
Heterogeneous Multi-task Learning for Human Pose Estimation with Deep
Convolutional Neural Network

Sijin Li
Dept. of Computer Science

City University of Hong Kong

sijin.li@my.cityu.edu.hk

Zhi-Qiang Liu
School of Creative Media

City University of Hong Kong

SMZLIU@cityu.edu.hk

Antoni B. Chan
Dept. of Computer Science

City University of Hong Kong

abchan@cityu.edu.hk

Abstract
We propose an heterogeneous multi-task learning frame-

work for human pose estimation from monocular image
with deep convolutional neural network. In particular, we
simultaneously learn a pose-joint regressor and a sliding-
window body-part detector in a deep network architecture.
We show that including the body-part detection task helps
to regularize the network, directing it to converge to a good
solution. We report competitive and state-of-art results on
several data sets. We also empirically show that the learned
neurons in the middle layer of our network are tuned to lo-
calized body parts.

1. Introduction

Human pose estimation is a popular research topic in
computer vision for its wide potential in many applications,
such as video games, gesture control, action understanding,
pose retrieval. Human pose estimation from depth images
is much more mature than estimation from 2D image. Some
algorithms [21] based on depth maps have already been
used in practice. However the majority of visual media are
in 2D format, and most mobile devices are only equipped
with 2D camera. Therefore, it is very useful to estimate
human pose from 2D image.

2D pose estimation from images is more difficult than
estimation from depth maps due to ambiguities of appear-
ance and self-occlusion. In general, human pose estima-
tion approaches can be classified into two types: methods
based on part-based graphical models, and methods based
on regression. In the first approach using part-based graph-
ical models, the human body structure is embedded into the
connections between nodes of the graphical model, and the
pose is estimated by finding the pose configuration that best
matches the observation as measured by a score function
or distribution [6, 7, 10, 13, 20, 27]. One popular graphi-
cal model for human pose estimation is the pictorial struc-
ture model [10] (PSM), which uses pairwise connections

between parts to form a tree. Exact inference is possible
and the solution is guaranteed to be globally optimal [10],
but the inference is still very expensive for real-time ap-
plications. In general, there are two definitions of parts,
namely using joints as parts and using limbs as parts. Using
joint points as parts avoids the need to predict the orienta-
tion of parts, although appearances around joints are more
ambiguous.

For both definitions of parts, the appearance model is
critical for learning a good PSM [3, 7]. Simple appearance
models using linear filters are not capable of capturing the
parts’ appearances, while complicated features are expen-
sive to evaluate at each sliding window. Several methods
have been proposed to alleviate this problem by truncating
the pose space [7, 20]. On the other hand, [28] extends the
traditional PSM by allowing each body part to have multiple
modes. Also, multimodal models, such as mixtures of PSM
or hierarchical PSM [6, 13, 18, 19], have been proposed.
The computation complexity increases rapidly along with
the number of modes.

In the second approach, pose estimation is viewed as a
regression task [2]. These methods train their model to learn
a mapping between feature space and pose space. A good
feature that encodes pose information is more critical for
these methods. Currently, these approaches can only handle
small amounts of training data, since calculating a predic-
tion requires solving an expensive optimization problem.

In recent years, deep neural network architectures have
achieved success in many computer vision tasks [9, 14, 22].
Convolutional neural networks (CNN) are one of the most
popular architectures used in computer vision problems be-
cause of their reduced number of parameters compared to
fully connected models and intuitive structure, which allows
the network to learn translation invariant features. In addi-
tion, convolution is a “cheap” operation that can be com-
puted efficiently. However, because of the larger capacity
(i.e., more parameters) of a deep neural network, it is hard
to train a network that generalizes well with limited data.

In this paper, we propose a heterogeneous multi-task

1482

framework for human pose estimation using a deep con-
volutional neural network. We frame pose estimation as a
regression task, while also defining several accessory tasks
to guide the network to learn useful features for pose es-
timation. In particular, these accessory tasks are sliding
window detectors for different body-parts. In our frame-
work, the heterogeneous tasks (regression and detection)
are trained simultaneously, and we show that the regres-
sion network benefits greatly from the accessory detection
tasks, and converges to much better local minima than the
network trained with only regression tasks. We also em-
pirically show that the activation patterns of neurons in the
middle layers preserve location information and are selec-
tive to localized body-part shapes.

2. Related work
Multi-task learning is typically applied when multiple

tasks resemble each other and training data for each task
is limited [8, 26, 29]. We refer reader to [8, 29] for a re-
view. In the following, we will briefly compare with previ-
ous multi-task approaches and regression networks that are
most related to our work.

In [26], a heterogeneous multi-task model is trained by
encouraging the parameters for the regression task and the
classification task to share the same sparsity pattern. They
found that joint-training tends to find the most useful fea-
tures in the input for both tasks. Instead of sharing a spar-
sity pattern, our framework forces the heterogeneous tasks
to share the same feature layers, which results in learning
shared feature representation that is good for both tasks.

In [9], a deep convolutional network is trained for scene
labeling, by defining a multi-category classification task for
each pixel. Instead, we define our detection tasks over slid-
ing windows in the image. Since we allow each window
to contain multiple body parts, each detection task is essen-
tially a binary classification task in a window.

[23] trains a deep CNN to learn a pose-sensitive em-
bedding with nonlinear NCA (neighbourhood components
analysis) regression, and predicts the location of the head
and hands by finding the nearest neighbor with the learned
embedding features. In contrast to [23], we introduce acces-
sory tasks for learning shared “pose features”, and output
the joint locations directly from the regression network.

In [22], a multi-stage system with deep convolutional
networks is built for predicting facial point locations. In
order to embed a structure prior of the face, they use a set
of neural networks that focus on different regions of the in-
put image. Similarly, [24] trained cascaded convolutional
networks for human pose estimation. Instead of increasing
the number of stages for refinement, here we explore how to
improve the performance of a single regression network by
introducing accessory tasks. Our multi-task strategy could
also be used in conjunction with the multi-stage strategy.

Figure 2: (left) Joint point and body part annotation for pose esti-
mation, and (right) the corresponding indicator map for left-upper
arm detection. In the left image, the green dot indicates the joint
point, and the red line is the body part. The white boxes indicate
detection windows that contain the left upper arm.

In [25] semi-supervised learning is used to guide the net-
work to learn an internal representation that reflects the sim-
ilarity between training samples. The authors propose that
the unsupervised network can either share layers with a su-
pervised network, or serve as an input into the supervised
network. In contrast, we design multiple classification tasks
for body parts detection at different location, while all the
tasks share the same learned feature space.

Finally, in order to investigate the feature representation
learned by the neural network, [15] estimates the “optimal”
input that maximizes the activation of a selected neuron, and
find that the “optimal” input resembles a human face. In
contrast to [15], we visualize a feature by averaging image
patches that are associated with the neurons with maximum
responses in an upper-layer, and obtain similar results.

3. Heterogeneous Multi-task Learning

Our heterogeneous multi-task framework consists of two
types of tasks: 1) a pose regression task, where the aim is
to predict the locations of human body joints in an image;
2) a set of body-part detection tasks, where the goal is to
classify whether a window in the image contains the specific
body part. In the following, we assume that a bounding box
around the human has already been provided, e.g., using an
upper body detector [1]. All the coordinates are with respect
to the bounding box containing the human. Our framework
is summarized in Figure 1.

3.1. Joint point regression

The regression task is to predict the location of joint
points for each human body part. The coordinates of each
joint point are taken as the target values. We normalize all
the coordinates with the size of bounding box so that their
values will be in range of [0, 1]. We use the squared-error
as the cost function for our regression task,

Er(Ĵi, Ji) = ‖Ji − Ĵi‖22, (1)

483

Figure 1: Heterogeneous multi-task learning for pose estimation. Given an image, a human body detector is used to find the bounding box
around the human. Next, a convolutional neural network (CNN) extracts shared features from the cropped image, and the shared features
are the inputs to the joint point regression tasks and the body-part detection tasks. The CNN, regression, and detection tasks are learned
simultaneously, resulting in a shared feature representation that is good for all tasks.

where Ji and Ĵi are the ground truth and predicted positions
for the i-th joint, respectively.

3.2. Body part detection

For the body part detection tasks, the goal is to deter-
mine whether a given window in the image contains a spe-
cific body part. Let P be the total number of body parts,
and let L be the number of overlapping windows inside the
bounding box. For the p-th body part, we train L classi-
fiers, namely Cp,1, ..., Cp,L, to determine whether the l-th
window contains body part p. Note that we train a separate
classifier for each location L, which allows the part detec-
tor to learn a location-specific appearance for the part, as
well as location-specific contextual information with other
parts. For example, a lower arm in the upper corner of the
bounding box will more likely be vertical or diagonal.

In our training set, the annotated body parts are repre-
sented as sticks. Hence, to train the body-part detectors,
we need to first identify the windows in the training set that
contain each body part. A window is considered to contain
a body part if the portion of the body part inside the window
is at least a particular length, relative to the total length of
the part. Specifically, we use the following formula to con-
vert the stick annotation of body part p into a binary label
indicating its presence/absence in the l-th window,

yp,l =

{
1, if len(windowl ∩ stickp) > β · len(stickp)

0, otherwise,
(2)

where stickp is the segment of the p-th body part, and
windowl ∩ stickp is the portion of stickp inside windowl.
β is a fixed threshold, which we empirically set β = 0.3
in all of our experiments. Finally, calculating the binary in-
dicator yp,l for each window l, results in a binary indicator
map for part p. Figure 2 shows an example converting the
upper-arm annotation into an indicator map. Note that we

allow multiple body parts to appear in the same window,
and also allow one body part to appear in several windows.

For each detection task for part p and window l, we min-
imize the cross-entropy error function,

Ed(ŷp,l, yp,l) = −yp,l log(ŷp,l)− (1− yp,l) log(1− ŷp,l),
(3)

where yp,l is the ground-truth label, and ŷp,l is the corre-
sponding detection probability from the classifier.

3.3. Global cost function

Our global cost function is the linear combination of the
regression cost function for all joints and the detection cost
function for all parts and windows, over all training images,

Φ = λr
∑
t

∑
i

Er(Ĵ
(t)
i , J

(t)
i) + λd

∑
t

∑
p

∑
l

Ed(ŷ
(t)
p,l , y

(t)
p,l),

(4)

where λr and λd are the weights for regression and detec-
tion tasks, respectively, and the superscript (t) indicates the
index of the training image.

3.4. Network Structure

The design of our network is based on the following con-
siderations:

• Low level feature sharing: We allow the detection
tasks and regression tasks to share the same learned
feature representation. This is motivated by the follow-
ing two reasons. First, features learned for the detec-
tion task should also be helpful for identifying parts or
joints in the regression task. Second, feature sharing
will reduce the number of parameters and encourage
the network to generalize on a larger range of samples.

• Preservation of location information: The detection
task is to determine whether a local window contains

484

Detection network

...

... ...
... ...

Shared CNN Regression network
32@104x104 32@52x52 16@48x48

16@24x24 16@20x20

...

16@10x10

input conv

max-pool conv

max-pool conv
max-pool

3@112x112

512 512

512 512

7x8x8

16

Detection cost function

Regression cost function

Fully connected layer

Figure 3: Network architecture for pose estimation: The input layer is 112×112 RGB image. The shared CNN consists of 3 convolutional
layers, each followed by a max-pooling layer. The final pooling layer is connected to separate sub-networks for the joint point regression
and body part detection tasks. Each subnetwork contains three fully connected layers.

the specific body part, while the regression task is to
predict the coordinates of the joint position. Hence, the
features extracted from the lower layers should not be
translation invariant, i.e., the positions of the features
should be preserved in the feature map.
• Integration of context information: Sometimes it

is difficult to distinguish different body parts by only
looking at the bounding box of the body parts. For
example, when wearing long-sleeves, the upper arm
and lower arm can have very similar appearance, and
hence it is hard to distinguish them by only looking
at the windows containing these two parts. Including
context information about neighboring parts can help
to improve the part detector. Hence, the input for each
local part detector is the whole bounding box image
(the whole human).

Our network structure is shown in Figure 3. The input
is an RGB image with human. The first 6 hidden layers are
shared by both regression and detection tasks. In the shared
layers, we only use convolutional layers and pooling layers
to ensure the activation of neurons are affected by only local
patterns in the input. We also choose to use a small filter and
stride size to keep more location information.

Each convolutional layer consists of several maps. Fil-
ter weights are shared within each map, which means the
neurons within the same map are sensitive to the same pat-
terns at different location in the previous layer. Neurons
at the same position (but belonging to different maps) will
always contribute to the same unit in the next layer. The
max-pooling layer is added after each convolutional layer
to increase non-linearity and to integrate local information.

The value of neuron i in a convolutional layer or regres-
sion layer is calculated by

v(i) = fact(
∑
j∈Ri

wi,jv(j)), (5)

whereRi is the set of neurons from which neuron i receives
input, wi,j is the weight between neuron i and neuron j, and

fact is the activation function of that layer. Most of the neu-
rons in our network are Rectified Linear Units (ReLu) [17],
where fact(x) = max(0, x). [17] showed that ReLus are
good for recognition tasks and fast to train. We use the hy-
perbolic tangent as the activation function in the last layer
of the regression task, and the logistic function in all the last
layer of detection tasks.

3.5. Training
We jointly train the regression and detection networks

with the global cost function in (4). We use back-
propagation [16] to update the weights. Given a training
image, predictions for both tasks are calculated, and the
corresponding gradients are back-propagated through the
network. For layers with several output layers, the gradi-
ent from their output layers are summed together for weight
updating. “Dropout” [12] is also used in the first fully con-
nected layers for the regression and detection tasks to pre-
vent over-fitting. The dropout probability is set to be 0.5 in
the experiments. In each iteration, the neurons in dropout
layers will be randomly selected with probability 0.5 to for-
ward their activation to the output units, and only the se-
lected neurons will participate in the back-propagation dur-
ing this iteration. In the testing stage, all the neurons are
used for prediction with their activation value multiplied by
0.5 for normalization. This strategy turns out to be very ef-
fective, since without “dropout”, our network will severely
overfit. We refer reader to [14] for more details about the
training procedure.

4. Experiments
We present experiments using our method HMLPE (het-

erogeneous multi-task learning for pose estimation).

4.1. Training data

We collect training data from several data sets, includ-
ing Buffy Stickmen [7], ETHZ Stickmen [4], Leed Sport
Pose (LSP [13]), Synchronic Activities Stickmen (SA [6]),

485

Frames Labeled In Cinema (FLIC [19]), We Are Fam-
ily(WAF) [5]. For Buffy, LSP, FLIC we only use their re-
spective training sets, while we use the whole ETHZ, SA,
and WAF datasets for training. In total, we have collected
8427 images for training.

We represent the human body with a set of joints, and use
the segments between those joints to represent body parts.
For data sets with only stick labels, we use the nearest end
of stick or average of nearest ends as the joint point. We
define 8 joints (nose, neck, left and right shoulders, left and
right elbows, and left and right wrists), and 7 body parts
(head, left and right shoulder, left and right upper arms, and
left and right lower arms). Since Buffy, ETHZ, SA, WAF
only provide the upper-end and lower-end of the head, we
use the middle point as the nose position. We illustrate our
parts and joints definition in Figure 2.

Bounding boxes for the training images are generated ac-
cording to the ground-truth labels. We select a bounding
box for each training image that contains all the annotated
body parts, and then resize the image inside the bounding
box to 128 × 128. We then augment the dataset by ran-
domly selecting 16 bounding box of size 112 × 112 inside
the extracted human image, and apply a mirror transforma-
tion to double the training set. In total, the training set is
augmented by a factor of 32.

In the current experiments, images with occluded body
parts are removed, although our framework could be ex-
tended to handle training poses with occlusion.

4.2. Experiment setup

For our HMLPE, the pose regression task predicts 8 joint
positions (16 outputs in total), and the detection task has
7 body parts. For the detection task in HMLPE, we use
64 local windows of equal size uniformly distributed in the
bounding box. The window size is set to 30 × 30 in all ex-
periments, which is comparable to the size of a body parts
found in the training set. We pre-train the network using
the training data discussed in the previous section, in order
to obtain an initial network. Then, we use the initial net-
work as the starting point for training the network using the
training data of a specific dataset, either Buffy or FLIC. The
initial network serves as a prior to help regularize the net-
work. We train and evaluate our network on a Dell T3400
with GTX 770 4G. Training the network takes 1 to 2 days,
while the evaluation for 4000 images takes 5-6 seconds.

4.3. Evaluation on Buffy Set

We use the same upper body detector as [7, 11]. In or-
der to get the human bounding box, the width and height
of the upper body detection windows are scaled by a fixed
factor (swidth = 1.7, sheight = 4.2), which were empiri-
cally set according to the training set. The scaled detection
window is used as the human bounding box, and the image

Table 1: PCP on Buffy test set. LL, RL, LU, and RU mean left-
lower, right-lower, left-upper, and right-upper.

whole test set (276 images)
PCP (α = 0.5) LL arms RL arms LU arms RU arms

HMLPE 55.80 56.88 90.22 93.12
RoDG-Boost[11] 51.5 92.8

Eichner[7] 50.0 81.9
MoP [28] M = 6 51.45 55.43 82.25 87.68
MoP [28] M = 9 56.52 55.80 84.78 89.13

MoP [28] M = 12 60.87 59.78 85.87 88.41
test subset with correct upper-body detections (267 images)

HMLPE 57.68 58.80 93.26 96.26
MoP [28] 57.5 94.3

is cropped and resized to 112× 112.
We use Percentage of Correct Part (PCP) to measure the

accuracy of pose estimation. As pointed out in [11], the
previous PCP evaluation measure does not compute PCP
correctly. We use the evaluation tool provided by [11] to
calculate the corrected PCP, where an estimated body part
with end points (e1, e2) is considered as correct if

‖e1 − g1‖2 ≤ α · L and ‖e2 − g2‖2 ≤ α · L
or

‖e2 − g1‖2 ≤ α · L and ‖e1 − g2‖2 ≤ α · L
(6)

where (g1, g2) and L are ground truth position and length of
the part, and α is the parameter for PCP. We use the standard
value of α = 0.5.

Table 1 presents the PCP results of lower and upper arms
(since we have different definitions of torso and head parts,
we do not show the evaluation here). On the whole Buffy
test set (276 images), HMLPE achieves better results than
[7, 11] on the more difficult parts, lower arms (4.8% im-
provement), but gets a slightly worse result than [11] on
upper arms (1.1% lower) .

Evaluation on the whole Buffy test set includes errors
due to mis-detection of the upper body. To investigate the
pose estimation performance alone, we also present results
on the subset of the Buffy test set where the upper body
detector predicts the correct bounding box. In this case,
HMLPE achieves slightly better results than [28] (0.7% bet-
ter on lower arms and 0.5% better on upper arms).

We also run the code from [28] on our full training set,
using different number of components per part (denoted as
M = {6, 9, 12}). The default setting of M = 6 gets worse
results than the model trained with only the Buffy training
set, most likely because the full training set contains more
variance in poses. Increasing the number of components
improves the accuracy, but at an increased cost of training,
e.g., 4 days were needed to train the M = 9 model. Using
M = 12, [28] has better PCP (4%) on the lower arms com-
pared to HMLPE. On the other hand, HMLPE has better
PCP (4.5%) than [28] on upper arms.

486

2 4 6 8 10 12 14 16 18 20

10

20

30

40

50

60

70

80

90

100

r

ac
c

HMLPE elbow acc
HMLPE wrist acc
modec(4s/img) elbow acc

modec(4s/img) wrist acc

Figure 4: Test results on the FLIC data set.

Table 2: PCP on FLIC test set.
PCP(α = 0.5) LL arm RL arm LU arm RU arm

HMLPE 59.05 56.70 92.81 92.52

4.4. Evaluation on FLIC Data set

Next we evaluate on the FLIC test set. We use the
same torso box as [19] with scale factors (swidth = 3.5,
sheight = 4.5) set empirically from the training set. [19]
uses the following accuracy to evaluate their performance,

accJi
(r) =

100

Nsample

Nsample∑
t=1

111

(
100 · ‖J (t)

i − Ĵ
(t)
i ‖2

‖J (t)
lhip − J

(t)
rsho‖2

≤ r
)
.

(7)
where J (t)

i and Ĵ (t)
i are the ground truth annotation and pre-

dicted position for the i-th joint point of test image t.
Since [19] compares their methods with several previous

approaches, and show that their model performs the best un-
der this criteria, we only compare with [19]. The accuracy
results are shown in Figure 4. HMLPE has better accuracy
with a looser criteria (larger r); for r = 20, the accuracy
of HLMPE on wrists and elbows is about 6% higher than
MODEC. On the other hand, HLMPE has worse accuracy
with a strict criteria (when r = 6, HMLPE is about 7% and
5% lower than MODEC on wrists and elbows). These re-
sults suggest that HLMPE can robustly estimate the general
pose, but is less accurate at estimating the exact location
of each joint. Also, we have trained MODEC on our full
training set, but did not observe any improvement.

In addition, we measure PCP on the FLIC dataset to fa-
cilitate future comparisons (see Table 2).

4.5. Effect of multi-task training

Next we study the effect of multi-task training, i.e., the
joint learning of the regression and detection tasks. We set

different values for the weights of the regression and detec-
tion tasks. All parameters except the weights on the cost
function are kept the same. We show training and testing
error in Figure 5 and in Table 3.

Firstly, the network with only the regression task per-
forms poorly on both the training and testing sets.1 Even
using tiny weights on the detection tasks help to improve the
convergence, leading to a significant performance increase.
Within a certain range, increasing weights on the detection
tasks leads to lower errors on the test set. For larger weights
on the detection tasks, the performance decreases. This is
reasonable since the gradient will be dominated by detec-
tion task in this case.

These results suggest that the regression task benefits
greatly from the feature representation induced by the de-
tection tasks. The gradients from detection tasks not only
guide the network to converge to a better minimum on the
training set, but also help to enhance the generalization. Al-
though the network needs to learn 7*8*8 detectors from
limited training data, sharing features among the detection
and regression tasks seems to be an effective way for learn-
ing useful features for both tasks.

Table 3: Effect of changing the weights on each task - the training
and testing errors are for epoch 100.

λR/λP 0 0.5 1 2 4 1010 ∞
training error (R) - 0.059 0.039 0.036 0.036 0.036 0.241

test error (R) - 0.149 0.131 0.132 0.137 0.163 0.284
training error (P) 0.045 0.051 0.041 0.041 0.042 0.693 -

test error (P) 0.069 0.070 0.064 0.064 0.066 0.693 -

5. Visualization of features
In this section, we investigate the features learned by the

network. Since the first convolutional layer operates on the
input image, the filter response can reflect what low-level
patterns in the image to which the neurons are sensitive.
The learned filters are in Fig. 6a, and as expected, they look
like edge or gradient detectors for different orientations.

For the 2nd and 3rd layers (mid- and high-level features),
we use a different approach than [15], which finds the input
that maximizes one specific neuron. Instead, we use the
property that our network is only locally connected in the
first 6 layers. That is, the activation of some neurons in the
middle layers are only affected by a sub-region of the in-
put image. In addition, the connection is regular, we can
backtrack through the network to find the region of the im-
age from which a neuron received its input. We present the
backtracking algorithm in Algorithm 1. Since filter weights
are shared within the same feature map, neurons in the same
map are “expecting” the same local patterns in the previous
layer. Based on these properties, we consider the activa-
tion of one feature map at a time. Instead of solving an

1Training the network with different initializations gave similar results.

487

pose regression task part detection tasks
training error test error training error test error

20 40 60 80
Epoch

10−1

20 40 60 80
Epoch

10−1

20 40 60 80
Epoch

10−1

20 40 60 80
Epoch

10−1

λR = 1, λP = 2

λR = 1, λP = 0

λR = 1, λP = 1

λR = 10, λP = 10−9

λR = 1, λP = 0.5

λR = 0, λP = 1

λR = 1, λP = 0.25

Figure 5: Effect of changing the weights in multi-task learning: training and test errors for (left) the pose regression task, and (right) the
detection tasks. The test errors are the average costs of regression (left) and detection (right) tasks on the Buffy and FLIC test datasets.

optimization problem, we select the patches in the origi-
nal image that contribute to the maximum activation in one
feature map. Figure 7 shows the backtracked patches on a
Buffy test image for different features in the 3rd convolu-
tional layer. Surprisingly, we find some feature maps work
like body part detectors — the maximal activation in some
maps occurs more frequently on neurons that take inputs
from region of body parts, such as head, shoulders and arms.

To visualize the feature of a map, we average all its cor-
responding backtracked patches from all training images.
The average backtracked patches for each map in the 2nd
and 3rd convolutional layers are shown in Figure 6b and 6c.
The average backtracked patches show more clear patterns
of body parts like head, shoulder, upper arms. In particular,
the visualizations of the mid-level features in Fig. 6b look
like body part detectors, such as head (feature 1), neck (fea-
ture 9), arms (feature 5), and shoulders (feature 14). Sim-
ilarly, the high-level features in Fig. 6c look like localized
body parts, e.g., heads in different positions (features 2, 3,
and 11), left and right shoulders (features 1 and 10), and
arms (features 6, 9, and 15). There are also a few high-
level features that do not correspond to specific body parts.
For example, feature 8 in Fig. 6c has two horizontal bands
of color, and appears to respond to horizontal background
structures, such as windows and the tops of door frames (see
Fig. 7). This feature could be useful for identifying context
information, such as the location of the top of the door rel-
ative to the top of the head.

6. Conclusion
In this paper, we have proposed a heterogeneous multi-

task learning framework with deep convolutional neural

network for human pose estimation. Our framework con-
sists of two tasks: pose regression and body-part detec-
tion via sliding-window classifiers. We empirically show
that jointly training pose regression with the detection tasks
guides the network to learn meaningful features for pose es-
timation, and makes the network generalize well on testing
data. Finally, we visualize the mid- and high-level features
using the average of backtracked patches from the maxi-
mally responding neurons. We found that these neurons
are selective to shape patterns resembling localized human
body parts.

In future work, we will extend our network for learn-
ing poses with occlusion, and combine our framework with
unsupervised learning for pre-training the network. In addi-
tion, we would like to extend our framework for estimating
human pose from video sequences, as well as other struc-
tured objects.

Acknowledgements This work was supported by the Research
Grants Council of the Hong Kong Special Administrative Region,
China (CityU 123212, CityU 118810, and CityU 119313).

Algorithm 1 Backtracked patches

Require: layer list, R = (mx,my,mx,my)
{(mx,my) are the location of maximum activation}
for l in reversed(layer list) do
Rlx ← Rlx · l.stride
Rly ← Rly · l.stride
Rux ← Rux · l.stride+ l.filter size− 1
Ruy ← Ruy · l.stride+ l.filter size− 1

end for

488

(a)

(b) (c)

Figure 6: Visualization of low-, mid-, and high-level features in our trained network: (a) shows 32 filter weights in the first convolu-
tional layer; visualizations of the (b) mid-level features from the second convolutional layer; and (c) high-level features from the third
convolutional layer.

Figure 7: Examples of backtracked patches in the original image. Each image patch is the backtracked patch that caused maximum
activation in a feature map of the 3rd convolutional layer. The order of patches corresponds to the order of features in Fig. 6c.

References
[1] Upper body detector. http://groups.inf.ed.ac.

uk/calvin/calvin_upperbody_detector/.
[2] L. Bo and C. Sminchisescu. Twin gaussian processes for

structured prediction. Int. J. Comput. Vision, 2010.
[3] M. Dantone, J. Gall, C. Leistner, and L. van Gool. Human

pose estimation from still images using body parts dependent
joint regressors. In CVPR. IEEE, 2013.

[4] M. Eichner and V. Ferrari. Better appearance models for
pictorial structures. In BMVC, pages 1–11, 2009.

[5] M. Eichner and V. Ferrari. We are family: Joint pose estima-
tion of multiple persons. In ECCV, September 2010.

[6] M. Eichner and V. Ferrari. Human pose co-estimation and
applications. IEEE Trans. Pattern Anal. Mach. Intell., 2012.

[7] M. Eichner, M. Marin-Jimenez, A. Zisserman, and V. Fer-
rari. 2d articulated human pose estimation and retrieval in
(almost) unconstrained still images. IJCV, 2012.

[8] T. Evgeniou, C. A. Micchelli, and M. Pontil. Learning mul-
tiple tasks with kernel methods. JMLR, 6, Dec. 2005.

[9] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning
hierarchical features for scene labeling. IEEE TPAMI, 2013.

[10] Felzenszwalb, P.F., Huttenlocher, and D.P. Pictorial struc-
tures for object recognition. IJCV, pages 55–79, 2005.

[11] K. Hara and R. Chellappa. Computationally efficient regres-
sion on a dependency graph for human pose estimation. In
CVPR, 2013.

[12] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Improving neural networks by preventing
co-adaptation of feature detectors. CoRR, 2012.

[13] S. Johnson and M. Everingham. Learning effective human
pose estimation from inaccurate annotation. In CVPR, 2011.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS 25. 2012.

[15] Q. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. Cor-

rado, J. Dean, and A. Ng. Building high-level features using
large scale unsupervised learning. In ICML, 2012.

[16] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. In Proceed-
ings of the IEEE, pages 2278–2324, 1998.

[17] V. Nair and G. E. Hinton. Rectified linear units improve re-
stricted boltzmann machines. In ICML, 2010.

[18] L. Pishchulin, M. Andriluka, P. Gehler, and B. Schiele. Pose-
let conditioned pictorial structures. In CVPR, 2013.

[19] B. Sapp and B. Taskar. Modec: Multimodal decomposable
models for human pose estimation. In In Proc. CVPR, 2013.

[20] B. Sapp, A. Toshev, and B. Taskar. Cascaded models for
articulated pose estimation. In ECCV, 2010.

[21] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,
R. Moore, A. Kipman, and A. Blake. Real-time human pose
recognition in parts from single depth images. CVPR, 2011.

[22] Y. Sun, X. Wang, and X. Tang. Deep convolutional network
cascade for facial point detection. In CVPR, 2013.

[23] G. W. Taylor, R. Fergus, G. Williams, I. Spiro, and C. Bre-
gler. Pose-sensitive embedding by nonlinear nca regression.
In NIPS, pages 2280–2288, 2010.

[24] A. Toshev and C. Szegedy. Deeppose: Human pose estima-
tion via deep neural networks. In CVPR, 2014.

[25] J. Weston, F. Ratle, and R. Collobert. Deep learning via
semi-supervised embedding. In ICML, 2008.

[26] X. Yang, S. Kim, and E. P. Xing. Heterogeneous multitask
learning with joint sparsity constraints. In NIPS, 2009.

[27] Y. Yang and D. Ramanan. Articulated pose estimation with
flexible mixtures-of-parts. In CVPR, 2011.

[28] Y. Yang and D. Ramanan. Articulated human detection with
flexible mixtures of parts. IEEE TPAMI, 35(12):2878–90,
2013.

[29] K. Yu, V. Tresp, and A. Schwaighofer. Learning gaussian
processes from multiple tasks. In ICML, pages 1012–19,
2005.

489

http://groups.inf.ed.ac.uk/calvin/calvin_upperbody_detector/
http://groups.inf.ed.ac.uk/calvin/calvin_upperbody_detector/

