

light field in its entirety. Instead, we decompose each cap-

tured light field in to smaller blocks. To maximally take

advantage of correlations in the light field, we sample along

both angular and spatial dimensions. As shown in Fig. 4,

we sample a grid of Bu · Bv spatial positions (i.e. mi-

crolens positions), and Bp · Bq angular positions (i.e. pixel
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Figure 4. Block sampling of a canonical plenoptic image and

lexicographically reordering into a vector. Here we show sam-

pling from a block with Bu × Bv = 4 × 4 spatial samples, and

Bp×Bq = 3×3 angular samples. With color included, the entire

signal contains 3× 3× 4× 4× 3 samples and can be represented

as a x ∈ �432 vector.

locations within each microlens). For training, each ground

truth block is sampled from a full-color light field and has a

block size of n = 3 ·Bp ·Bq ·Bu ·Bv . Each block is lexico-

graphically reordered into a vector xi ∈ �n for dictionary

training. The observed signal is divided into a set of blocks

represented by the vectors yi ∈ �m, i ∈ {1, ..., T} where

m = Bp ·Bq ·Bu ·Bv . Note that n = 3m so that there are 3

times fewer measurements than unknowns, e.g. we want to

reconstruct a 3-color light field from a Bayer-filtered one.

The block size must be chosen to balance reconstruction

quality and computation time, as discussed in Section 4.

3.3. Dictionary Learning

Sparse coding is a widely prevalent tool used in image

processing applications. Popular examples include JPEG
and JPEG2000 coding, which take advantage of sparsity

in the discrete cosine or wavelet transform. Given a full

rank dictionary matrix D ∈ �n×K with K atoms, a sig-

nal x ∈ �n can be represented as a linear combination of

those atoms, i.e. x = Dα. The coefficient vector α ∈ �K

represents the weights of atoms used to reconstruct x. For

an over-complete dictionary (K > n, matrix D full rank),

we have infinite number of solutions of α, among which the

one with the fewest number of nonzero elements appeals

most. We find the sparsest coefficient by solving the fol-

lowing sparse coding problem:
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min
α

‖α‖0 s.t. ‖x−Dα‖2 ≤ ε (1)

The over-complete dictionary D can be derived analyti-

cally from a set of functions such as discrete cosine trans-

forms or wavelets. In this paper we use a dictionary that is

learned from a set of training samples. Given a set of N
training samples X = [x1, x2, ..., xN ] each block-sampled

from the training set of light fields, we seek the dictionary

D that gives the best sparse representation for each training

signal:

min
D,αi

N∑

i=1

‖αi‖0
s.t.‖xi −Dαi‖22 ≤ ε

(2)

We use the K-SVD algorithm [1] to optimize for the best

dictionary and sparse coding of the training signals.

3.4. Sparse Reconstruction

We use sparse reconstruction to demosaic captured light

fields. Demosaicing is achieved by solving the system of

equations Y = SX , giving a solution for the set of full-

color light field blocks X from the set of measured blocks

Y . The Bayer sensing matrix S ∈ �m×n transforms a

3-color light field into a Bayer filtered light field with 3×
fewer measurements than unknowns. S is a binary 0 − 1
matrix where the entries contain a value of 1 if and only if

the corresponding color channel at that given pixel position

is observed in a measured block yi.
For our demosaicing algorithm, we apply the sensing

matrix to the dictionary D and estimate a sparse coefficient

matrix α̂ such that Y ≈ (SD)α̂. Finally we reconstruct

set of the full-color blocks X using linear combinations of

atoms in the dictionary: X̂ = Dα̂.

4. Experiments and Results
To validate the efficacy of the proposed demosaicing

algorithm, we compare our method with the traditional

methods of bilinear interpolation and gradient-corrected

interpolation [12]. The comparison is performed on a

dataset of 30 light fields captured of different scenes

such as plants, fruits, flowers, toys, paintings, books as

shown in Fig. 5. We split the whole dataset into a

training set with 20 light fields and a testing set with

10 light fields. We have made the dataset available

at http://www.xianghuang.net/databases/lfdemosaic for use

by the research community.

For training, we randomly sample a total of approxi-

mately 20, 000 samples of block size 5×5×3×3×3 from

the 20 training light fields. From those samples, we train a

dictionary D that is ’2×’ over-complete: it has 1350 atoms

of 625 dimensional vectors. The block size directly affects

the performance of our demosaicing algorithm. We experi-

mented with different block sizes such as 3× 3× 1× 1× 3,

Figure 5. Our dataset of 30 light fields captured using a Lytro cam-

era. 20 samples are used for training (i.e. learning a dictionary)

and 10 samples for testing (i.e. demosaicing captured light fields).

5 × 5 × 1 × 1 × 3, and 2 × 2 × 2 × 2 × 3. We found that

the block size 5× 5× 3× 3× 3 gives the best performance

within a practical training time. The dictionary is chosen to

be 2× over-complete as we found using more atoms only

slightly improves performance but requires longer training

times. The number of samples was chosen to be around

10 times the number of atoms. We set the training residual

ε = 0.01‖x‖ since we expect a very small noise level in

captured images (i.e. SNR = 40dB = 20log10(1/0.01)).

For testing, we compared our method with bilinear inter-

polation and gradient-corrected interpolation [12] on a total

of 10 scenes. We compute the PSNR for both the recon-

structed light fields and refocused images (focused on the

lenslet plane). Tab. 1 shows that our method (using block

size of 5 × 5 × 3 × 3 × 3) consistently performs better

than traditional methods in all the 10 testing scenes, with

an average PSNR improvement of over 5dB. Tab. 2 shows

the comparison of PSNR for refocused images. Again, our

method (using block size of 5 × 5 × 3 × 3 × 3) consis-

tently performs better than traditional methods for all the

10 testing scenes, with an average PSNR improvement of

over 4.7dB. To show the importance of incorporating both

angular and spatial correlations, we also compare results us-

ing block size of 5× 5× 3× 3× 3 with results using block

size of 5×5×1×1×3. The former incorporates both angu-

lar and spatial correlations. It has an average improvement

of ≈ 7.4dB (entire light field) and ≈ 7.5dB (refocused im-

age) in PSNR relative to the latter which only uses spatial

correlation.

We also qualitatively compare the results of our method

with the gradient-corrected interpolation [12] method.

Fig. 6 shows side-by-side comparison of images that are

slices of light fields for a given ray angle (p, q). We can
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Dataset average color-chart fruit 1 fruit 2 flower res-chart-1 stone bear res-chart-2 car statue

Bilinear 30.65 32.43 3.37 29.41 33.79 31.06 32.70 29.37 28.32 27.89 30.15

Malvar [12] 31.03 32.58 32.04 29.94 34.55 31.80 33.77 29.33 28.66 28.06 29.58

Ours (55113) 28.81 31.08 29.36 27.09 31.31 28.88 30.29 27.92 26.59 26.16 29.46

Ours (55333) 36.16 37.53 37.43 35.80 39.83 35.27 39.42 35.04 33.02 32.70 35.52

Table 1. PSNR (dB) comparison of demosaicing results for 10 light field scenes. PSNR is calculated based on the reconstructed and ground

truth light fields directly. Ours (55113) indicates a dictionary with block size of 5 × 5 × 1 × 1 × 3. Ours (55333) indicates a dictionary

with block size of 5× 5× 3× 3× 3. We compare our method with the traditional methods of bilinear interpolation and gradient-corrected

interpolation [12]. When taking both spatial and angular correlations into account (i.e. Ours 55333), our method performs > 5dB greater

than traditional methods.

Dataset average color-chart fruit 1 fruit 2 flower res-chart-1 stone bear res-chart-2 car statue

Bilinear 39.26 40.98 39.39 37.57 41.90 39.57 40.52 38.81 37.19 37.75 39.05

Malvar [12] 41.72 42.75 42.31 40.50 45.06 42.45 43.84 40.75 40.00 39.65 40.46

Ours (55113) 38.99 41.08 39.48 37.37 41.44 39.29 40.30 38.28 37.45 36.16 39.49

Ours (55333) 46.48 47.61 47.96 46.44 50.64 46.23 49.76 45.16 43.33 43.33 45.80

Table 2. PSNR (dB) comparison of refocused images for 10 light field scenes. PSNR is calculated based on the refocused images
generated from reconstructed and ground truth light fields. We compare our method with the traditional methods of bilinear interpolation

and gradient-corrected interpolation [12]. When taking both spatial and angular correlations into account (i.e. Ours 55333), our method

performs > 4.7dB greater than traditional methods.

observe that our method produces significantly less visual

artifacts compared to the gradient-corrected interpolation

method [12].

5. Conclusion and Future Work

We have presented a learning-based color demosaicing

algorithm for plenoptic cameras. By exploiting angular,

spatial and spectral correlations, our algorithm performs

better than traditional methods such as bilinear interpola-

tion and gradient-corrected interpolation [12].

Our current dictionary is learned solely from a full-color

light field. In the future, we are interested in exploring joint

dictionary learning techniques that explicitly take into ac-

count the properties of the Bayer sensing matrix. However,

the joint dictionary approach will be complicated since it

requires learning a different dictionary for blocks that cor-

respond to different portions of the bayer mask.

Our current Matlab implementation using a 2010 manu-

factured desktop i7−930 CPU takes about 3 hours for train-

ing and 40 − 50 minutes for demosaicing a light field. We

are interested in exploring faster GPU implementations of

dictionary learning and reconstruction implementation such

as the one in [15].
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