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Abstract

In this work, we evaluate the performance of the popular
dense trajectories approach on first-person action recog-
nition datasets. A person moving around with a wearable
camera will actively interact with humans and objects and
also passively observe others interacting. Hence, in order
to represent real-world scenarios, the dataset must con-
tain actions from first-person perspective as well as third-
person perspective. For this purpose, we introduce a new
dataset which contains actions from both the perspectives
captured using a head-mounted camera. We employ a mo-
tion pyramidal structure for grouping the dense trajectory
features. The relative strengths of motion along the trajecto-
ries are used to compute different bag-of-words descriptors
and concatenated to form a single descriptor for the ac-
tion. The motion pyramidal approach performs better than
the baseline improved trajectory descriptors. The method
achieves 96.7% on the JPL interaction dataset and 61.8%
on our NUS interaction dataset. The same is used to de-
tect actions in long video sequences and achieves average
precision of 0.79 on JPL interaction dataset.

1. Introduction

With wearable cameras becoming popular, recogniz-
ing actions and interactions in videos captured from first-
person perspective cameras is essential for many applica-
tions such as video-logging, behavior understanding, re-
trieval, etc. Action recognition is a well researched area
in computer vision. However, most of the research till now
is focused on third-person perspective/view. Egocentric vi-
sion is an emerging area and in this work we evaluate the
performance of the present state-of-the art action recogni-
tion method, in third-person perspective (TPP), on actions
in first-person perspective (FPP). The improved trajectories
method by Wang et al. [10] is the current state-of-the art on
many challenging action recognition datasets. The egocen-
tric videos can be looked at as being captured in a differ-
ent view when compared to the normal TPP. Hence action

Mohan S. Kankanhalli
School of Computing,
NUS, Singapore

mohan@comp.nus.edu.sg

W

Kalpathi R. Ramakrishnan
Dept. of Electrical Engg.,
IISc, Bangalore

krr@ee.iisc.ernet.in

,/’

( Actions / Interactions )

b A

' "ﬁrst-persc;ﬁ% I "':fhird-persc;ﬁ%“ BN
A _%perspectiveﬂ_, J N ,,%perspectiverﬁ S

L

Human-Human Hum: : r;‘Oatr)]Ject- H;:::;a:gc(t)igrjgct
Initziretsllers Interactions
V\_lriting
Hac\t]ﬂ:\t\: B Pass an objgct Oper_;_l;;;;i:gdoor
Throw an object Using a cellphone

Figure 1. Illustration of the types of interactions that can be en-
countered by a first-person observer. The first-person observer
may be actively involved in an interaction or passively observe
an interaction from a third-person perspective. The interactions
can be broadly classified into human-human interaction, human-
object-human interaction and human-object interaction. Some ex-
amples for each group are given in the corresponding blocks.

recognition methods which are able to handle view changes
in TPP videos should be applicable to FPP videos as well.
To this end, we analyze the performance of the “improved
trajectories” [16] approach for actions in FPP.

To make the “improved trajectories” robust for wearable
cameras, an adaptation based on motion pyramid is used.
The video is segmented into different regions based on the
magnitude and direction of motion. Direction of flow vec-
tors is used to for segmenting into foreground and back-
ground while magnitude is used to assign a relative score
to the pixels in foreground in every frame. Segmenting
video into different regions with motion as criterion is use-
ful in case of first person actions, since the main action will
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generally be in the region associated with a higher motion
score and any other unrelated background action or camera
motion will be in the region associated with lower score.
This is because the first-person actions are near to the cam-
era. Identifying the dominant camera (head) motion helps
in discarding the motion trajectories generated due to head
motion.

In realistic scenarios, detecting actions in long and con-
tinuous video sequences is an important requirement. Con-
tinuous videos may contain multiple actions over time with
periods of zero activity (no actions being performed) in be-
tween. We use the same approach along with sliding win-
dow technique to detect the actions by taking a decision
based on the predicted class of the neighboring segments
in such long video sequences.

In the real-world, the first-person observer will invari-
ably observe passively (not being part of the interaction)
from a TPP as well. Hence recognizing interactions in both
perspectives is necessary. To this end, we introduce a new
dataset which contains interactions from both perspectives,
captured from a head-mounted camera. Interactions can be
broadly grouped into three categories, viz., human-human
interaction, human-object interaction, human-object-human
interaction. The categorization is given in Figure 1.

2. Related Work

Egocentric vision research is receiving significant atten-
tion due to technological advancement of wearable cam-
eras. Some of the problems researched in first-person vision
are object recognition [13, 6], object-based activity recog-
nition [12, 4], video summarization or “life-logging” [9],
social interaction recognition [5], interaction-level human
action recognition [14]. The research on activity detection
is object-based and mainly involve activities in which ob-
jects are held or manipulated by first-person observers.

Action recognition has been an important area of re-
search in the vision community for a long time. Majority
of the previous works have focused on third-person videos
based on space-time interest points (STIP) features using
various detectors like Harris3D [7], separable Gabor fil-
ters [3], etc. Often local features for the interest points
are based on gradient information, optical flow [3, 8]. The
trajectory-based methods for action classification are pre-
sented in [1, 10, 17, 15]. Wang et al. [15] use local 3D
volume descriptors based on motion boundary histograms
(MBH), histogram of oriented gradients (HOG) and his-
togram of optical flow (HOF) around dense trajectories to
encode action. The MBH descriptors are known to be robust
to camera motion. Recently in [16], Wang et al. estimate
the camera motion and compensate for it and thereby im-
proving the trajectories and the associated descriptors. The
improved trajectories method yields state-of-the-art results
on challenging datasets. We use [|6] method as baseline in
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this work.

Ryoo and Matthies [14] recognize actions in egocentric
videos captured by a humanoid. Global and local motion
information are used as features. For the local motion,
cuboid feature detector [3] is used to obtain video patches
containing salient motion. The features are clustered us-
ing k-means and the activity is represented as histogram of
words. Finally, the actions are classified using SVM. The
humanoid does not move on its own during the interactions.
There is motion during interactions like handshake, petting
the robot, punching the robot. To emulate ego-motion and
mobility of a real robot, wheels are placed under it and is
pushed around by a human.

While it is plausible for the humanoid observer to not
move on its own during the interaction, it is not the case for
a human observer whose varying head motion will result in
undesired camera motion. The variations of head motion for
different persons and actions also makes it challenging to
recognize actions when the first-person observer is human.

Contributions of our work based on these considerations
are the following. (i) A simple yet effective trajectory scor-
ing technique for grouping via foreground identification and
relative motion map is discussed. (ii) To the best of our
knowledge, this is the first paper which focuses on recogni-
tion of human interactions viewed from both perspectives,
viz., first-person and third-person perspectives. (iii) A chal-
lenging dataset for interaction recognition in the two per-
spectives is introduced.

The rest of the paper is organized as follows. In sec-
tion 3, the interaction recognition approach is discussed.
The experiment setup and results on the interaction datasets
are given in section 4. The adaptation of the recognition
approach to action detection in long video sequences is de-
tailed in section 5 and we conclude the paper in section 6.

3. Interaction recognition

In this section, we discuss the interaction recognition ap-
proach using improved trajectories. The camera motion
identification and grouping descriptors, based on motion
pyramid, are used to improve the performance of the recog-
nition. The overall approach is illustrated in figure 2.

3.1. Foreground motion map

In videos captured by head-mounted cameras, the cam-
era motion is prominent and pronounced due to the objects
being near to the camera. This results in varying and un-
intended camera motion which is not representative of the
motion present in an action. For e.g., “typing on keyboard”
action is represented by the motion of the hands on the key-
board. However the motion of the head can introduce mo-
tions not representing the typing action. The motion bound-
ary histogram (MBH) trajectory descriptor is known to be
robust to camera motion. While the camera motion may
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Figure 2. Illustration of the interaction recognition approach for first-person videos. The baseline improved trajectory features are com-
puted. The foreground motion map for every frame is computed by multiplying the foreground mask and the motion magnitude map.
The trajectory score is computed by adding the foreground motion map scores of the pixels the corresponding trajectory passes through.
Based on the relative scores, different trajectories and corresponding features are grouped together and descriptors for each group (figure
two groups) are computed. Concatenating the group descriptors results in a single descriptor for the video which is used for classification.

(Best viewed in color).

be present in the third-person actions as well, since the ac-
tions take place relatively far from the camera when com-
pared to first-person actions, the effect of camera motion
is less in third-person actions. Hence identifying the cam-
era/head motion in first-person videos helps in classifying
actions better.

To estimate the motion due to camera, we assume that
the camera motion is dominant compared to the foreground
motion. Optical flow is computed between successive
frames of the video. Each frame is divided into grids and
histogram of flow in 9 directions (including zero degree bin)
is computed for each grid. The flow directions are arranged
in decreasing order of occurrence in the entire frame and
the top 5 directions are checked for the following condi-
tions. A binned flow direction is considered to be due to
camera motion if it is present in multiple grids of a frame,
or if at least 70% of pixels in a particular grid are associated
with that flow direction. A foreground mask for each frame
represents the pixels with flow vector directions which do
not agree to the above conditions.

The motion map of a frame represents the magnitude of
the flow vector at every pixel. The magnitude of flow vec-
tors in the regions associated with camera motion may be
varying across the frame and in turn may result in varied
scores for trajectories associated with camera motion. To
facilitate the grouping of trajectories, the trajectories be-
longing to the action must have similar scores. Hence, using

this map directly to score and group the trajectories is not
feasible. To this end, a foreground motion map for each
frame is computed by multiplying the motion map with
the corresponding foreground mask of the frame. This en-
sures that the scores for the regions associated with the fore-
ground is higher than that of the background regions. This
is illustrated in figure 3. The magnitude values in the fore-
ground motion map are normalized by dividing them by the
maximum magnitude of the foreground motion map in that
frame.

3.2. Grouping trajectories

The motion trajectories are generated by tracking fea-
ture points in the video and is explained in section 4.1. The
feature points which remain nearly static are discarded in
the process. This ensures that only those feature points
which move in the scene generate trajectories. But due to
head motion, even the otherwise static background feature
points move and generate trajectories which are not associ-
ated with the motion of the action being performed. This
results in noisy descriptors for the action. In order to over-
come this, we group the trajectories based on the magnitude
scores in the foreground motion maps. The score of a tra-
jectory is computed by adding the magnitude values of the
pixels the trajectory passes through in the video. The mag-
nitude values are from the foreground motion map.

The trajectories due to camera motion will pass through
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Figure 3. Illustration of the approach for obtaining the relative
magnitude in the foreground region. Optical flow is computed for
the video frames. The magnitude of flow in each frame is rep-
resented by the motion map. Foreground mask for each frame is
generated based on the direction of flow vectors. The map and
mask are multiplied to obtain the motion map for only the fore-
ground.

regions with very low values in the foreground motion map
in majority of the frames. Hence the trajectories which are
generated due to camera motion receive lower scores than
the trajectories associated with the interaction. After ar-
ranging the trajectories according to their scores in ascend-
ing order, they can be segmented into multiple groups. Ma-
jority of the trajectories due to head motion will have low
scores and fall into the first few groups depending on the
number of groups chosen. In figure 2, trajectories are sep-
arated into 2 groups. The group on top with trajectories
plotted in cyan are mostly the camera motion trajectories
and the bottom group with trajectories in green consists of
action trajectories in majority. The histogram descriptors
are computed for each group and concatenated into a single
descriptor for the action. Figure 4 illustrates few examples
of the grouping technique.

In this section, we have detailed the pre-processing stage
of grouping trajectories to separate the trajectories gener-
ated due to camera motion and motion associated with the
interaction. Finally, the improved trajectory descriptors are
computed for each group of trajectories and concatenated to
form a single descriptor and used as input to the classifica-
tion stage.

Figure 4. Illustration of our trajectory segmenting technique on
few examples. Each row corresponds to an interaction. The top
2 rows (FPP) are use cellphone and write on paper and bottom 2
rows (TPP) are open door and handshake. The left column con-
tains trajectories (in yellow) with lowest motion scores. The right-
most column denotes trajectories (in cyan) with highest motion
scores. The second and third columns denote trajectories (in green
and blue) with in between motion scores. Majority of trajecto-
ries depicted in first 2 columns are from background while the 3rd
and 4th columns denote most of the trajectories representing the
action. (Best viewed when zoomed).

4. Experimental setup and Results

In this section, the details of the experimental setup with
various parameter settings are provided. We use the im-
proved trajectories as the baseline and modify it using tra-
jectory grouping approach. The datasets used for the experi-
ments are detailed in section 4.3 along with the performance
of the approach in section 4.4.

4.1. Trajectory acquisition

The motions in the scene are represented quantitatively
using dense optical flow. A pixel at p; = (x4, y:) at frame
t € [1, L — 1] moves to

P41 = (41, Y1) = Pr + (ue(pe), ve(pe)) (1)

at frame ¢ + 1 Here (uy, v;) represent the optical flow field
at frame ¢. A trajectory is represented by (p1, P2, .., PL)-
We use the code ! provided by [16] with default settings to
acquire the trajectories. The length of the trajectories is 15
samples. The trajectory features used in the experiments are
TrajShape, HOF and MBH.

Uhttp://lear.inrialpes.fr/people/wang/improved_trajectories



4.2. Feature encoding

We experiment with two types of feature encoding, viz.,
bag-of-words and Fisher vector encoding. For bag-of-
words, the features are clustered using k-means and a code-
book of 1000 is learnt for each descriptor. Each video is
then represented by a histogram of words. We use an RBF-
x? kernel SVM to classify the actions. A one-vs-all SVM
is used for multi-class classification. For combining differ-
ent descriptors, the kernel matrices normalized by average
distance are summed and the classifier is learnt.

Fisher vector [ 1] has shown an improved performance
over bag of features for both image and action classification
[2, 16]. It encodes encodes the first and second order statis-
tics between the video descriptors and a Gaussian Mixture
Model (GMM). The number of Gaussians is set to K = 256
and randomly sample a subset of 256, 000 features to esti-
mate the GMM. The dimensions of the features are reduced
by half using PCA. Each video is, then, represented by a
2DK dimensional Fisher vector for each descriptor type,
where D is the reduced descriptor dimension after perform-
ing PCA. The fisher vectors are power and L2 normalized.
Different descriptors are combined by concatenating their
normalized Fisher vectors. For classification, a linear SVM
with cost parameter C' = 100 is used.

4.3. Datasets

The performance of the approach is evaluated on 2 first-
person datasets. The first is JPL First-Person Interaction
dataset and the second dataset is our new NUS First-person
Interaction dataset.

JPL First-Person Interaction [ 14] dataset consists of 7
actions, including 4 friendly interactions with the observer,
1 neutral interaction, and 2 hostile interactions. Shaking
hands with the observer, hugging the observer, petting the
observer, and waving a hand to the observer are the four
friendly interactions. The neutral interaction is the situation
where two persons have a conversation about the observer
while occasionally pointing it. Punching the observer and
throwing objects to the observer are the two negative in-
teractions. In total there are 84 videos with 12 instances
or sets for each action. The number of groups for trajec-
tory grouping for the dataset is 2. During classification, 6
sets are randomly chosen for training and the rest for test-
ing. The experiment is run 100 times with random train-test
splits and average classification accuracy is reported.

We introduce the NUS First-person Interaction
dataset for interaction recognition with 8 interactions in 2
perspectives (first-person and third-person perspective) re-
sulting in 16 classes in total. The dataset will be made
publicly available at a later date. The dataset contains 2
human-human interactions, 2 human-object-human interac-
tions and 4 human-object interaction classes. *’Handshake’
and ’waving’ are the human-human interaction classes.

Human-object-human interactions involve ’throwing an ob-
ject’ and ’passing an object’. The 4 human-object inter-
action classes are “open and go through door’, ’using cell-
phone’, "typing on keyboard’, and *writing on board/paper’.
Our dataset is significantly different from JPL dataset since
the camera is worn by a human and the variations in head
motion make it challenging for classification.

Our dataset contains 260 videos with at least 15 samples
in each of the 16 classes. The dataset was collected us-
ing a GoPro camera head-mounted on the human observer.
The videos were captured in 720p resolution at 60 frames
per second to decrease the motion blur due to head-motion
during capture and later down-sampled to 430 * 240 frame
resolution at 30 frames per second. To the best of our
knowledge, this is the first dataset for interaction recogni-
tion which includes actions where the observer actively in-
teracts and passively observes the interactions. The videos
are captured by different people and with different actors
in addition to view variations. Hence this a challenging
dataset. The different classes of the dataset is illustrated
in figure 5.

The trajectories are segmented into 4 groups (sec-
tion 3.2) and since the head motion of human observers can
be high in comparison to a humanoid, we discard the first
group and concatenate the descriptors from the remaining
three groups. For classification, we use random train-test
splits with 50% each in training and testing sets and run the
experiment 100 times and report the average classification
accuracy.

4.4. Results

The results for the two datasets are reported in table 1.
Improved trajectories are used with two feature encodings,
viz., BOW and Fisher vector encoding. The performance for
the Fisher vector encoding is better for both datasets when
compared to BoW encoding performance. We use the mo-
tion pyramid and grouping technique on both the encod-
ings and observe an increase in classification accuracy. The
improvement for the BoW encoding is higher than that for
Fisher vectors and the Fisher vector encoding with trajec-
tory grouping performs the best for both the datasets.

For the JPL dataset, the average classification accuracy,
over multiple runs, for improved trajectory features (ITF)
with Fisher encoding is 96.1% with deviation of 0.3% and
the proposed method performs marginally better at 96.7%
with deviation of 0.2%. Since the camera motion during the
action is relevant to the action itself and does not contain
any unrelated motion, the increase in performance is only
marginal.

The proposed method is evaluated on our dataset and the
confusion matrix is shown in figure 7. The proposed method
achieves an average accuracy of 61.8% while the baseline
achieves 58.9%. The deviation from average was around

516



Figure 5. Our new interaction dataset is shown. The top and bottom rows correspond to first-person perspective and third-person perspective
respectively. From left to right the eight interaction classes are Use cellphone, Open door and go through, Handshake, Pass an object, Throw

an object, Type on keyboard, Wave, Write on board/paper.

| Method | JPL Interaction | New dataset |
Ryoo & Matthies [14] 89.6% -
ITF (BoW) 93.2% 54.3%
ITF (Fisher) 96.1% 58.9%
Proposed (BoW) 95.4% 58.3%
Proposed (Fisher) 96.7% 61.8%

Table 1. Performance comparison on the two datasets using base-
line method (ITF [16] - Improved Trajectory Features) and pro-
posed approach. The baseline is evaluated using two feature
encodings, viz., bag-of-words and fisher vector. The proposed
method is also evaluated under the two encodings.

shakefBy 0 0 02 0 02 shakek 0 0 02 0 0
fug 0 03 hug 0 03
pet (0.3 10.7EEN] 0 O

throw| 0 g E throw| 0 0
shake hug pet wave point punch throw shake hug pet wave point punch throw

Figure 6. Confusion matrices for JPL dataset. Matrix on left is for
baseline ITF and one on the right is by the proposed method.

0.7% in both cases. The proposed method of grouping tra-
jectories helps in better classification of some actions like
using cellphone, typing, waving in FPP. There is misclas-
sification between actions from different perspectives. The
misclassification of interaction in TPP as FPP is higher than
an FPP interaction being misclassified as TPP action, and
the classification of interactions in FPP is better than the in-
teractions in TPP. This is because the interactions in TPP
can occur in multiple views while in FPP, they occur fre-
quently in similar views. We can expect the FPP interac-
tions to be bunched together in the Kernel space but the in-
teractions from TPP may be scattered (due to view changes
in TPP) and will require more number of training samples
from different views to learn a better classifier. Also the in-
teractions like using cellphone, typing are better observed

in FPP. Hence the variation in performance for the two per-
spectives.
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Pass 09 0 04 0 01 04
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Throw 0 0 o1 0 08 0
Type 0 02 0 01 0 89
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Door3f 0 06 152 0 03 0 06 0 03 04 01 0 0 04 46
Pass3| 0 0 40 0 01 0 87 0 0 140 51 105 03 1.0 145
Shake3|10.1 0 20 41 0 0 82 03 01 187 131 79 61 0 233 6.1
Throw3| 32 0 41 0 09 0 125 0 0 25 71 05 01 52 0.1
Type3| 03 0 09 0 0 0 21 01 286 O 0 0 0.2 220

Wave3| 0.1 03 63 01 09 0 256 O 0 127 05 17 25
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Figure 7. Confusion matrix for the proposed method evaluated on
our dataset. Action labels suffixed with ’3’ represent third-person
perspective.

5. Interaction detection

Detecting actions is necessary in long video sequences
where multiple actions can occur in addition to periods of
no activity occurrence. We use the improved trajectory
features with Fisher encoding, as before, for detecting ac-
tivities. We use the continuous videos of JPL interaction
dataset for evaluation. The descriptors are computed in a
sliding window method. The window length is 40 with
overlap of 20 frames between successive window segments.
The window duration of approximately 1.5 seconds is cho-
sen to in order to effectively capture descriptors of short
duration actions like waving. There are 57 videos with the
number of activities varying between 1-3 in each video. The
videos are divided into 12 sets and 6 each are used for train-
ing and testing. The experiment is run multiple times with
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zoomed).

5]

random splits.

The average number of segments per class in the training
videos is used in the detection stage. Initially, the probabil-
ity for each segment belonging to a particular activity class
are obtained using a one-vs-rest SVM. In the next step, the
scores of nearby segments (number of segments depending
on the average number of segments of the activity in the
training videos) are added and used to detect the activity.
The scores are sorted in decreasing order. As and when a
particular segment is recalled by a detector, the segments
nearby which contributed to its cumulative score are also
given the same class label and considered as recalled. The
precision-recall curves averaged over 100 runs for all the 7
classes are plotted in figure 8. The average precision for the
dataset is 0.79. Ryoo and Matthies [14] report an average
precision of 0.71 for the same. From figure 8, we observe
that the ’point’ and *wave’ activities have relatively lower
average precision values (0.61 and 0.68). Point’ action has
less motion involved when compared to other activities and
is similar to segments without interactions. The *wave’ ac-
tion occurs within a short duration and is recalled with pre-
cision above 0.9 at lower recall but false positives increase
as recall is increased. Both these actions have lower preci-
sion values with increasing recall.

6. Conclusion

In this work, we have evaluated the improved trajectories
approach to interaction recognition in first-person videos
captured in first and third person perspectives. An improve-
ment, based on segmenting the trajectories according to
motion magnitude and direction, to overcome the camera
motion associated with head-mounted camera is discussed.

Since an observer can actively be involved in an interac-
tion or passively observe an interaction, in order to evaluate
the method jointly from both perspectives, we introduce an
interaction recognition dataset containing interactions from
first-person and third-person perspectives. The method was
also used to detect interactions in videos containing multi-
ple interactions. Future work will involve capturing inter-
actions simultaneously from first-person and third-person
cameras and use the information from both in a unified man-
ner to recognize interactions.
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