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Abstract

This work describes and explores novel steps towards
activity recognition from an egocentric point of view. Ac-
tivity recognition is a broadly studied topic in computer vi-
sion, but the unique characteristics of wearable vision sys-
tems present new challenges and opportunities. We eval-
uate a challenging new publicly available dataset that in-
cludes trajectories of different users across two indoor en-
vironments performing a set of more than 20 different ac-
tivities. The visual features studied include compact and
global image descriptors, including GIST and a novel skin
segmentation based histogram signature, and state-of-the
art image representations for recognition, including Bag
of SIFT words and Convolutional Neural Network (CNN)
based features. Our experiments show that simple and com-
pact features provide reasonable accuracy to obtain ba-
sic activity information (in our case, manipulation vs. non-
manipulation). However, for finer grained categories CNN-
based features provide the most promising results. Future
steps include integration of depth information with these
features and temporal consistency into the pipeline.

1. Introduction

Thanks to advances in consumer electronics, digital cam-
eras are ubiquitous sensors whose presence is constantly
growing and offer more and more solutions to real-life prob-
lems. Moreover, the miniaturization of camera optics and
electronics has facilitated the construction of a wide variety
of wearable visual sensors. The ever growing capabilities of
local and cloud based computing are pushing the potential
for this technology even further. The information captured
by wearable or person-mounted cameras presents opportu-
nities for a diverse array of applications. From early proto-
types focused on life logging, e.g. [6], to more interactive
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Figure 1. (a) Wearable vision system evaluated in this work
(RGB-D camera mounted on a helmet together with other vision
sensors not used in this work). (b) Sample images from activi-
ties recorded with this system. The second and third images were
correctly classified, while the first one was incorrectly labeled, it
should belong to the others category.

devices such as Google Glass1, advancements in the design
of these systems are pushing the boundaries of wearable vi-
sion applications. In this paper we explore opportunities of-
fered by vision and depth (RGB-D) sensors in this field, in
particular for first-person activity recognition. Fig. 1 shows
the sensor and images used in this work.

Distinguishing between fine grained activity labels based
solely on still frames (e.g., opening vs. closing a door) is a
challenging task. Sequential and temporal information is
the key to distinguish such cases, but in many activities still
images can nonetheless narrow down the list of possible ac-
tivities. This work is focused initially on classification of
still images (i.e., descriptors computed separately for each
frame), but in the future these steps can be integrated with
spatiotemporal consistency or additional features to achieve
more detailed activity recognition.

The main goals and contributions described in this work

1http://glass.google.com
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are the following:

• Evaluating a prototype with a helmet-mounted RGB-
D camera worn by a set of users performing similar
indoor activities. We propose a hierarchy of labels to
facilitate the use of contextual information before run-
ning fine grained activity classification.

• Analyzing the performance of new image representa-
tions for still-frame activity recognition: (a) a set of
proposed compact global descriptors built after skin
segmentation proposed and (b) Convolutional Neural
Network based image representation for activity recog-
nition.

2. Related Work
The increasing popularity of wearable cameras has been

accompanied by expanded interest in computer vision appli-
cations that can be developed for or adapted to the demands
of this domain (e.g., first-person viewpoint, low power re-
quirement, and abundance of captured data). We find most
of the earlier works to be focused on life logging and its ap-
plications [14] which naturally motivates the development
of automatic summarization techniques such as [9].

Other works in this area focus on shorter-term wear-
able camera applications, such as user interaction; see for
example the hand location and gesture based UI of [13].
Other works in this vein include a system for monitoring a
user workspace [1] and an approach to track people moving
around a user [7]. Our work similarly explores how to take
advantage of RGB-D wearable sensors, but does so in the
context of activity recognition.

Some recent works involving activity recognition from
an ego-centric point of view include [18] which classifies
interactions with the user into categories such as punching
or hugging and [11] which leverages the point of view of the
camera to estimate the gaze of the user, as the information
about where the user is looking is a strong hint for activity
recognition.

Action recognition is an important topic in computer
vision, not necessarily from an egocentric perspective, so
many of the lessons learned in general settings are of in-
terest for our work. In particular, works on skin segmen-
tation [22, 16] play an important role in our study. Skin
pixels will contain very important information if we ana-
lyze the interactions of a person with the environment, but
their location in the image depends heavily on the vantage
point of the camera capturing the scene. Therefore, as we
will see in later sections, we build our image description
starting from pixel-wise skin segmentation rather than from
hand and gesture detection libraries, typically designed for
a different point of view (frontal).

Also related to our study is the problem of scene un-
derstanding. Global scene-level image information can be

Table 1. Hierarchy of Action Labels used in this work.
Granularity Action Labels

Level 1 Manipulation Non-Manipulation
One hand Walk Talk

Level 2 Two hands Stairs Seating
Pick-up Stand
Others Screen

used to provide context to support finer grained recognition
stages [20]. This two stage hierarchical approach has also
been used successfully in the context of activity recognition
with spatio-temporal features [19].

Another component of our study involves the evaluation
of compact image descriptors for basic activity understand-
ing and an exploration of how state of the art features facili-
tate activity recognition tasks. Convolutional Neural Net-
works (CNN) provided significant performance gains on
computer vision benchmarks including ImageNet[2]. In
2012, a deep CNN model achieved the best results on
ILSVRC2012 [8] and we implemented a CNN in their sys-
tem (DECAF)[3]. Recently, the same model is showed
promising results of a range of datasets including PASCAL
VOC, Caltech-UCSD Birds and Oxford Buildings [17].

3. Hierarchical Activity Recognition from a
Head-mounted camera

As previously mentioned, many recognition systems that
need to handle large amounts of data work in a hierarchical
manner: first the system prunes the classification options
using global information, to either find a set of possible can-
didates or provide some kind of context information; then,
a more detailed analysis is performed to determine which of
the possible candidates is the best fit.

In this work we propose how a similar hierarchical pro-
cess could be useful for the task of activity recognition from
a wearable vision system. The following assumes a com-
puter vision system with similar properties to the one we
are testing in this work: a head mounted camera, pointing
a bit down, to facilitate keeping the user’s hands within the
field of view. This facilitates the analysis of the actions per-
formed. We can see the described configuration in Fig. 1.

Table 1 shows the labels we are considering at different
levels of granularity. At level 1, we perform a binary clas-
sification into manipulation and non-manipulation actions.
The subsequent levels model progressively fine grained cat-
egories within each level 1 group. The non-manipulation
labels are assigned to every frame in the sequence while
the manipulation labels may not be present in every frame.
Frequently, we find frames where several labels occur si-
multaneously (one from each level 1 group, e.g., we can be
standing and opening something at the same time). To sim-
plify this initial study, we consider only the dominant label,
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e.g., if the user is seating and reading from the computer
screen, we assign the Screen label to that frame.

Our dataset also includes a 3rd level with finer cate-
gories, but the frequency of these activities is sufficiently
low as to make training a classifier impossible. Therefore,
manipulation actions have been grouped into similar actions
according to how the hands and arms are located (from
the first-person perspective) while performing them: Two-
hands: includes all activities where the user uses/shows
both hands while performing the action; One-hand: same
as before but for one hand; Pick-up: includes all activities
where the user merely picks up or drops an object but does
not otherwise interact with it; Others: all activities that im-
ply manipulation but do not fit any of the above.

Specific Level 3 actions represented in the dataset are
as follows. Two-Hands: Typing on a keyboard, Using
the mouse, Reading a paper, Reading a book, Writing on
a paper; One-Hand: Hand-shaking, Writing on a board,
Open-close door, Open-close window, Open-close fridge,
Open-close microwave, Open-close closet; Pick-up: Using
vending machines, Answering the phone, Drinking, Eating,
Picking-up and Droping an object.

4. RGB-D image segmentation and description
As previously described, the focus of this work is on still

frame based activity recognition. This section describes the
different types of image descriptors studied in this work for
our experiments.

4.1. Global image descriptors

The first type of descriptors considered are typical global
image descriptors, which give a compact image represen-
tation frequently used for scene categorization and place
recognition, such as GIST [15], color histograms or global
image statistics such as color invariant moments.

4.2. Skin segmentation based features

We can use our specific settings to design domain-
specific features. In particular, we want to achieve ego-
centric activity recognition from a head mounted camera
pointing down. We design an image signature that roughly
encodes the distribution and location of skin pixels (arms
and hands) in the image.

4.2.1 Skin segmentation

We start by implementing a standard color based skin seg-
mentation step. There is a lot of prior work on how the best
ways to segment skin color values. Some are using motion
as well as color to perform segmentation (e.g. [10]) while
other just focus on static image segmentation. In particu-
lar, following the survey in [22], we apply the following
filter, (1), to the RGB values of each pixel. Given the R, G

(a) (b)
Figure 2. Skin segmentation. (a) Original raw image (b) Segmen-
tation using color and depth filtering. The white pixels (those that
are NOT within the dashed rectangle) were accepted by the color
filter but rejected by the depth filter. Depth helps us tp filter out
feet and ground reflection pixels within the skin color range.

and B color values of a pixel p, in a standard range of values
from 0 to 255, p is considered a skin pixel if the following
expression is true:

(R > 95) ∧ (G > 40) ∧ (B > 20) ∧
(max {R,G,B} −min {R,G,B} > 15) ∧

(|R−G| > 15) ∧ (R > max {B,G}).
(1)

Including depth information. In addition to the color
segmentation, we can use the depth information provided
with the dataset (obtained with the RGB-d sensor). Since
we aim for a simple signature, we propose to use the depth
value as part of the filtering process, so we do not ac-
cept skin-color pixels if they are further away than a given
threshold. This threshold should correspond to the maxi-
mum reach of a user (we set this threshold to 1m after mea-
suring in 5 different users). As we can see in Fig. 2, this
helps to get a better skin segmentation, by not only discard-
ing real skin pixels that are further away (e.g., feet), but
also rejecting spurious skin-colored regions (e.g., parts of
the floor).

The inclusion of depth information is simple but allows
us to be less strict with the range of acceptable colors. How-
ever, we should note that indeed the skin color segmentation
is still very dependent on the users that acquired the dataset,
therefore a user-based skin color calibration will be needed
in a more general setting.

We also explored the use of another step that makes use
of depth information: plane segmentation. Our motivation
was to remove pixels corresponding to a dominant plane in
the scene. This can easily be discovered by fitting a plane to
the 3D points. Further, we can determine whether it corre-
sponds to a table where the user is manipulating something,
the floor, a wall, and so on. Once we know which pix-
els correspond to that surface, we can also suppress them
from the skin pixel set (avoiding noise for instance when a
wooden table has skin colored regions). However, after our
initial experiments, we deemed the computational cost in-
crease too high for the improvements obtained, so this filter
is not used in the rest of experiments in this work.
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(a) (b)
Figure 3. Skin segmentation based descriptors. (a) 10×10 grid
on the skin-segmented image used to compute the SKIN HIST de-
scriptor. (b) Bounding boxes obtained in a sample image are rep-
resented by the dashed rectangles.

Including superpixel information. Finally, we have also
explored superpixel segmentation step to complement the
skin segmentation process. We use the fast SEEDS ap-
proach of [21] and assign skin or not skin to each superpixel
depending on the average RGB color of the superpixel com-
ponents. This step provides a more robust skin segmenta-
tion, and it is used in the rest of the experiments.

Since our final goal is not to achieve an accurate skin
segmentation, the quality of this skin segmentation was only
visually validated across all the sequences. The goal of this
segmentation is to obtain a good starting point to compute
the following features.

4.2.2 Skin pixels based features

Given the final skin pixel segmentation, we have explored
a variety of descriptors that build on top of it, the most
promising of which are as follows.

Skin histogram (SKIN HIST) We divide the image into
a 10×10 grid, as shown in Fig. 3(a), and build a histogram
that represents the ratio of skin pixels contained in each cell.

Arms-Hands Bounding Box (BB) We detect the two
largest connected components of skin pixels above a min-
imum size threshold and compute the bounding box around
them as shown in Fig. 3(b). Each bounding box with is de-
scribed with the following two descriptors:

• The eigenvectors of the scatter matrix of the skin pixels
within each bounding box are used to characterize the
shape and orientation of the set of skin pixels in that
bounding box.

• The ratio of pixels in the bounding box that actually
are skin-pixels measures the density of that bounding
box content.

4.3. Convolutional Neural Network (CNN) Based
Image Representation

Finally, we explore the performance of CNN based im-
age representation for activity recognition. In this work, we
use the implementation of [3] (DECAF). We use a model
pre-trained to classify 1000 object categories from the Im-
age Net 2012 challenge. We run a feed-forward pass for all
of the video frames of our dataset and use the output of the
seventh layer to represent the input frame.

After representing images with a 4096 dimensional fea-
ture vector, we trained a linear SVM [5] on labels such as
manipulation/non-manipulation or different kinds of hand
manipulation. Even though the network is trained to clas-
sify objects, the features seem general enough to give the
best results on still image activity recognition as well.

5. Experiments
5.1. Dataset

The data we use in this work is part of the Wearable
Computer Vision Systems dataset recently acquired with the
purpose of comparing different wearable cameras for dif-
ferent wearable vision system applications. This dataset is
available online2.

We use the 5 labeled sequences available using an RGB-
D camera. These were acquired by 4 different users in 2
different scenarios, where the users performed a set of ac-
tions as they were told but without a specified order and
at their own pace. These sequences were manually labeled
with different granularity level for activity labels as well as
with location labels (not used in this work). They present
a challenging classification problem with large intra-class
variations (due to multiple users and scenarios) and very
few labeled instances of less common actions.

5.2. Experimental setup

We have run a leave-one-out cross validation for our ex-
periments. We trained classifiers based on the data from
4 sequences and tested it on the other sequence data. The
final performance is reported as the average results across
different tests. We use accuracy and confusion matrices to
evaluate the different image representations and classifica-
tion methods proposed in this work as baselines.

5.2.1 Classifiers and features used

The following combinations of descriptors (detailed in Sec-
tion 4) are considered in our experiments:

GIST descriptor. Typically used for scene categoriza-
tion, we use the implementation available from [4].

2https://i3a.unizar.es/es/content/
wearable-computer-vision-systems-dataset
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SKIN HIST (Skin histogram): it is obtained from skin
segmentation using color, depth and superpixel filters.

BB (Bounding Box): this descriptor is computed on the
bounding boxes around the two largest skin connected com-
ponents found.

CNN: We run the feed forward path for each frame in
the sequence and take the output of the seventh layer as the
representation.

CNN-MULTIWINDOW: this is the same as CNN with
the difference that the CNN feature extraction was run on
5 windows of the images (the four corners and the center
part). The representations are concatenated to make the full
representation.

SIFT - BOW: we extracted SIFT [12] and used 1000
cluster centers to learn 1000 visual words. Input images
are represented by a 1000 dimensional feature vector using
standard word histogram encoding.

5.3. Performance evaluation

We present the experimental validation of our study or-
ganized in two sets of experiments. The first set analyzes
the performance of compact and global descriptors and the
differences observed when using different classifiers. The
second set explores the performance of additional more
sophisticated image representations and compares all the
baselines proposed.

5.3.1 Performance of global image descriptors

Our first set of experiments analyzes different configura-
tions of the global and compact image descriptors described
in Sections 4.1 and 4.2. The goal is to evaluate which clas-
sification framework would be more suitable for these de-
scriptors and the discriminative power of each of them for
the activity recognition. Since these descriptors are com-
pact and efficient to compute (just one descriptor per im-
age), each combination has been used in three different clas-
sification frameworks: nearest neighbor (NN), linear SVM
(SVM-L) and SVM with RBF kernel (SVM-RBF).

Single step classification As a motivation example for the
hierarchical process, we ran a baseline experiment that con-
sisted on training a single classifier for all the eleven level-2
classes at once, with different combinations of descriptors
and classifiers. The best results obtained with the different
combinations run were a raw accuracy (total number of cor-
rectly labeled tests divided by total amount of tests) around
35%. However, if we compute the accuracy normalized per
class, it drops to around 15% (slightly better than chance).
This means that the discriminative power of those features
and the available amount of training data for each of those
classes is not enough to directly distinguish among all of
them. The classifier ended up assigning almost every test to

(a)

(b)

(c)*
Figure 4. Each set of columns represents the average performance
(correct classification) for all tests using labels from level 1 (a),
level 2 - manipulation (b) and level 2 non-manipulation (c). *Note
that the percentages are not normalized per class in this plot but per
number of tests, therefore results in (b) can be misleading, since
they are actually not better than the other levels, as can be seen in
the confusion matrix presented in Table 4.

the dominant test class. Note that the training was done as
balanced as possible, but still too many classes did not have
enough occurrences in the dataset.

Classification in two steps If we run the two-step classi-
fication proposed, we obtain more promising results. Fig-
ure 4 shows the classification performance achieved in
the two considered levels of the hierarchy of labels de-
fined previously. The different bar plot sets correspond to
different combinations of the descriptors detailed in sec-
tions 4.1 and 4.2.

The performance shown there is a raw accuracy mea-
sure, i.e., number of correct tests normalized by the total
amount of tests. This gives us an initial idea of how much
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Table 2. Confusion matrix for labels Manipulation vs Non-
manipulation, using Skin hist and SVM RBF.

Manip Non-Manip
Manip 0.84 0.24
Non-Manip 0.16 0.76

Table 3. Confusion matrix for fine grained Manipulation labels
considered, using GIST descriptor and NN classifier.

two hands one hand pick up others
two hands 0.24 0.06 0.20 0.28
one hand 0.12 0.44 0.18 0.11
pick up 0.54 0.38 0.45 0.35
others 0.11 0.13 0.18 0.26

Table 4. Confusion matrix for fine grained NON-Manipulation la-
bels considered, using GIST and SVM-L classifier. Seat label is
not shown because there were no occurrences in this sequence.

Walk Stairs Stand Screen Poster Talk
Walk 0.88 0.00 0.11 0.00 0.01 0.00
Stairs 0.99 0.01 0.01 0.00 0.00 0.00
Stand 0.30 0.00 0.58 0.00 0.12 0.00
Screen 0.00 0.00 1.00 0.00 0.00 0.00
Poster 0.61 0.00 0.28 0.00 0.11 0.00
Talk 0.39 0.00 0.58 0.00 0.03 0.00

of a whole sequence we can understand, but could be mis-
leading because it is not normalized per class, as we saw in
the previous example. If we compute the normalized accu-
racy per class, results in level 1 and level 2-manip remain
similar, but accuracy normalized per class for level 2-Non-
manip drops to around 25%. This indicates that this level
of classification is not successful with the current image de-
scription. We can examine this in more detail using the con-
fusion matrices. in Tables 2, 3 and 4.

We can see that in the last case, the classifier training
stage was not successful at all, assigning most of the data
into the same dominant class. As we observed in the ini-
tial (one step) experiment, the low performance is likely to
be due to insufficient training: it was properly balanced for
certain actions (level 1 and non-manip), but for others with
fewer examples it clearly has insufficient information to ob-
tain a robust classifier.

5.3.2 Performance using state-of-the-art image repre-
sentations

In this second set of experiments, we explore more sophisti-
cated (and more costly) image representations to determine
whether the issues encountered with more compact features
arose from a lack of descriptive power and/or scarcity of

Table 5. Confusion matrix for labels Manipulation vs Non-
manipulation, using CNN descriptor.

Manip Non-Manip
Manip 0.80 0.20
Non-Manip 0.12 0.88

Table 6. Confusion matrix for labels Manipulation vs Non-
manipulation, using CNN descriptor.

two hands one hand pick up others
two hands 0.61 0.06 0.22 0.10
one hands 0.06 0.63 0.17 0.15
pick up 0.14 0.11 0.42 0.33
others 0.15 0.20 0.27 0.38

Table 7. Confusion matrix for fine grained NON-Manipulation la-
bels considered using CNN descriptor. Seat label is not shown
because there were no occurrences in this sequence.

Walk Stairs Stand Screen Poster Talk
Walk 0.99 0.00 0.01 0.00 0.00 0.00
Stairs 0.09 0.91 0.00 0.00 0.00 0.00
Stand 0.87 0.02 0.11 0.00 0.00 0.00
Screen 0.00 0.00 0.00 0.00 0.00 0.00
Poster 0.61 0.38 0.00 0.00 0.02 0.00
Talk 0.92 0.00 0.02 0.00 0.00 0.06

Table 8. Accuracy obtained with the best performing options from
all the image representations studied. Top rows are global rep-
resentation. Bottom rows are the results for more sophisticated
image representations.

Descriptor Level 1 Level 2 Level 2
used: Manip Non-Manip
SKIN-HIST (SVM-RBF) 0.84 0.27 0.80
GIST (SVM-L) 0.65 0.35 0.81
BoW 0.81 0.44 0.77
CNN 0.84 0.52 0.83
CNN-MULTI 0.83 0.57 0.77

training examples.
We conclude this second set of experiments by compar-

ing the best configurations using the proposed compact im-
age description with more sophisticated features in Table 8.
As one could expect, we can observe that for the basic clas-
sification, the contextual separation between manipulation
and non-manipulation is nicely modeled by our simple de-
scription of how the skin (arms-hands) pixels are distributed
in the images. However, for more complex and fine grained
categorization, the preliminary results we have obtained
with the CNN based representation look like a promising
new path for activity recognition. Although these features
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are more costly to compute, future steps include combin-
ing the preliminary results obtained in this work in such a
way that the simple per frame classification can be used as
a prior or decision step, to select key frames to set the stage
for more detailed representations.

6. Conclusions and Future Work

In this paper, we presented results of our quantitative
analysis of different feature extraction methods for the task
of activity recognition using an RGB-D wearable vision
system. Toward this end we make use of a novel and chal-
lenging public dataset and propose a hierarchy of labels for
the included activities.

Our experiments show that classification in still frames
with compact features can give good priors for more sophis-
ticated classifiers/descriptors. Based on our experiments,
CNN-based image features provide the best representation
for finer grained activity recognition steps, compared to
other baselines including bag of words representation or ad-
hoc skin based descriptors.

There is still plenty of room for improvement based on
the use of temporal consistency and increased leveraging
of depth information within the image representation. Be-
sides, the dataset used includes data from additional wear-
able cameras that recorded user activities simultaneously.
In our future work we will pursue continued analysis on all
of the camera/sensor streams to compare their strengths and
weaknesses for the different classification tasks.
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