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Abstract

Recent development of hand-held plenoptic cameras has
brought light field acquisition into many practical and low-
cost imaging applications. We address a crucial challenge
in light field data processing: dense depth estimation of 3D
scenes captured by camera arrays or plenoptic cameras.
We first propose a method for construction of light field
scale-depth spaces, by convolving a given light field with
a special kernel adapted to the light field structure. We
detect local extrema in such scale-depth spaces, which
indicate the regions of constant depth, and convert them
to dense depth maps after solving occlusion conflicts in a
consistent way across all views. Due to the multi-scale
characterization of objects in proposed representations,
our method provides depth estimates for both uniform
and textured regions, where uniform regions with large
spatial extent are captured at coarser scales and textured
regions are found at finer scales. Experimental results on
the HCI (Heidelberg Collaboratory for Image Processing)
light field benchmark show that our method gives state of
the art depth accuracy. We also show results on plenoptic
images from the RAYTRIX R© camera and our plenoptic
camera prototype.

I. Introduction

Compared to traditional imaging systems, plenoptic
systems provide additional capabilities and functionalities
such as single-snapshot multi-spectral imaging [1], re-
focusing [2] and 3D imaging [3]. This is achieved by
inserting a micro-lens array in front of the imaging sensor.
After calibration, plenoptic data can be demultiplexed to a
set of multi-view images that form a 4-dimensional (4D)
data structure called the light field (LF) [4]. Prior to devel-
opment of plenoptic cameras, LFs have been acquired by
camera arrays or by a moving camera rig, capturing images
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Fig. 1. Example of a LF extracted from a plenoptic image. The
blue line indicates the pixels extracted in the horizontal x − u
slice (EPI) of LF, displayed below. Angle ϕ of ray at pixel x
uniquely determines the disparity ν of x.

from regularly spaces viewpoints. Such acquisition leads to
3D, 4D or higher dimensional pixel arrays, which represent
specific samplings of the 7D plenoptic function [5].

Even though LFs contain multi-view data of a 3D
scene and, therefore, depth information of objects, ex-
tracting dense depth maps from LFs still represents a
challenging problem because of the high dimensionality
of LFs. Estimation of globally consistent dense depth
maps from multiple views or LFs typically requires global
optimization [6], [7], which is of prohibitive complexity for
such high-dimensional data processing. Therefore, there is
an essential need for local LF processing algorithms that
efficiently and robustly extract depth information, while
simultaneously handling occlusions in a given 3D scene.
To address this problem, we exploit the particular geometry
of LFs obtained by plenoptic sensors or planar camera
arrays, where viewpoints are regularly spaced on a planar
surface. A parametrization of such 4D LFs is usually
given in coordinates (x, y, u, v), where (x, y) are pixel
coordinates for an image taken from a viewpoint (u, v).
An example of a LF obtained from a plenoptic image is
shown in Figure 1. We can see that a 2D x−u slice of the
LF, obtained by cutting the LF across views, has a ”linear”
or ”ray” structure, where the angle of a ray corresponds to
a different depth value of that point in a 3D scene. This
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Fig. 2. Detection of ray edges and rays. a) While ray edges (green
lines) can be easily detected and their angle estimated, there are
problems with estimating angles for pixels within uniform regions
(red lines). b) Our approach: we detect whole rays and estimate
their position, angle and width.

structure has been observed by Bolles et al. [8] who named
these slices epipolar plane images (EPIs).

For LFs with such EPI structure, the task of dense depth
estimation can be formulated as a problem of estimating
the angle of rays for each pixel x in a given EPI. In
Figure 2 we show an example of an EPI. We can see
that a typical EPI consists of discontinuities that we call
ray edges, and uniform regions (stripes) bounded by ray
edges that we will simply call rays throughout the rest of
the paper. Each ray is parametrized by its position on x-
axis, its width and its angle with the u-axis. While depth
at ray edges can be reliably estimated via for example
line fitting (green lines in Figure 2a), estimating depth
within rays is challenging as there is an ambiguity in angle
estimation (red lines in Figure 2a) due to the same value
of pixels within the ray. Similar ambiguities exist in stereo
and multi-view approaches, where most solutions impose
smoothness constraints in a global optimization [6] or in
a variational framework [9]. Here, we take a different
approach by formulating the problem as a ray detection
problem where the goal is to simultaneously detect rays
and determine their positions, angles and widths, as il-
lustrated in Figure 2b. Once we have detected rays and
estimated their widths, we can assign the same depth value
to all points within the same ray. This way, we can obtain a
dense depth map without performing global optimization.

The proposed solution to ray detection and estimation
is based on multi-scale LF analysis using scale-space
theory. We exploit the construction of light field scale-
depth spaces that take into account the specific properties
of LFs, as presented in our prior work [10]. We name
them Lisad spaces, short for Light field scale and depth
spaces. Lisad spaces are parametrized both in terms of
scale of objects recorded by the LF and in terms of objects’
depth. In [10], we have introduced a ”Ray Gaussian” kernel

for construction of Lisad spaces that satisfy the scale-
invariance property, and shown an application to 3D key-
point detection. In this paper, we propose a construction of
Lisad spaces based on the normalized second derivative of
the Ray Gaussian and formulate ray detection as extrema
detection is such Lisad spaces. We prove theoretically
that normalized second-derivative Lisad spaces (referred
to from now on as Lisad-2) satisfy the scale-invariance
property and do not exhibit any angle bias. Such bias
would result in inaccurate depth assignment to foreground
vs. background objects. Detected extrema in the Lisad-
2 spaces provide scale and depth estimates for rays of
different sizes, where the scale parameter is proportional
to the width of the ray. Rays are further converted into
per-pixel depth values after solving occlusion conflicts.
Obtaining the width of rays via their scale thus represents
the crucial benefit of using Lisad spaces for dense depth
estimation. Moreover, this approach includes only local
processing and does not require any iterative estimation.

Our contribution with respect to prior art is a new local
method for ray detection and dense depth estimation by
multi-scale 3D analysis of LFs. Analysis of Lisad-2 spaces
allows for a joint ray detection and ray angle estimation,
which has previously always been done separately [8],
[11]. We evaluate the depth estimation accuracy on the
HCI (Heidelberg Collaboratory for Image Processing) LF
benchmark database [12] and show that it outperforms all
algorithms presented in the benchmark, including the state
of the art approach of Wanner and Golduecke [9]. We also
show that estimated depth maps from plenoptic images
obtained with the RAYTRIX R© plenoptic camera [3] and
our own plenoptic camera prototype provide information
about the uniform regions while maintaining sharp edges.

II. Prior art
We first review prior art on LF dense depth estimation,

then briefly give background on scale-spaces and finally
describe our recent work on LF scale-depth spaces [10].

A. Depth estimation from light fields
Unlike dense depth estimation from stereo or multiple

views, dense depth estimation from LFs has not been much
investigated until the last few years. The reason is that
acquiring LFs using plenoptic cameras has only recently
become an excellent alternative to difficult and expen-
sive acquisition with camera arrays. Hand-held plenoptic
sensors [2], [3] and multi-aperture systems [13] offer a
possibility to record LFs using hardware with a small form-
factor. In recent years, we have seen a myriad of papers
addressing different challenges of plenoptic imaging, rang-
ing from hardware design, super-resolution methods to 3D
geometry estimation. What differentiates most prior work
in LF depth estimation from the more general approaches
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of depth from multiple views [6], [14] is that they exploit
the particular EPI structure described in Sec. I.

Bolles et al. analyzed the light fields by detecting edges,
peaks and troughs in the EPI images and then fitting
straight lines to those edges in order to estimate depth
of image features [8]. Criminisi et al. went one step ahead
to group lines in EPIs into 2D EPI stripes and 3D EPI
tubes [11]. Gelman et al. used active contours and the
level-set method to segment the LF into depth layers [15].
A common characteristic of these approaches is that they
use existing image processing tools for detection or seg-
mentation of rays in EPIs, followed by a separate step of
their angle (depth) estimation. Our approach differs in that
sense: by finding extrema in Lisad spaces we jointly detect
rays of different scales and estimate their angles.

Wanner and Goldluecke [7], on the other hand, do not
detect rays, but calculate the structure tensor for each pixel
in each view, which gives local estimates of angles of rays
in the EPIs. Local estimates are then integrated into an
objective based on variational regularization and solved
using global optimization [7]. Their global approach gives
high quality dense depth maps, but also requires more
computation time. They have recently introduced a more
efficient algorithm that performs smoothing of their local
depth estimates [9]. What differentiates our work from
theirs is that our depth estimates are obtained by processing
the whole rays, thereby operating on all views at the same
time, without the need to impose smoothness on views
after depth estimation. We also differ from their global
approach [7] by having only local computations within a
spatial neighborhood of a given pixel (in x-axis), while still
preserving computation over all views (in u-axis). Spatially
local computation is of large importance for applications
of plenoptic sensors that have limited computational ca-
pabilities. Another prior work that proposes local depth
estimation from light fields has been presented by Kim et
al. [16]. Their method requires, however, LFs with high
spatio-angular resolution, which are hard to obtain with
plenoptic sensors.

Finally, the dataterm used in our depth estimation
method is guaranteed not to introduce an angle bias, a
problem first time identified by Criminisi et al. [11].

B. Gaussian scale spaces

Research on scale-space theory has a long history,
dating back to the seminal paper by Witkin [17]. A plethora
of prior works introduce the theory and construction of
scale-spaces for representing signals by filtering them with
kernels of different scales. Scale spaces have found many
applications in analysis of images, videos, tomography
data, medical images (see [18] for a review of literature on
scale-spaces). One of most well known applications is the
Scale-Invariant-Feature-Transform (SIFT), where feature

Fig. 3. Example of a Ray Gaussian kernel with ϕ = π/4 and
σ = 6.

detection is based on finding extrema in the scale-spaces
built upon the Difference of Gaussian (DoG) kernel [19].

The most commonly used kernel for constructing scale
spaces is the Gaussian kernel: Gσ(x) = 1

σ
√
2π
e−

x2

2σ2 . Its
associated scale space in 1D case is defined as I(x, σ) =
I(x) ∗Gσ(x), where ∗ denotes convolution. An important
property of Gaussian scale-spaces is the scale invariance
property: (J ∗ Gσ)(x) = (I ∗ Gsσ)(sx), where J(x) =
I(sx), s ∈ R. This property says that a feature at scale
σ elicits the same response as that feature at a larger
scale sσ, which allows for scale-invariant processing of
signals. This property is necessary for dealing with the
object size variations in image processing [18]. Examples
include edge detection by finding extrema in the scale-
space built upon the normalized first derivative of the
Gaussian σ dGσdx and blob detection by finding extrema in
the scale-space built upon the normalized second derivative
of the Gaussian σ2 d2Gσ

dx2 [20]. Our approach bears similar-
ities to blob detection using normalized second derivative
Gaussian scale-spaces [20], but is specifically constructed
for analysis of LFs, as explained in the next section.

C. Light field scale and depth (Lisad) spaces

In [10] we have presented a method for constructing
Lisad spaces based on a Ray-Gaussian kernel, which was
the first time scale-depth spaces for LFs were introduced.
We have defined the Ray-Gaussian (RG) function as:

Rσ,ϕ(x, u) =
1

σ
√
2π
e−

(x+u tanϕ)2

2σ2 , (1)

where x and u are coordinates of pixels in a 2D EPI, ϕ
is the angle that the RG forms with the u-axis and σ is
the width parameter of the kernel1. An example of a RG
function is given in Figure 3. We can see that it is Gaussian
in x-direction and a ridge in u-direction. The slant of the
ridge is equal to tanϕ, which multiplies u in the shift of x
in the exponent. We have further used the RG to construct
the LF scale-depth space L(x;σ, ϕ) in the following way:

L(x;σ, ϕ) = (I ∗ Rσ,ϕ)(x, u)|u=0, (2)

where u = 0 is chosen because we need to evaluate
convolution only over x (pixel domain) and not over views
u. This is because the LF features will be present in all

1Note that the RG is not just a special case of an affine transformation
of a 2D Gaussian, where σ in u-direction is ∞. Such affine Gaussian is
1/σ
√
2π exp (−(x cosϕ+ u sinϕ)2/(2σ2)).
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views (except in rare cases of occlusion), so we do not
need to localize them within the views. That is,

(f ∗ g)(x, u)|u=0 =

∫∫
x′ u′

f(x− x′,−u′)g(x′, u′)dx′du′.

Note here that L(x;σ, ϕ) does not depend on u since the
convolution is only over x, and that is has both scale
σ and angle ϕ parameters. Note also that we refer to
the constructed space as scale-depth space, since the ray
angle is uniquely related to depth. In [10] we have shown
the scale-invariance property of the RG kernel, which is
important for building its associated scale-depth spaces.
We review the results from [10] here for completeness. Un-
like in standard image scale-spaces, we analyze the scale-
invariance by downsampling only in x since downsampling
in u (dropping views) is usually undesirable.

Lemma 2.1: [Scale-invariance of RG] [10] The follow-
ing equality holds: Rσ,ϕ(x, u) = sRsσ,ϕ′(sx, u), where
ϕ′ = arctan(s tanϕ), ϕ ∈ (−π/2, π/2) and s > 0.
For proof of this lemma and proofs of the following two
propositions, please see [10]. Lemma 2.1 shows that a RG
with scale σ and angle ϕ is equal to its downsampled
version at scale sσ and angle ϕ′ = arctan(s tanϕ), with
values multiplied by s and for downsampling in x by
factor s. Using Lemma 2.1, we have also shown the scale-
invariance property of the Lisad space, as given by the
following proposition.

Proposition 2.2: [Scale-invariance of RG scale-depth
space [10].] If we have a LF slice (i.e., EPI) J(x, u) such
that J(x, u) = I(sx, u) (i.e., I is a downsampled version
of J over x), then it holds:

(J ∗ Rσ,ϕ)(x, u)|u=0 = (I ∗ Rsσ,ϕ′)(sx, u)|u=0, (3)

where ϕ′ = arctan(s tanϕ), ϕ ∈ (−π/2, π/2) and s > 0.
Finally, in [10] we have shown another property of

the RG, which relates to the angle invariance of its inner
product with an EPI.

Proposition 2.3: [10] If we have a real function
fϕ(x, u) = h(x + u tanϕ), where x, u ∈ R, ϕ ∈
(−π/2, π/2) and h is a 1D embedding of fϕ, then ∀ϕ
it holds: 〈fϕ,Rσ,ϕ〉 = 〈f0,Rσ,0〉.

This property means that if an EPI can be embedded in
a 1D space for a given ϕ, i.e., I(x, u) = h(x + u tanϕ),
∀x ∈ R, then its inner product with the RG of angle
ϕ will always have the same value, independent of the
value of ϕ. Note that only LFs without occlusions satisfy
this assumption, which is not always the case in real
LFs. However, we can assume that this requirement is
satisfied locally. This is an important property of Lisad
spaces because it assures that there is no angle (depth)
bias. Finally, note that the proven invariance to scale and
angle differentiates the Ray Gaussian from other kernels
or matching fitters that do not exhibit such properties.

III. Depth estimation by ray detection
In order to estimate depth of objects in a given LF,

we need to estimate angles of all rays in all EPIs. First,
we need a way to detect rays along with their positions
in the slice, their widths and their angles. We propose to
detect rays in EPIs by finding extrema (local minima and
maxima) of the normalized second derivative Ray Gaussian
Lisad space. We present the framework for horizontal (x−
u) EPIs, but the same holds for vertical (y−v) EPIs. Those
will be combined later.

A. Lisad space of the RG second derivative

We first show that scale-invariance holds for scale-depth
spaces built upon the ”normalized” Ray Gaussian second
derivative σ2R′′σ,ϕ = σ2 d2

dx2Rσ,ϕ. We define the normal-
ized second derivative RG Lisad space as: L′′n(x;σ, ϕ) =
(I ∗ σ2R′′σ,ϕ)(x, u)|u=0 = (I ∗ σ2 d2

dx2Rσ,ϕ)(x, u)|u=0 and
refer to it as Lisad-2 space.

Proposition 3.1: [Scale-invariance of Lisad-2 space.] If
we have an EPI J(x, u) such that J(x, u) = I(sx, u) (i.e.,
I is a downsampled version of J over x), then it holds:

(J ∗σ2R′′σ,ϕ)(x, u)|u=0 = (I ∗ s2σ2R′′sσ,ϕ′)(sx, u)|u=0,
(4)

where ϕ′ = arctan(s tanϕ), ϕ ∈ (−π/2, π/2) and s > 0.

Proof (J ∗ σ2 d
2

dx2
Rσ,ϕ)(x, u)|u=0 =

=

∫∫
x′ u′

σ2 d
2

dx2
Rσ,ϕ(x− x′,−u′)J(x′, u′)dx′du′

(L 2.1)
=

∫∫
x′ u′

sσ2 d
2Rsσ,ϕ′(sx− sx′,−u′)

dx2
I(sx′, u′)dx′du′

(w = sx′)
=

∫∫
w u′

sσ2 d
2Rsσ,ϕ′(sx− w,−u′)

dx2
I(w, u′)

dw

s
du′

=

∫∫
w u′

σ2 d
2Rsσ,ϕ′(sx− w,−u′)

d(sx− w)2
d(sx− w)2

dx2
I(w, u′)dwdu′

= (I ∗ s2σ2 d
2

dx2
Rsσ,ϕ′)(sx, u)|u=0.

Besides scale invariance, note that Proposition 2.3 re-
lating to the depth invariance of the inner product with a
LF slice holds also for σ2R′′σ,ϕ.

Figure 4 shows an example of generating a Lisad-2
space for a given 2D EPI. The x−u EPI (top left panel) is
convolved over dimension u with the normalized second
derivative of a Ray Gaussian kernel (top middle panel),
giving a 3D Lisad-2 space with coordinates (x, σ, ϕ) (top
right panel). In the bottom panels, we show examples
of 2D slices through the Lisad-2 volume when fixing a
location x0, a scale σ0, and an angle ϕ0. From left to right
panels, we show slices (x0, σ, ϕ), (x, σ0, ϕ) and (x, σ, ϕ0).
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Fig. 4. Illustration of the scale-depth space of a light field slice, built upon the second derivative of a Ray Gaussian. Top panels:
Convolution of an EPI with a normalized second derivative of the Ray Gaussian gives a 3D light field scale-depth space (Lisad-2).
Bottom panels show Lisad-2 slices; from left to right: angle-scale, position-angle and position-scale.

Extrema in those slices are located in the blue and red
regions. The exact coordinates of the extrema are found
through search over the entire 3D volume. Whereas the
(x, σ, ϕ0) looks like a typical scale-space visualization
with extrema located at the bottom of figure along the
x-axis, the slices (x0, σ, ϕ), (x, σ, ϕ0) exhibit a different
structure, with extrema being located inside the volume.

B. Ray estimation by extrema detection

Similar to using second derivative Gaussian scale-
spaces for blob detection, we use the normalized second
derivative Ray-Gaussian Lisad spaces to find rays in the
EPIs. Namely, it can be easily shown that an extremum
in Lisad space will be located exactly in the middle of
the ray, where the width of the ray is exactly 2σ of that
extremum.

Parameters of P extrema points {(xp, σp, ϕp)}p=1,...,P

give us the following information about each ray p:
• position of the center of the ray xp;
• width of the ray 2σp;
• angle of the ray ϕp.

From the angle ϕp we get depth of that ray by using the
camera calibration parameters as dp = fb/ tan(ϕp), where
f is camera focal length and b is the distance between
neighboring cameras.

C. Occlusion detection

After we have detected rays and found their parameters,
we need to resolve occlusion conflicts between overlapping
rays. Since we have the position and width of each ray,
we can easily find pairs that overlap. Once we have found
overlapping rays, we need to decide on their ordering from
foreground to background. Because larger angle of rays
indicates smaller depth (closer objects, larger parallax),
rays with larger angles should always be in the foreground

(a) (b)

Fig. 5. Ray ordering under occlusion. a) Possible. b) Impossible.

as shown in Figure 5a. Due to noise in images, detected
rays sometimes conform to the situation presented in
Figure 5b, which is an impossible ordering. When we find
such cases of overlapping rays, we remove the ”occluded”
ray (blue in Figure 5b) from the rays set. For situations
conforming to Figure 5a, we keep the rays and we can
additionally record the information about the occlusion.

To decide the ordering we do not use as metric the value
of the Lisad-2 space L′′(x;σ, ϕ) because the invariance to
angle values does not hold in case of occlusion. That means
that this metric would be sensitive to occlusion. Instead
we evaluate the variance of the ray along its direction,
within the ray width equal to 2σ. The ray with the smaller
variance is considered to be in front, because it has less
variation as it does not cross the occlusion boundary.

D. Ray elimination, combination and post-
processing

Beside rays eliminated due to occlusion conflicts, we
also remove rays that have one weak edge. Those rays
are sometimes detected next to object boundaries, meaning
that one side of the ray is an object edge while the other
side is within a uniform background. To solve this problem,
we use the normalized first derivative Ray-Gaussian Lisad
space (Lisad-1) to detect ray edges (see [10]) and then
keep the rays that have ray edges on both sides. Moreover,
we impose a condition that those ray edges have an angle
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value within a small threshold from the angle of the ray.
Lisad space construction (for first and second deriva-

tives), ray detection and occlusion detection are performed
separately on horizontal and vertical EPIs. After we have
eliminated the weak rays, we convert information about
each ray (its position, scale, angle and value of the scale-
depth space) into a dataterm for depth estimation. Namely,
for each ray, we record its angle value for pixels within
that ray (within ±σ from the center of the ray). Therefore,
each ray p assigns an angle value ϕp to pixels in (xp −
σp, xp+σp). After we have done that for all rays, we might
have situations where a pixel has multiple assignments
originating from multiple rays. For each pixel and each
angle value, we then assign a dataterm value equal to the
value of the Lisad-2 space of the ray which gave that angle
value. Therefore, we obtain a dataterm Mh(x, y, ϕ) from
horizontal EPIs and a dataterm Mv(x, y, ϕ) from vertical
EPIs. The final dataterm is then equal to M =Mh +Mv .
To assign an angle value ϕi to each pixel (xi, yi), we
take the ϕi = argmaxϕM(xi, yi, ϕ). Angles are then
converted to depth using d = fb/ tan(ϕ). Therefore, we
obtain a depth map from the detected rays (using the Lisad-
2 space) and from the ray edges (using the Lisad-1 space).
We can further combine these two depth maps by taking
only the confident estimates from both maps. We say that
an estimate is confident if its dataterm value exceeds a
certain percentage of the maximal dataterm value. In a
similar way, we combine depth estimates from different
color channels of LFs.

Finally, we should note that after this depth assignment
there might be pixels with no depth value assigned, due to
no rays for that pixel or if the depth estimate is not confi-
dent enough. We inpaint these regions by median filtering
with masking of the missing regions during filtering. Initial
depth map in the non-missing regions is then combined
with the inpainted depth map values in the mission regions.
Finally, we perform total-variation denoising [21] using the
`1 noise model to remove the outliers.

The flow-chart of the depth estimation method is shown
in Figure 6. Dashed lines denote the detection of 3D edges
in the EPIs and their angles to help with depth assignment.
Ray elimination, combination and post-processing (in-
painting of missing regions and denoising) are all grouped
within the depth assignment block.

IV. Experimental results
We have first evaluated our method on the LF bench-

mark database hosted by the Heidelberg Collaboratory for
Image Processing (HCI) [22] and compared the depth
estimation accuracy to the best reported method of the
benchmark. We have chosen that database because the LFs
are obtained with BLENDER

TM
rendering and thus contain

the ground truth depth. Note that the method presented

Scale-depth space 
construction
(Ray-Gauss 

second derivative)

Scale-depth space 
construction

(Ray-Gauss first 
derivative)

Find 
extrema

Find 
extrema

Occlusion 
detection

Occlusion 
detection

Depth 
assignment

light 
field

depth 
map

Fig. 6. Flow-chart of depth estimation method using Lisad spaces.

in [16] is not evaluated on the HCI benchmark and that the
source code is not available online. Therefore, we cannot
provide comparisons to [16] for the HCI database.

For our method implementation, we have used 64
samples of the angle parameter to form the angle space,
distributed uniformly in depth within the depth range of
the datasets. The conversion from depth to disparity for
the HCI datasets is provided in [22], where the disparity
is represented as the slant of the ray in the EPI. In our
notation, the disparity is equal to tanϕ. For the scale
parameters, we have used 3 octaves with 4 samples per
octave. Prior to depth estimation, we have converted the
RGB light fields into the YCbCr colorspace and then
performed depth estimation per color channel in that space.
Local extrema in Lisad spaces are found by comparing
to nearest neighbors (total of 26 neighbors for a 3D
volume). For Lisad-1, we have used only the first scale
since most edges in these datasets are very sharp and
are captured by small scale derivatives of Gaussian. For
occlusion detection, we consider pairs of rays with angle
difference larger than six steps of the angle parameter.
When their angle difference is smaller, we keep both
rays. For ray elimination, the ray needs to be within one
step of angle difference from its bounding 3D edges. All
parameters are the same for HCI datasets. Finally, note that
our horizontal EPIs are extracted for the middle vertical
views and vertical EPIs for the middle horizontal views.
That means that we are using only the cross-hair views.

To compare with the benchmark datasets, we use two
metrics: the mean squared error (MSE) of disparity esti-
mates and the percentage of pixels with depth error smaller
than 1%. The table with disparity MSE for LF datasets, for
a range of depth estimation algorithms, is given in Figure
7 in [22]. We compare our algorithm to the best reported
value in [22], [9], for Buddha and Mona datasets. These
two datasets have 9 views in each horizontal and vertical
directions. Middle views are shown in Figure 7. We have
chosen these two datasets because our second metric (depth
accuracy) is reported only for these two datasets in Figure
7 in [9]. For other datasets, [9] reports only average values.
Among all prior art algorithms (therefore excluding ours),
the algorithm that gives the smallest disparity MSE value
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(a) Buddha (b) Mona

Fig. 7. Middle views for the Buddha and Mona datasets.

Dataset Metric Ours Best prior work
Buddha disparity MSE 0.0048 0.0055 [23]

< 1% depth error 98.8% 96.5% [9]
Mona disparity MSE 0.0061 0.0082 [23]

< 1% depth error 97.6% 95.4% [9]

TABLE I. Results for Buddha and Mona datasets in terms of the
mean squared error (MSE) of disparity values and the percentage
of pixels with depth error less than 1%.

on the HCI benchmark is the algorithm of [23] (performs
constrained denoising on each epipolar plane image and
takes into account occlusion ordering constraints), while
the algorithm that is the best with respect to the second
metric is [9] (structure tensor local estimate + TV-L1
denoising). We thus compare our algorithm to these two
algorithms using corresponding metrics.

Table I shows the obtained disparity and depth accuracy
for Buddha and Mona, for the two above mentioned
metrics, compared to previously best reported results on
the benchmark. We can see that our method outperforms
the best prior art, both in terms of disparity MSE and
percentage of pixels with depth error less than 1%. Also
note here that the prior methods use all views (81 for
these datasets), while our method uses only the cross-
hair (17 views). We expect that adding other views will
increase the accuracy of our method, making it even more
advantageous to prior work. We show visually the ground
truth and obtained disparity and depth maps for Buddha in
Figure 8(a-d) and Mona in Figure 8(g-j). To see the pixels
whose depth errors are larger than a certain threshold (1%
and 0.5%) we display them in red overlaid on the original
images in Figures: 8(e-f) and (k-l), for Buddha and Mona
respectively. We can see that most errors are located around
edges and specular reflections.

Finally, we show disparity estimation results for the
”watch” image from the RAYTRIX R© camera, obtained
from the HCI database, and for the ”chicken” image
from our own plenoptic camera prototype, in Figures 9
and 10, respectively. The angle here is sampled with 64
steps uniformly in the angle space, since we do not have
conversion to depth. For the RAYTRIX R© dataset, we use

(a) Middle view (b) Disparity map

Fig. 9. Disparity estimation for the RAYTRIX R© ”watch” image.

(a) Middle view (b) Disparity map

Fig. 10. Disparity estimation for the ”chicken” image from our
plenoptic camera prototype.

a larger set of octaves: six for the Lisad-2 space and
two for the Lisad-1 space. One reason for this sampling
is that the ”watch” LF contains larger uniform regions.
Another reason is that, due to the processing applied when
converting a plenoptic image to the LF [24] during the
creation of the benchmark set, the LF contains blurry
edges. We can see that for both watch and chicken images
we get a dense and smooth disparity map even for the
uniform regions.

V. Conclusions
We have presented a novel method for dense depth

estimation from light fields, based on extrema detection
in continuous light field scale-depth spaces built upon the
normalized second derivative of the Ray Gaussian kernel.
We have proven theoretically the scale-invariance of such
scale-depth spaces and that their values do not exhibit
depth bias. Furthermore, we have formulated the depth
estimation problem as a ray detection problem, which
is solved by finding extrema in the formed scale-depth
spaces. Detected rays further allow for efficient occlusion
detection by finding overlapping rays. We then propose
a set of ray combination and post-processing steps to
enhance the quality of depth maps. We show that our
method outperforms the best values previously reported
on the HCI benchmark, for Buddha and Mona datasets.
Our method is purely local and has potential for efficient
implementation. We are working on building datasets with
objects containing more uniform regions, where our scale-
depth space formulation and ray-bundle detection can offer
more benefits than for highly textured datasets presented
in the HCI benchmark.
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(a) true disparity (b) our disparity (c) true depth (d) our depth (e) depth error > 1% (f) depth error > 0.5%

(g) true disparity (h) our disparity (i) true depth (j) our depth (k) depth error > 1% (l) depth error > 0.5%

Fig. 8. Visual comparison of estimated depth/disparity maps to the ground truth depth/disparity maps for Buddha (a-f), Mona (g-l).
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P. Chatterjee, R. Mullis, and S. Nayar, “Picam: an ultra-thin
high performance monolithic camera array,” ACM Transactions on
Graphics (TOG), vol. 32, no. 6, p. 166, 2013. 2

[14] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski,
“A comparison and evaluation of multi-view stereo reconstruction
algorithms,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2006. 3

[15] A. Gelman, J. Berent, and P. Dragotti, “Layer-based sparse repre-
sentation of multiview images,” EURASIP Journal on Advances in
Signal Processing, vol. 2012, no. 1, pp. 1–15, 2012. 3

[16] C. Kim, H. Zimmer, Y. Pritch, A. Sorkine-Hornung, and M. Gross,
“Scene reconstruction from high spatio-angular resolution light
fields,” Transactions on Graphics (TOG), vol. 32, no. 4, p. 73, 2013.
3, 6

[17] A. Witkin, “Scale-space filtering: A new approach to multi-scale
description,” in Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing, 1984. 3

[18] T. Lindeberg, Scale-Space. Hoboken, NJ, USA: John Wiley &
Sons, Inc., 2007. 3

[19] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International Journal of Computer Vision, vol. 60, no. 2,
pp. 91–110, 2004. 3

[20] T. Lindeberg, “Feature detection with automatic scale selection,”
International journal of computer vision, vol. 30, no. 2, pp. 79–
116, 1998. 3

[21] A. Chambolle, “An Algorithm for Total Variation Minimization and
Applications,” Journal of Mathematical Imaging and Vision, vol. 20,
no. 1-2, pp. 89–97, 2004. 6

[22] S. Wanner, C. Straehle, and B. Goldluecke, “Globally consistent
multi-label assignment on the ray space of 4d light fields,” in
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2013. 6

[23] B. Goldluecke and S. Wanner, “The variational structure of disparity
and regularization of 4d light fields,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2013. 7

[24] S. Wanner and B. Goldluecke, “Spatial and angular variational
super-resolution of 4d light fields,” in Proceedings of the European
Conference on Computer Vision, 2012. 7

442


