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Abstract

First-person view (FPV) video data is set to prolifer-
ate rapidly, due to many consumer wearable-camera de-
vices coming onto the market. Research into FPV (or “ego-
centric”) vision is also becoming more common in the com-
puter vision community. However, it is still unclear what
the fundamental characteristics of such data are. How is
it really different from third-person view (TPV) data? Can
all FPV data be treated the same? In this first attempt to
approach these questions in a quantitative and empirical
manner, we analyzed a meta-collection of 21 FPV and TPV
datasets totaling more than 165 hours of video. We per-
formed the first quantitative characterization of FPV videos
over multiple datasets, encompassing virtually all avail-
able FPV datasets. Validating this characterization, linear
classifiers trained on low-level features to perform FPV-
versus-TPV classification achieved good baseline perfor-
mance. Accuracy peaked at 81% for 2-minute clips, but
67% accuracy was achieved even with 1-second clips. Our
low-level features are fast to compute and do not require
annotation. Overall, our work uncovered insights regard-
ing the basic nature and characteristics of FPV data.

1. Introduction

With many consumer devices having wearable cameras
coming to market, videos recorded from a first-person view
(FPV) are set to become increasingly common. However, it
is still unclear what exactly characterizes or defines FPV
(also termed ego-centric) videos and differentiates them
from videos taken from a third-person view (TPV).

Take for instance a school play: the same scene might
turn out quite differently, depending on whether it was
recorded by a parent casually wearing a Google Glass de-
vice, or a parent using a top-of-the-line camcorder with im-
age stabilization and trying to make it “look good”. The
same semantic content could look either FPV-like or TPV-
like. Conversely, the same device can produce videos with
either FPV-like or TPV-like characteristics, such as profes-

sional camera crews intentionally adjusting their camera-
work for a sense of intimacy and immediacy during “real-
ity” TV shows, or during regular TV shows with FPV-like
portions (e.g. simulating the killer’s point-of-view during
a crime drama). In other words, neither semantic content
nor recording device alone clearly define whether a video is
perceived as FPV or TPV.

Why is characterizing and understanding FPV data im-
portant? In the field of computer vision, FPV or egocen-
tric vision is an increasingly popular topic, and this will
only continue as FPV video content becomes more com-
mon. However, fundamental questions have been left unan-
swered – they have not even been asked. What makes FPV
data different, such that new algorithms may be required?
Is all FPV data the same, such that an algorithm validated
on one FPV dataset will work well on other FPV datasets?
In this work, we take the first steps in trying to address
these questions in a quantitative, empirical manner.

While there are various intuitive notions of what FPV-
like characteristics are, there has not been a rigorous,
quantitative characterization of FPV videos across multiple
datasets. These intuitions include low-level factors such as
the long and unstructured nature [15], rapid changes [13]
and variation [23] in illumination, significant camera mo-
tion [13] and motion blur [23]. Factors related to higher-
level semantic information include close views of ob-
jects [23], complex hand-object interactions [13], and hand
occlusion [23] and proximity [12].

These intuitions may not necessarily be accurate. Chest-
mounted cameras are not affected by head movement, so
there is no jerky motion due to looking around. Cameras
mounted on top of the head (or cap or helmet) may not cap-
ture body parts belonging to the wearer, another supposed
FPV characteristic. Only by actually implementing these
intuitions as features and then testing on real data, can
the question of FPV characteristics be properly answered.

On a more practical note, can videos be automatically
classified as FPV or TPV with good accuracy? This is
a novel problem that may become increasingly important.
Certain algorithms are designed specifically for FPV videos
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(e.g. [15]). Also, for video-hosting sites like YouTube,
if FPV videos can be detected, they could undergo post-
processing or enhancement for better viewing. Conversely,
one might want to intentionally post-process TPV videos to
give them a more authentic, first-person feel.

Our paper has 3 main contributions: (1) We provide
the first quantitative characterization of FPV videos across
multiple datasets – in particular, across nearly all the FPV
datasets that are currently publicly available. (2) We show
that a set of simple, low-level features that are easy to com-
pute and do not require annotation for training, are sufficient
for a baseline/benchmark accuracy of 81% in distinguish-
ing FPV and TPV clips. (3) We uncover specific features
and insights about FPV data – what makes it different, and
whether it is homogeneous.

In the rest of this paper, we review related work, then de-
scribe the datasets and features used. We show that these
low-level features can discriminate FPV and TPV video
clips well. Then, we analyze specifically which features
discriminate FPV/TPV best, and why. Finally, we exam-
ine the differences among FPV datasets. Overall, this initial
work provides insight into the nature of FPV data.

2. Background
First-person view (FPV) visual processing is gaining

ground in the computer vision community. Recent years
have seen more and more FPV papers and datasets (see
Table 1). In a short number of years, FPV data has been
studied for a wide range of topics, including discover-
ing, detecting and recognizing people [8, 12], hands [13],
objects [7, 22, 23] and activities [9, 20, 26, 27]. Other
topics include social interactions [5], video summariza-
tion [12, 15] and novelty detection [2].

Despite various qualitative intuitions about FPV charac-
teristics (see Section 1), little work has been done to investi-
gate the nature of this data quantitatively. One exception is
the “early” work by Ren & Philipose [23]. Analyzing their
FPV dataset of 42 day-to-day objects being manipulated in
the course of daily activities, they studied the challenges
and constraints of their dataset, such as motion blur, hand
occlusion, location prior and temporal consistency. Some
interesting findings include their estimate of drops in SIFT-
based recognition accuracy of 20% due to background clut-
ter and 13% due to hand occlusion.

We go beyond this important initial work by examin-
ing many more FPV (and TPV) datasets, in an attempt to
perform a characterization not based solely on one dataset.
This scaling-up presents a challenge for some of the anal-
yses in [23], which required time-consuming manual anno-
tation. Rather than annotating the more than 165 hours of
video contained in the datasets, we instead focused solely
on low-level features requiring no annotation. As the rest of
this paper will show, these features can go surprisingly far.

3. Methods: datasets, features and classifier

As part of our goal of characterizing and classifying FPV
videos, we assembled a large collection of 21 FPV and TPV
datasets (see Table 1). To the best of our knowledge, the 13
FPV datasets included comprise the vast majority of FPV
datasets available for public download (with the exception
of one recent dataset [1]). Because there are many existing
TPV datasets, our choice of TPV datasets is necessarily an
idiosyncratic sampling. Nonetheless, we attempted to max-
imize diversity in terms of content (e.g. short action clips,
surveillance videos, daily activities) and source (e.g. Holly-
wood, the internet, created by computer vision researchers).
Our choice of datasets is in no way a statement regarding
quality or popularity of these datasets (or excluded ones).

Dataset Vids Hr Cam Comments
01 CMU 171 17 Head Kitchen [4]
02 Disney 113 50 Head Disneyland [5]
03 GTEA 28 .5 Head Indoors [7]
04 Gaze 17 1 Head Indoors [6]
05 Gaze+ 30 5 Head Kitchen [6]
06 IEOR 10 2 Lapel Indoors [23]
07 JPL 57 .5 Head Worn by toy [26]
08 EgoADL 20 10 Chest Daily activs. [20]
09 UEC 2 .5 Head Outdoors [9]
10 UTE 4 17 Ear Life-logs [12]
11 UTokyo 5 2 Head Office [18]
12 W31 31 2 Collar Walking [2]
13 YouTube 6 .3 Var. Outdoors [9]
14 HMDB 6766 8 – Movie clips [10]
15 Hwood 475 2 – Movie clips [11]
16 Hwood2 2517 9 – Movie clips [16]
17 UCF50 6677 17 – YouTube [21]
18 URADL 155 1 – Daily activs. [17]
19 UTI 20 .5 – Interaction [25]
20 VIRAT 329 9 – Surveillance [19]
21 Shows 11 13 – Movies, TV –

Table 1. Datasets 01 to 13 are FPV, while datasets 14 to 21 are TPV.
Vids: number of videos in dataset. Hr: total duration of dataset in
hours. Cam: camera placement. Var.: various placements.

Because the FPV datasets on average contained videos
that were many times longer than the typical short clips in
TPV datasets, we attempted to somewhat balance this by
creating our own mini-dataset consisting of 11 full-length
movies and TV episodes (duration ranging from 42 minutes
to almost 3 hours). This is the Shows dataset in Table 1.

In total, the datasets contained more than 165 hours of
video (approximately 107 hours FPV and 59 hours TPV)
covering a diverse set of activities, objects and locations.
The TPV datasets included a few without any camera mo-
tion (URADL, UTI and VIRAT). The FPV datasets were
collected using both head-mounted cameras and other more
statically-mounted (e.g. chest-mounted) cameras. The FPV

536



videos were collected during activities ranging from walk-
ing to work (W31), food preparation (CMU, GTEA, Gaze
and GazePlus), object manipulation (IEOR), first-person in-
teraction (JPL), office activities (UTokyo), daily activities
(EgoADL), outdoors sports (UEC and YouTube), an outing
to Disneyland (Disney) and unconstrained activities (UTE).
The durations ranged from up to 5 hours (UTE) to around
one minute or less (GTEA). Some FPV datasets were col-
lected purely indoors and with little whole-body movement,
while others included walking from indoors to outdoors
(and vice-versa). Furthermore, several FPV datasets used
wide-angle lenses. In short, the FPV datasets contained
considerable variation, making any attempt to charac-
terize FPV data as a whole very challenging.

3.1. Dataset standardization

Because the 21 datasets also came in vastly different
resolutions, aspect ratios and frame rates, we standardized
them. The standardized resolution was 320x240 (aspect ra-
tio of 1.33). Video frames were first resized to a height
of 240 pixels, and then cropped to a width of 320 pixels.
Videos that were originally shorter than 240 pixels or had an
aspect ratio less than 1.33 were discarded. There were 766
discarded videos from 3 TPV datasets (HMDB, Hollywood
and Hollywood2), less than 5% of their original number.

Next, to serve the dual purpose of standardizing the
frame rate and reducing the amount of data, frames were
extracted from videos at 1 fps (frame per second). This was
the highest common factor among the various frame rates
(i.e. 15, 24, 25, 30 and 60 fps), and also because the W31
dataset was only available for download as still frames ex-
tracted at 1 fps. Nonetheless, even at this low frame rate,
there were more than 500,000 frames in total.

3.2. Features

We operationalized some commmon intuitions about
FPV characteristics (see Section 1) as simple, low-level fea-
tures (see Table 3). As a start, we restricted ourselves to
three classes of features: blurriness, illumination and op-
tical flow. FPV videos might contain more head and body
movement, leading to certain characteristics relating to opti-
cal flow (e.g. left-right motion due to looking around), while
such movement may also lead to more motion blur. An-
other intuition is that FPV videos may contain more indoor-
to-outdoor transitions (and vice-versa), and unlike movies,
such drastic illumination changes are not adjusted for.

We chose relatively simple and fast algorithms for com-
puting blurriness, illumination and optical flow features, not
necessarily the latest or most accurate algorithms. For blur-
riness, we followed the work of Lu & Grauman [15] and
used the algorithm of [3]. For optical flow, we used the
SIFT flow algorithm of Liu et al. [14, 15]. Instead of pass-
ing adjacent frames (spaced 1s apart) to the algorithm, we

extracted additional video frames 200 milliseconds after ev-
ery frame (which are at 1 fps). For videos at 24 fps, we used
the frame closest to 200 millisecond; the error is less than
5%. For the W31 dataset, which was only available at 1 fps,
we did not compute optical flow. For both blur and optical
flow algorithms, we used the default parameters. For illumi-
nation, we simply used the mean or median pixel intensity
in a video frame as a simple proxy for illumination.

From these 3 sets of basic low-level features, we com-
puted a total of 50 features. Broadly speaking, each fea-
ture is computed by performing a series of operations on
the blur, illumination or optical flow features. Examples
of operations include computing the mean over the entire
frame, computing the standard deviation over all frames in
a video or clip, and z-scoring (normalizing to mean 0 and
standard deviation 1) across all frames in a video. Other op-
erations include computing the first- and second-order tem-
poral derivatives, approximated by simply finding the dif-
ference between adjacent frames (and repeating the process
for second-order derivative).

Apart from these generic operations, blur and optical
flow had other operations. The blur algorithm returned two
numbers for each frame (vertical and horizontal blur). We
also took the max over these two numbers, in order to sum-
marize the blurriness of a frame into a single number.

For optical flow, the SIFT flow algorithm returns a dense
optical flow estimate, i.e. an x and y flow estimate for every
pixel in the frame. We converted these into magnitude and
angle, and then quantized the angles into 8 bins, centered
at 0◦, 45◦ and so on. These angles were then summarized
over frames using three different methods: 1) the number of
times each angle bin contained the most motion energy in
a frame (ANG-nrg), 2) the number of times each angle bin
was the most common bin (i.e. the mode) in a frame (ANG-
mode) and 3) a total count of pixels belonging to each angle
bin (ANG-count). For each method, values were ultimately
normalized so that the sum over all 8 bins was 1.

Overall, each feature essentially summarized one entire
video or clip into a single number. Of the 50 features we
computed, 24 were related to optical flow angle (3 methods
x 8 angle bins), 8 were related to optical flow magnitude,
6 were related to illumination, and 12 were related to im-
age blur. Due to space constraints, we cannot describe all
50 features in detail here, but the naming convention in Ta-
ble 3 is relatively self-explanatory, given the descriptions in
this section. As an example, one of the more informative
illumination features involved first taken the median pixel
intensity over all pixels in a frame, and then computing the
standard deviation of that median value over all frames in
a video. This feature is denoted as ILLU-med-stdev, and
corresponds to the intuitive notion of how much the global
illumination varies over the duration of a video. Another
example is the feature BLUR-max-stdev; the max over hor-
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izontal and vertical blur values is first computed for each
frame, and then the standard deviation over all frames in a
video is computed. This corresponds to the intuition notion
of how much the blurriness varies over a video (perhaps a
rough gauge of how much start-stop head motion there is).

3.3. Classifier

We used the Regularized Least Squares (RLS) classi-
fier with a linear kernel, which has been shown empirically
to have similar performance to Support Vector Machines
(SVMs) on several datasets [24]. We used 1e-10 as the reg-
ularization parameter throughout. The data was z-scored
(whitened), such that each feature had a mean of 0 and stan-
dard deviation of 1, before being passed to the classifier.
This was done separately for training and test data.

Due to the highly imbalanced number of examples from
the positive (FPV) and negative (TPV) classes, the train-
ing examples from the class with more examples was ran-
domly sub-sampled, such that ultimately the classifier was
trained on an equal number of positive and negative ex-
amples. This “balancing” was validated by chance-level
performance when training labels were randomly shuffled
as a control; this was performed whenever a classifier was
trained. Without balancing, shuffling of training labels re-
sulting in performance significantly greater than chance.

4. How well can FPV and TPV clips be discrim-
inated?

In this section, the aim is to verify that the 50 features
can in fact separate FPV and TPV clips with a reasonable
level of accuracy. We examine classifier performance when
all videos are first chopped into clips of fixed length, be-
fore classifier training and testing proceeds. There are two
reasons for this. The first is that videos can be arbitrarily
long (e.g. some videos in the UTE dataset are up to 5 hours
long), so it would be highly desirable if only a short clip
were needed to determine if the whole video is FPV or TPV.

The second reason is more pragmatic. Some of the TPV
datasets are in fact comprised of short clips extracted from
longer videos, leading to thousands of short “videos”; on the
other hand, few (or none) of the videos in the FPV datasets
were similarly treated. Thus, chopping all videos up into
fixed-length clips makes for a fairer comparison.

Note, however, that the distinction between FPV and
TPV may become more ill-defined as clip length shortens.
For example, given only 1-second clips, it is unclear how
well humans are at differentiating FPV and TPV. Some clips
could be rather ambiguous, e.g. an outdoor mountain scene
with only a little motion, which could either be from a TPV
documentary or an FPV video from someone’s travels.

We examined classifier performance for clip lengths
ranging from 1 second to 5 minutes (see Fig. 1). A clip

Figure 1. FPV/TPV classifier accuracy as a function of clip length.

length of 120 seconds gave the best accuracy of 80.9%,
while performance declined very slightly for longer clip
lengths, reaching 79.0% at 5 minutes. As expected, per-
formance drops as clip length is reduced from 120 seconds
to 1 second. Interestingly, however, even for clips as short
as 1 second, performance is still significantly above chance,
at 67.1%. As a sanity check, regardless of clip length, per-
formance was at chance when labels were shuffled during
training. In the rest of this paper, we use a clip length of
120 seconds unless otherwise stated.

These results indicate that even with simple features
and a linear classifier, a good baseline accuracy of over
80% can be obtained. The regime of very short clip
lengths is of particular interest, since the amount of com-
putation required can be two orders of magnitude less (e.g.
300 seconds vs. 1 second). Baseline performance for 1-
second clips was well above chance, at over 67%.

4.1. Feature classes

Among the three classes of features (blur, illumination
and optical flow), how do they perform when used in isola-
tion as input features for the classifier? As Fig. 1 shows, the
optical flow features (blue) were best overall, while the blur
features (green) were worst overall. At all clip lengths, blur
features performed worse than optical flow features. How-
ever, the maximum accuracy for each of the classes was
close: 70.0% for optical flow, 69.8% for illumination, and
66.9% for blur. These occurred at different clip lengths,
so combining the feature classes at their own optimum clip
lengths could in theory boost overall accuracy. For very
short clips, optical flow alone performed almost as well as
all three features combined, suggesting that the overall com-
bined performance is driven primarily by optical flow.

4.2. Generalization to unseen datasets

So far, while training and test sets are distinct, datasets
under test have also been part of the training set. In prac-

538



tice, because of the diverse nature of videos “in the wild”,
we cannot assume that a new video has similar characteris-
tics as some pre-trained dataset. This also links to the issue
of dataset bias; given that the FPV datasets in this paper
can be quite diverse, what happens when entire datasets are
completely unseen during training? We train a FPV/TPV
classifier as before, training on half the clips in each dataset
and testing on the other half. The only difference here is that
we remove all clips of a particular dataset from the training
set, and put them in the test set. This is done in turn for
each dataset. For each dataset, we compare the performance
when it was unseen by the classifier during training, to the
mean performance during times when it was seen.

Averaged across datasets, accuracy when unseen during
training of the classifier was 67.1%, compared to 77.8%
(a 10.7% drop in accuracy; see Table 2). This is a rela-
tively small drop in performance. However, some datasets
suffered large drops in performance. In particular, accuracy
on the FPV datasets CMU and UTE dropped by 21.0% and
22.4% respectively, while the TPV dataset VIRAT suffered
a drastic 64.3% drop. These results suggest that while cer-
tain datasets (such as VIRAT, which is the only surveillance
dataset used in this paper) may suffer catastrophically, over-
all there is decent generalization to unseen datasets, sup-
porting the broad generality of our features.

Dataset Seen Unseen Drop
01 CMU 47.8 26.8 21.0
02 Disney 72.3 61.9 10.4
03 GTEA – – –
04 Gaze 69.4 68.1 1.3
05 Gaze+ 83.6 79.7 3.9
06 IEOR 94.5 94.2 0.3
07 JPL – – –
08 EgoADL 46.1 30.3 15.8
09 UEC 98.1 99.2 -1.1
10 UTE 59.7 37.3 22.4
11 UTokyo 41.1 33.1 8.0
12 W31 97.0 96.6 0.4
13 YouTube 82.1 82.6 -0.5
14 HMDB – – –
15 Hwood – – –
16 Hwood2 99.8 99.8 0.0
17 UCF50 – – –
18 URADL – – –
19 UTI – – –
20 VIRAT 98.8 34.5 64.3
21 Shows 99.2 95.1 4.1

Mean 77.8 67.1 10.7

Table 2. Accuracies when datasets are part of the training set
(“seen”) or not (“unseen”), and the drop in accuracy. Note that
even for the “seen” datasets, the reported accuracies are for clips
not part of the training set. For some datasets, there were insuffi-
cient clips of 120 seconds in length; accuracies are marked –.

5. What makes FPV data different from TPV
data?

In the previous section, we found that collectively, our 50
features show reasonably good performance on a FPV/TPV
classification task. This shows that together, the features
are able to capture the characteristics that distinguish FPV
data. However, are there specific features that characterize
FPV data better than others features?

In this section, we examine each feature separately, in or-
der to pinpoint which features characterize FPV data well.
Similar to the previous section, we trained linear classifiers
to perform FPV/TPV classification (see Section 3.3 for de-
tails). The only difference is that we used each feature sep-
arately, i.e. there were 50 classifiers instead of 1.

Table 3 shows the accuracies using each of the 50 fea-
tures separately. The overall best feature is ANG-nrg-1,
which achieves 77.2% accuracy. This is surprisingly close
to the accuracy of 80.9% when using all 50 features, and it
is by far the best feature (next best accuracy is 71.8%). In
other words, one very characteristic feature of FPV data is
the motion energy in the rightward direction.

It is important to note that many of the 50 features pro-
duce accuracies close to chance, indicating that the prob-
lem itself can be very challenging. Of the 50 features, 16
of them (almost 1 in 3) have less than 55% accuracy. This
strongly indicates that beyond the very rough intuition that
blur, illumination and motion are important FPV character-
istics, it is far from trivial to implement these intuitions
as good features – the details of each feature are crucial.

5.1. Blur features

Among the 12 features related to blur, the BLUR-
hor-stdev feature (standard deviation of horizontal blur
among the frames in a clip) gives the highest accuracy of
66.1%, while 66.0% is attained by BLUR-max-z-d2-ab-
mean (mean absolute 2nd-order rate-of-change of omni-
directional blur). Together with BLUR-max-z-d1-ab-mean
achieving 65.5% accuracy, the results support the intuition
that changes in blur due to acceleration (or change in
acceleration) are characteristic of FPV data.

While this finding makes sense, this is not an a priori
obvious result. Many of the TPV clips include human ac-
tions – with natural bursts of acceleration and deceleration
– which could also cause changes in blur. In fact, 4 of the
8 TPV datasets are human action recognition datasets, with
clips specially cropped from longer videos or movies to fo-
cus on actions (i.e. static scenes removed). As such, only a
quantitative, empirical study such as this would shed light
on how well change in blur really characterizes FPV data.

Indeed, it is important to note that blur by itself is not
a strong distinguishing characteristic of FPV data. Among
the features relating to the average amount of blur, the high-
est accuracy is only 54.5% (BLUR-max-med, the median

539



Feature Accu Feature Accu
BLUR-hor-med 54.0% ANG-nrg-1 77.2%
BLUR-hor-mean 53.2% ANG-nrg-2 60.4%
BLUR-hor-stdev 66.1% ANG-nrg-3 56.1%
BLUR-ver-med 51.2% ANG-nrg-4 57.9%
BLUR-ver-mean 49.2% ANG-nrg-5 65.4%
BLUR-ver-stdev 61.9% ANG-nrg-6 60.1%
BLUR-max-med 54.5% ANG-nrg-7 62.4%
BLUR-max-mean 49.6% ANG-nrg-8 61.5%
BLUR-max-stdev 60.3%
BLUR-max-z-d1-ab-mean 65.5% ANG-mode-1 65.9%
BLUR-max-z-d2-ab-mean 66.0% ANG-mode-2 61.6%
BLUR-ratio-med 55.6% ANG-mode-3 52.9%
ILLU-med-stdev 51.0% ANG-mode-4 53.8%
ILLU-mean-stdev 59.0% ANG-mode-5 71.1%
ILLU-mean-d1-ab-mean 52.4% ANG-mode-6 57.8%
ILLU-mean-d2-ab-mean 53.9% ANG-mode-7 57.4%
ILLU-mean-z-d1-ab-mean 69.5% ANG-mode-8 55.2%
ILLU-mean-z-d2-ab-mean 66.1%
MAG-d1-ab-med-med 62.7% ANG-count-1 71.8%
MAG-d1-ab-mean-mean 56.3% ANG-count-2 65.8%
MAG-med-med 63.9% ANG-count-3 59.8%
MAG-mean-mean 60.3% ANG-count-4 46.1%
MAG-mean-z-d1-ab-mean 66.8% ANG-count-5 69.5%
MAG-mean-z-d2-ab-mean 68.2% ANG-count-6 59.1%
MAG-mean-d1-ab-mean 51.5% ANG-count-7 53.4%
MAG-mean-d2-ab-mean 51.1% ANG-count-8 54.8%

Table 3. Accuracy values for all 50 features. The best features for
each class or sub-class are in bold. The features beginning with
MAG and ANG are related to optical flow magnitude and angle
respectively. Clip length is 120 seconds.

amount of omni-directional blur in a clip). This is despite
the fact that for many types of TPV data (e.g. internet clips,
TV shows, movies), either the cameras are controlled to
avoid jerky motion, or the videos are post-processed to re-
move jerky motion. This might suggest in theory that TPV
data contain significantly less blur than FPV data, but in re-
ality the numbers do not support this.

5.2. Illumination features

Among the 6 illumination-related features, the best-
performance 2 features are ILLU-mean-z-d1-ab-mean and
ILLU-mean-z-d2-ab-mean (the mean absolute 1st- and 2nd-
order rate-of-change in illumination, where the illumination
of a frame is approximated as the mean pixel intensity). The
accuracies are 69.5% and 66.1% respectively. Note that
because each dataset (or even video) may have different il-
lumination characteristics (e.g. indoors or outdoors), it is
important to normalize for overall mean and standard devi-
ation. Without this step, the above two accuracies drop to
less than 54% (ILLU-mean-d1-ab-mean and ILLU-mean-
d2-ab-mean).

The finding that rate-of-change in illumination is
characteristic of FPV data is actually surprising. Most

of the FPV datasets are either predominantly indoors or pre-
dominantly outdoors. The primary exception is the UTE
life-logging dataset, which is very unconstrained and di-
verse. Even then, transitions from indoors to outdoors (and
vice-versa) are relatively rare.

As such, it is unlikely that the classifier performance
is driven by drastic changes in global illumination. More
likely, it is due to micro-changes in mean pixel intensity
due to camera or object motion. Again, because the TPV
datasets also contain actions, it is not a priori obvious that
a single feature related to micro illumination changes can
produce almost 70% classification accuracy.

Importantly, it is not so much the overall variation in il-
lumination (ILLU-mean-stdev, 59.0%), but rather the short
timescale (frame to frame) micro-changes in illumina-
tion that are more characteristic of FPV data.

5.3. Optical-flow magnitude features

Similar to the features related to illumination, for the fea-
tures related to optical-flow magnitude, the best performing
two features compute the mean absolute 1st- and 2nd-order
rate-of-change (MAG-mean-z-d1-ab-mean and MAG-mean-
z-d2-ab-mean; 66.8% and 68.2% respectively. Again, nor-
malization is important; without normalization, accuracies
drop to less than 52% (MAG-mean-d1-ab-mean and MAG-
mean-d2-ab-mean).

The overall median and mean amount of optical flow
(MAG-med-med and MAG-mean-mean) do not perform as
well (63.9% and 60.3% respectively). In other words, FPV
clips generally do have more optical flow than TPV clips,
but this is not as strong a characteristic as the rate-of-
change of optical flow (with the mean amount of optical
flow normalized away).

5.4. Optical-flow angle features

For the optical-flow features for specific directions, there
is a consistent trend across all 3 sets of 8 directions. Within
all sets, the leftward and rightward directions (1 and 5)
produce the highest accuracies. Moreover, these produce
some of the highest accuracies among all 50 features. In
other words, horizontal motion statistics are among the
strongest characteristics of FPV data, even beyond over-
all amount of motion or change in motion. This aspect of
motion has not been previously mentioned as a key char-
acteristic of FPV data, illustrating the value of performing
a comprehensive, quantitative analysis.

Somewhat counter-intuitively, it is not that FPV data has
more horizontal motion than TPV data. One might expect
more horizontal motion due to left-right head movement,
e.g. when looking around. However, as Fig. 2 shows, it is
TPV data that has more horizontal motion. Apart from the
outlier FPV datasets JPL and UTokyo (also see Section 6),
all the TPV datasets have very large proportions of optical
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Figure 2. Distribution of direction of optical flow for FPV (blue)
and TPV (red) datasets. Right is 0◦ and left is 180◦.

flow in the 0◦ (right) and 180◦ (left) directions, compared
to other directions. With the benefit of hindsight, this can
be explained as most TPV motion being due to horizontal
camera panning or motion along the ground plane.

6. Is all FPV data the same?

Thus far, we have treated all the FPV datasets as a sin-
gle category, by classifying FPV clips against TPV clips.
In this section, we compare the various FPV datasets to see
whether they are relatively homogeneous, or if in fact they
can be quite different from one another. This is an impor-
tant question. For instance, if FPV datasets are actually ex-
tremely heterogeneous, then one cannot claim to have de-
veloped an algorithm for FPV data in general, unless the
algorithm is validated on a variety of FPV datasets.

Here, in order to compare FPV datasets, we again train
a linear classifier to perform FPV/TPV discrimination, but
then examine the raw classifier output (i.e. the weighted
sum of the 50 features). We plot the output for each dataset
as a histogram (see Fig. 3), with the output value on the x-
axis, and the number of clips having such a value on the
y-axis. A clip with classifier output value of more than 0.5
is classified as FPV (see Table 4). We use a clip length of 10
seconds rather than 120 seconds (74.8% rather than 80.9%
accuracy in Fig. 1), so that all FPV datasets have a reason-
able number of clips, making the histograms more repre-
sentative. To make full use of the data, all clips are put into
the training set; there is no left-out test set. (Here, we are
not interested in generalization accuracy; we are interested
in how homogeneous FPV datasets are.)

It is important to compare FPV datasets in a quantitative,
data-driven manner, and not just compare the qualitative dif-

Figure 3. Histograms of raw classifier values (x-axis) for FPV
datasets. The y-axis represents the number of clips. Since only the
distribution of values is of interest, the y-axis of each sub-plot are
independently scaled for presentation purposes. Clips with values
above 0.5 (right of the red line) are classified as FPV.

ferences of the datasets (e.g. whether the data is collected
indoors or outdoors). Without a data-driven comparison, it
is unclear whether any supposed differences actually matter
in terms of what really characterizes FPV data.

As the results from Fig. 3 and Table 4 show, FPV datasets
are not homogeneous. There are 2 clear outliers in terms of
the distribution of raw classifier values (and the resulting
accuracy). The JPL and UTokyo datasets have accuracies of
14.6% and 46.7% respectively. Clearly, these datasets are
somehow different from other FPV datasets, and their clips
are often mis-classified.

Why might this be the case? One unique difference about
the JPL dataset [26] is that the camera was worn by a teddy
bear, not an actual person. There is camera motion induced
by moving the teddy bear, but this was achieved by push-
ing it around on an office chair. As such, there is no jerky,
human-like head or body motion, even though this dataset
is clearly egocentric in the sense that the camera records hu-
mans interacting with the camera-wearer. The fact that this
results in the JPL dataset achieving only 14.6% accuracy
further confirms the findings of Section 5.

The causes are less clear-cut for the UTokyo dataset [18],
which was collected using head-worn cameras while peo-
ple performed typical activities in an office setting. One
possible reason is that there were periods of little move-
ment while people looked at the computer screen. Again,
this is consistent with jerky motion being a key FPV char-
acteristic. However, this drives home the fact that TPV-like
segments can exist even with unambiguously FPV record-
ing setups, and suggests that subjective human perception
of FPV/TPV may be a better definition of ground-truth.
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Dataset Accu Dataset Accu
01 CMU 87.5 12 W31 97.0
02 Disney 83.5 13 YouTube 93.5
03 GTEA 85.2
04 Gaze 88.7 14 HMDB 80.4
05 Gaze+ 92.5 15 Hwood 78.3
06 IEOR 98.7 16 Hwood2 76.5
07 JPL 14.6 17 UCF50 68.4
08 EgoADL 68.8 18 URADL 90.4
09 UEC 100.0 19 UTI 98.5
10 UTE 77.9 20 VIRAT 90.0
11 UTokyo 46.7 21 Shows 80.9

Table 4. Accuracies corresponding to histograms in Figure 3. Clips
with values larger than 0.5 were classified as FPV. Accuracies for
TPV datasets (14 to 21) are also reported, for completeness.

7. Future work and discussion
This is a first attempt at quantitative characterization and

classification of FPV videos over multiple datasets. There
are many future possibilities, e.g. dividing the image into
sub-regions, which may allow for discovery of motion pat-
terns corresponding to walking, sitting, etc.

Overall, we have shown that a set of simple, low-level
features related to blur, illumination and optical flow are
able to characterize the differences between FPV and TPV
videos, quantified by a classifier accuracy of more than
80%. This baseline using low-level features and a linear
classifier is likely to be improved upon using more elaborate
or high-level features and more sophisticated classifiers.

One main insight is that rapid changes (rather than vari-
ation per se) are characteristic of FPV data, clarifying prior
intuitions. However, examination of two atypical but unam-
biguously FPV datasets raised a deeper issue. Even in the
absence of rapid changes, there are higher-order character-
istics of FPV data that are due to egocentricity itself, rather
than due to the camera being worn by people.
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