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Abstract

Advanced Driver Assistance Systems benefit from a full
3D reconstruction of the environment in real-time, often ob-
tained via stereo vision. Semi-Global Matching (SGM) is a
popular stereo algorithm for solving this task which is al-
ready in use for production vehicles. Despite this progess,
one key challenge remains: stereo vision during adverse
weather conditions such as rain, snow and low-lighting.

Current methods generate many disparity outliers and
false positives on a segmentation level under such condi-
tions. These shortcomings are alleviated by integrating
prior scene knowledge. We formulate a scene prior that ex-
ploits knowledge of a representative traffic scene, which we
apply to SGM and Graph Cut based disparity estimation.
The prior is learned from traffic scene statistics extracted
during good weather. Using this prior, the object detection
rate is maintained on a driver assistance database of 3000
frames including bad weather while reducing the false pos-
itive rate significantly. Similar results are obtained for the
KITTI dataset, maintaining excellent performance in good
weather conditions.

We also show that this scene prior is easy and efficient
to implement both on CPU platforms and on reconfigurable
hardware platforms. The concept can be extended to other
application areas such as indoor robotics, when prior infor-
mation of the disparity distribution is gathered.

1. Introduction
Stereo vision has been an active area of research for

decades. Recent years have shown a trend towards global
stereo algorithms that optimize the disparity map jointly,
rather than individually for each pixel [1]. The Middle-
bury database [1] is a good resource of available stereo al-
gorithms, but its scene complexity is limited. A more chal-
lenging benchmark is the KITTI database [2], comprising
of some 200 image pairs of street scenes. It still under-
represents the challenges for vision-based advanced driver
assistance systems that should operate at all weather and

illumination conditions, such as rain, snow, night, and com-
binations thereof. These challenging scenarios inspired our
work, in which we reduce the disparity errors by introduc-
ing prior knowledge into the estimation process.

In the light of increasing autonomy of future vehicles,
such adrverse weather scenarios have to be mastered. Work
on benchmarking such scenarios has just recently started.
The Heidelberg HCI dataset [3] was the first data set cov-
ering challenging weather scenarios, however, without sup-
plying ground truth. The Ground Truth Stixel Dataset [4]
contains a set of rainy highway scenes with sparse ground
truth labels for the free space and objects.

For driver assistance, the immediate surroundings of the
car that limit the free space should be detected at all times
but without mistakenly detecting a structure within the free
space. An successful example for solving this task in real-
time is Semi-Global Matching [5] (SGM), which can also
be found in the top 10 of the KITTI benchmark.

Under adverse weather conditions, SGM has a uniform
disparity distribution for outlier disparities. Mapping the
distribution into 3D space, we measure most outliers right
in front of the car. To counteract this observation we intro-
duce a scene prior: Using statistics drawn from many traffic
scenes we generate a representative traffic scene and use this
information as a prior for the disparity estimation process.
This generates a small bias towards the representative traffic
scene when basically no other data is available from the im-
age pair, e. g. in regions occluded by the windshield wiper.
An example with windshield wiper is shown in Figure 1.

We introduce this new scene prior and apply it both to
SGM and Graph Cut Stereo (GC) resulting in a significant
reduction of false positives under adverse weather condi-
tions. Summarizing, the main contributions of this paper
are: the generation of a representative traffic scene, the in-
troduction of an efficient and effective scene prior, applica-
ble to many stereo algorithms; and a careful evaluation of
the new algorithm variants on KITTI data and on a 3000-
frames highway database with manually labeled ground
truth that includes adverse weather conditions.

The rest of the paper is organized as follows. Section 2
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Figure 1. Rain traffic scene. Stereo reconstruction (red=near ... green=far) for the scene using SGM (left), right image (center), and SGM
with the scene prior introduced here (right). Large red blobs indicate nearby objects leading to potential false positive objects.

covers related work in stereo to incorporate priors. Sec-
tion 3 describes our used stereo methods, Graph Cut and
SGM, briefly. In Section 4 we detail how to incorporate
the scene prior in a Bayesian framework. Implementation
details for CPU and FPGA implementation are discussed
in Section 5. Section 6 shows results for Graph Cut, SGM
and the new prior on a 3000-frames database with challeng-
ing highway driving scenes. With this, false positive point
statistics and detection rates are presented on pixel and in-
termediate level for the new stereo variant introduced in this
paper.

2. Related Work

We limit ourselves to related work in stereo vision using
priors. ”Prior” in the context used here means prior infor-
mation that is independent of the image information in the
current stereo pair. Related work on stereo hardware imple-
mentations is listed in Section 5.2.

One popular option is to use smoothness priors. Stan-
dard smoothness priors assume a piece-wise constant depth
in the scene (e. g. [6]). Other works try to enforce a
second-order smoothness prior that allows for reconstruct-
ing slanted surfaces, e. g. [7]. This has been tried with mod-
erate success with SGM as well [8]. Another smoothness
prior enforces a disparity ordering along columns due to the
scene layout in traffic scenes for SGM[9].

Shape priors are popular in multi-view stereo (see e. g.
[10]). Planarity and orthogonality have been exploited as
priors several times, e. g. in [11].

Scene prior in our context means exploiting prior knowl-
edge about the scene from other sources than the image pair
itself. In [12], a sparse point cloud obtained from structure-
from-motion is used as a scene prior to render reconstruc-
tions deviating from the sparse result less likely. This in-
formation is injected by modifying the data term for the re-
spective points.

The method closest to our work is the scene prior from
[13]. There, a simple scene prior that renders larger dispari-
ties less likely in general is used. All pixels in the image are
treated the same way which inhibits good reconstructions
of the nearby road profile since the prior is heavily violated.
We compare our results to that method in Section 6. Scene
priors using information about a representative traffic scene
have not been used before to the best of our knowledge.

3. Semi-Global Matching and Graph Cut

3.1. Semi-Global Matching

Roughly speaking, SGM [5] performs an energy mini-
mization on multiple independent 1D paths crossing each
pixel and thus approximates a 2D connectivity. After cost
accumulation the classic winner-takes-all approach is ap-
plied. The energy consists of three parts: a data term for
similarity, a small penalty term for slanted surfaces that
change the disparity slightly (parameter P1), and a large
penalty smoothness term for depth discontinuities (P2).

Hirschmueller et al. [14] achieved very good perfor-
mance SGM using the Hamming distance of images trans-
formed with a 9x7 Census as similarity criterion [15]. Other
investigations (e. g. [16], [17]) have confirmed this finding.
We apply this similarity criterion throughout our work.

In order to identify and exclude occlusions,
Hirschmueller [5] performs one SGM run with the
left image as the reference image and another run with the
right image as the reference image. Disparities that deviate
by more than 1 pixel between the two results are removed
(RL-consistency check).

3.2. Graph Cut

Graph Cut (GC) is the method of choice for an effi-
cient near-optimal solution to multi-label problems. The
first known GC stereo algorithm was introduced by Boykov
et al. [6]. For our investigations, we use the implemen-
tation from [18] without label costs. There are two vari-
ants of GC: alpha-expansion and swap-label. The first algo-
rithm requires a metric, while the second can also operate
on semi-metrics. The parallels between GC and SGM have
been shown in [13]. There, it was shown that SGM and
GC performed very similarly when using the same smooth-
ness potential and the same similarity criterion, namely the
hamming distance of a 9x7 Census. The improvements ap-
plying priors in addition lead to almost identical results for
both methods. We use the same parametrization as in [13]
for our evaluations.

For reference, we run GC and SGM with the same pa-
rameters, the same data term, and the same right-left check
mechanism. Sub-pixel interpolation is not performed since
robustness, not accuracy, is our main concern. On good
weather data, the two variants exhibit very little difference.
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An example is shown in Figure 2. We perform all down-
stream evaluations with GC as well as with SGM in order
to show the effectiveness of the prior being independent of
the stereo method.

Figure 2. Standard traffic scene overlaid with disparity result SGM
(left) and GC (right). Red pixels are near, green far away.

4. Scene Prior
In adverse weather, a stereo algorithm that relies solely

on the image data has intrinsic performance limits due to
image noise or disturbances of the optical path as shown in
Figure 1. An additional prior is able to stabilize the disparity
maps in such situations.

4.1. Incorporation of the Scene Prior

To show how the prior can be incorporated we describe
our stereo task in a probabilistic fashion and extend it with
the new scene prior. We seek the disparity mapD that max-
imizes the probability

p(D|IL, IR) ∝ p(IL, IR|D) · p(D), (1)

where IL/IR is the left/right image, p(D) represents the
prior term. We assume the binary smoothness term to be in-
dependent of the unary scene prior term learned from statis-
tics, so we can multiply both terms:

p(D) ∝ psmooth(D) · pval(D). (2)

The first term is the well-known smoothness term and the
second one the new scene prior term. The prior term is de-
tailed in Section 4.3. All above terms are carefully normal-
ized to one to obtain their relative weights automatically,
without parameter tuning of weights. Before describing the
scene prior in more detail, we turn to the offline process of
gathering scene prior information.

4.2. Obtaining Scene Prior Information

We base our scene prior on the 3D shape of typical traf-
fic scenes. In order to collect data for the representative
traffic scene we took a stereo camera system in a vehicle
and recorded more than 100000 frames under good weather
conditions. The driving mix contains mostly urban and ru-
ral roads. We collect all estimated disparities for every pixel
in a histogram and normalize them to one (see Figure 4).
This data is collected with a tilt estimation module active
to compensate tilt motion of the vehicle [19]. From these

histograms, we obtain the most probable disparity per pixel
at the peak of the histogram. We call this disparity the aver-
age disparity for brevity knowing that it is not equivalent to
the average disparity. The resulting average disparity image
D̄ for our stereo camera system is shown in Figure 3 top.
Below the associated occurrence probability image for the
average disparity image is shown. This occurrence proba-
bility depicts the probability value of the maximum in the
disparity histogram. One can see the street up to the horizon
and the sky in the center top of the image.

Figure 3. Average disparity map for the representative traffic scene
(top). Darker pixels correspond to smaller disparities/larger dis-
tances. Occurrence probability map for the representative traffic
scene (bottom), the brighter the more likely the respective dispar-
ity value occurs.

Some example disparity histograms of the traffic scene
statistics are shown in Figure 4. On top, the disparity dis-
tribution for a street pixel right in front of the ego-vehicle
is shown. We expect to see the street disparity at more or
less the same distance. A clearly peaked disparity distri-
bution is obtained, showing nearly 30% probability for the
average disparity for the street region (marked in red) right
in front of the vehicle. Very few other disparities occur be-
sides the strong peak around disparity value 23. A different
distribution is obtained at the far right of the image slightly
below the horizon. This distribution is shown in the bot-
tom histogram. Here we expect both small disparities when
no obstacles are present and many other possible disparities
for obstacles at varying distances. This is confirmed in Fig-
ure 4 bottom where many possible disparities occur. Con-
sequently, the resulting most probable peak is much lower
with only 3% probability for the most probable disparity
value 18 and the distribution is less distinct.

Our stereo camera system is mounted in the car be-
hind the rear-view mirror at about 1.3m height above the
street. Other stereo configurations mounted at this height
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Figure 4. Example histograms of a street pixel close to the vehicle
(top) and of a pixel on the far right (bottom) with a much more
dispersed distribution.

are mapped onto the same disparity image by normalizing
disparities via the product of focal length and baselines and
correcting for installation tilt, roll, and yaw angle. This nor-
malization procedure allows for collecting statistics from
different camera setups and vehicles. Moreover, one can ap-
ply the same disparity statistics to any stereo camera system
mounted at that height. In fact, we generated our statistics
with a 32cm stereo baseline system and applied it on a data
set with 21cm stereo baseline.

We gathered the same statistics for the KITTI stereo data
set as well. Here we used all 20 image pairs of the 194 train-
ing and testing sequences resulting in about 8000 images.
The camera height is significantly above 1.3m so the data
cannot be merged. The average disparity image is shown in
Figure 5 top. The image below shows the maximum prob-
ability image (pmax) followed by the reciprocal maximum
probability image, σ = 1√

2∗πpmax
.This value represents the

standard deviation when a Gaussian distribution is on hand.
At the bottom, the empirical variance σdi computed from
the histograms is shown. The two bottommost images show
similar values and result in very similar performance when
used as prior. We show results using the empirical variance
image in the prior computation since this does not imply
restrictions on the type of distribution.

Figure 5. Average disparity map of the KITTI stereo data set (top)
and occurrence probability of it underneath. The estimated Gaus-
sian standard deviation and the empirical variance of the disparity
distribution are shown in the two bottom rows. For all images
holds: the whiter the pixel the higher its value.

4.3. Computation of the Scene Prior

Having collected normalized histograms for every pixel
in the image, we theoretically could take these histograms
as probabilities for every possible disparity per pixel and
implement a scene prior from that. However, this would
require to read tens of millions of data entries at startup and
would lead to zero probability for disparities that did not
occur during data acquisition.

Instead, we model the disparity probabilities as a Gaus-
sian distribution around the most probable disparity with a
standard deviation determined from the empirical variance
σdi. To allow for disparity values that are not reflected in the
gathered statistics, we add an additional uniform distribu-
tion to the Gaussian distribution to allow for rare disparities
and to tune the scene prior effect.

The assumption of the prior information being indepen-
dent for every pixel leads to a simple addition to the data
cost volume, a unary term. This is very efficient to imple-
ment. We obtain:

pval(D) =
∏
i

pval(di),

pval(di) = (1− pout)N (d̄i, σdi) + pout U ,
(3)

where N is the normal distribution of di with mean d̄i and
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standard deviation σdi as parameters drawn from the scene
statistics (N ∝ e−(di−d̄i)2/2σ2

di ), U the uniform distribu-
tion, and pout is the outlier probability for the prior infor-
mation to be wrong. This is the only parameter to explore.

Roughly speaking, we introduce a slight bias towards the
average disparity into the data term to prefer disparity val-
ues compliant with the gathered statistics. All probabilities
introduced above are transferred to log-likelihood energies
[20] and these energies are fed into the GC engine from
[18]. The priors are easily transferred back to SGM and GC
since only the data term is affected.

5. Implementation of the Scene Prior
5.1. Software Implementation

The introduced scene prior is independent of the chosen
stereo method as it only operates on the data term. Look-
ing at Equations 3, we choose not to compute the individual
costs per pixel and disparity hypothesis on-the-fly since this
would lead to a tremendous computational overhead. These
additional scene prior costs can easily be precomputed once
at startup since all data is known a priori. An average dis-
parity image and a variance image is read in and Equation 3
is computed for every pixel in the image and for every dis-
parity hypothesis. The results are stored in memory of size
512 (width) · 220 (height) · 64 (disparities) = 7208960 bytes
for images downscaled by a factor of 2.

The computational overhead to compute the scene prior
after startup is small. With little optimization, the runtime
increases by 20ms for the scene prior due to a modular soft-
ware design. Timings are for a Core(TM) i7 PC on images
downscaled by a factor of two, resulting in 512x220px size.

5.2. Firmware Implementation for an FPGA

For an efficient hardware implementation on a field-
programmable gate array (FPGA) we pick SGM as pro-
posed by Gehrig et al. [21]. Given this basis, we only re-
place the ZSAD cost generation block shown in Fig. 2 from
[21]. We use a 9x7 Census instead of ZSAD, reducing the
cost data width from 14 to 6 bit. This Census cost metric is
very efficient to implement on reconfigurable hardware (see
e. g. [22]). The Census data cost block is extended with the
additional data costs from the scene prior (see Figure 6).

Similar to the software implementation, all scene prior
calculations are computed once in software at startup. How-
ever, it is not trivial to read the necessary statistics data from
RAM and add it to the Census data term without additional
latency, not the mention the high bandwidth necessary.

Therefore, we decide to store the scene prior costs in
the FPGA internal block RAM (BRAM) memory. The
net memory size for this is 7.2 million times 4bits for the
costs. This part can hardly be handled inside the FPGA
since one would need too much BRAM for this informa-

tion which is only available in high-end FPGAs. To keep
BRAM consumption acceptably low, we discretize the av-
erage disparity values and the disparity standard deviations
in integer values, leaving 64 average disparity values and 16
standard deviation values. Only less than 0.5% of the pix-
els have standard deviation beyond 16 pixels so we loose
very little information here. This discretization leaves us
with 1024 possible cost vectors. With 4bits maximum prior
cost which covers outlier probabilities down to 0.2, we need
about 1024 · 4 · 64bits = 256kbits to store all possible ad-
ditional cost vectors for a pixel. This memory demand can
easily be handled by automotive FPGAs and utilizes less
than 9% of the BRAMS in a Xilinx Spartan6 LX75 FPGA,
used in current production vehicles for stereo vision. The
information, which average disparity and which standard
deviation occurs at every pixel is stored in the discretized
versions of the average disparity image and standard de-
viation image externally. These images are read in every
frame from RAM (10bits · 112640pixels) which adds just
30Mbit/s additional bandwidth to the system at 25Hz. The
average disparity value and the standard deviation is read in
for every pixel and these values are used for a lookup to the
corresponding cost vector that is added to all 64 disparity
hypotheses at the respective pixel. An overview of the new
cost and prior computation block is shown in 6.

Figure 6. Overview of the data cost computation block using the
scene prior on FPGA.

The total resource consumption is 15 BRAMs for the
scene prior cost vector storage, about 100 lookup tables
(LUTs) for the cost addition and the logic for reading
in from RAM, and about 30Mbits/s additional bandwidth.
This totals to a very mild increase in resources in all cat-
egories resulting in a significant performance increase as
shown next. No additional latency is introduced.

6. Results
6.1. Results on the KITTI Dataset

We tested our approach on the KITTI data set. However,
no adverse weather conditions are present in the data, so
we can only verify that the scene prior does not decrease
the performance. The only parameter to be adjusted is the
outlier rate pout.
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pout SGM Pscene error [%] SGM Pscene density [%]
base 6.01 94.5
0.95 6.00 95.1
0.90 6.04 95.1
0.85 6.22 95.0
0.80 6.22 95.0
0.50 6.77 94.7
0.20 9.01 93.3

Table 1. Erroneous pixel rates on the KITTI training set. Erro-
neous pixels deviate by more than 3px to the ground truth (KITTI
default), stereo density refers to the percentage of valid disparities.

We evaluated on the full training set. The stereo data is
interpolated according to the KITTI development kit. Ta-
ble 1 summarizes the results. We observe little difference in
false pixel statistics. For the disparity density we see little
difference as well with slight advantages to using a scene
prior. Outlier rates below 80% result in noticeable higher
erroneous pixel rates.

6.2. Results on the Ground Truth Stixel Dataset

An appropriate database for testing our scene prior must
contain adverse weather scenarios. The Ground Truth Stixel
Dataset [4] fulfills this requirement. It contains mostly rainy
highway scenes with blurred windshield, wiper passes, and
spray water behind passing cars. A few good weather
scenes are included to make sure no undesired effects on
normal scenes occur.

A percentage of false positive points is computed using
the driving corridor, an area in the scene directly in front
of the car, 2m in width and 2m in height. The corridor is
calculated from the car’s current position using ego-motion
data, describing an area that the car covers one second into
the future. This volume is free of any protruding structures;
any triangulated world point that lies within the corridor is
counted as a false positive point.

In addition, the data is annotated with an intermediate
representation called stixels, thin rectangular sticks with up-
right orientation that contain image positions and disparities
for objects or structures. This way, about 10% of the dispar-
ities in the image are labeled. The stixel algorithm as intro-
duced in [23] is computed and our stereo algorithm variants
serve as input. A stixel example image with input stereo
image (left) is shown in Figure 7 center. This stixel repre-
sentation encodes the necessary information for most driver
assistance functions. Stixels that occupy the driving corri-
dor volume are false positives. To compute a detection rate
for the stixels, we use ground truth data that covers a dis-
tance of about 50m, counting all stixels within 3σd to the
ground truth as true positives.

Table 2 shows the results on this 3000-frames database.

false positive detection
point stixels rate

rate [%] [#frames] [%]
SGM 0.23 261 85.7
GC 0.25 316 85.7

iSGM 0.22 182 84.4
SGM SimplePrior [13] 0.04 80 83.5

SGM conf [4] n.a. 45 80.2
GC SimplePrior [13] 0.05 123 83.7

SGM ScenePrior(0.95) 0.20 236 85.3
SGM ScenePrior(0.9) 0.09 136 84.8
SGM ScenePrior(0.85) 0.06 108 83.8
SGM ScenePrior(0.8) 0.05 91 82.7
SGM ScenePrior(0.5) 0.02 57 77.0
SGM ScenePrior(0.2) 0.01 40 70.7
GC ScenePrior(0.95) 0.17 263 86.1
GC ScenePrior(0.9) 0.11 197 84.0

GC ScenePrior(0.85) 0.09 152 82.6
GC ScenePrior(0.8) 0.07 113 81.0
GC ScenePrior(0.5) 0.03 81 73.9
GC ScenePrior(0.2) 0.01 65 68.4

Table 2. Comparison of false positive point rates, number of
frames with false positive stixels, and detection rates on the
Ground Truth Stixel Database. pout in parentheses for the scene
prior.

All considered algorithms use the same Census data term.
As a baseline, SGM and GC are shown in the first two
lines. GC performs slightly worse, probably due to the Me-
dian filter in SGM post-processing. As additional baseline
serves iterative SGM introduced in [24] which performed
best on the Robust Vision Challenge1. It delivers slightly
better results than basic SGM. With the simple scene prior
(SimplePrior) from [13], false positive point rate and false
positive stixel numbers drop by more than a factor of two.
With our pixel-based scene prior (ScenePrior), we also see
a clear reduction of false positives. The results for differ-
ent outlier probabilities are shown with a sweet spot around
0.8 where false positive rates drop by a factor between 3
and 5 and detection rate is only mildly degraded. Note the
comparable performance of SGM and GC with the scene
prior. From this we can see that it is best to adapt the out-
lier rate to the current weather conditions: The worse the
weather conditions, the lower the outlier rate in order to
maintain a low false positive level. With our scene prior
below pout = 0.8 we perform similar on false positive level
to [4], where stereo confidence information is used in addi-
tion (SGM conf).

Note that for the simple scene prior used in [13], the false
positive rate is reduced at the expense of losing stereo infor-

1http://hci.iwr.uni-heidelberg.de//Static/challenge2012/
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Figure 7. Input disparity image (left) and resulting stixel representation (middle). The labeled ground truth is shown in blue on the right,
the corridor in red.

false positive detection
point stixels rate

rate [%] [#frames] [%]
rain and night 0.53 (3.15) 105(308) 91.3 (92.2)
rain and day 0.27 (0.76) 24 (60) 61.2 (67.1)

snow and day 0.03 (0.12) 1 (10) 95.9 (94.1)

Table 3. false positive point rates, number of frames with false
positives, and detection rates for different weather scenarios using
SGM ScenePrior (SGM baseline in parentheses) .

mation on the street necessary for street surface estimation
(see Figure 8) which does not happen with the proposed
scheme.

6.3. Results for a Night/Rain/Snow Dataset

We also applied our scene prior to more types of adverse
weather conditions (night, rain, snow) with 12bit/pixel im-
agery computing 128 disparity steps on 1200 frames. Fig-
ure 8 top shows results for a night and rain scene just before
the windshield wiper passes. The basic SGM is shown on
the left, SGM with the simple scene prior [13] in the middle
and the new scene prior on the right. The red blobs above
the car disappear and the holes in the street are mostly filled,
in contrast to the simple scene prior where all street infor-
mation is lost. In the bottom row a snow result is shown.
pout was set to 0.8. The rain scene result in Figure 1 is
computed with the same setting.

We annotated some parts in above challenging scenes
(rain, snow, night and rain) with ground truth (mainly cars
and traffic signs) and used the ground truth stixel dataset
evaluation scheme. Table 3 summarizes the results for dif-
ferent scenarios comparing SGM with scene prior to the
SGM baseline. The false positive rate drops dramatically
while the detection rate remains constant. pout = 0.8 is
used.

For reference we show the averaged results over these
scenes for different outlier rates in Table 4. Here, pout
around 0.8 also appears to be the best compromise between
detection rate and false positive rate. The detection rate of
the simple scene prior is low in comparison to the scene
prior variants shown here.

false positive detection
point stixels rate
rate [%] [#frames] [%]

SGM 1.34 378 83.5
SGM SimplePrior [13] 0.05 24 77.2
SGM ScenePrior(0.95) 0.82 323 84.6
SGM ScenePrior(0.9) 0.44 212 82.9
SGM ScenePrior(0.85) 0.31 145 81.9
SGM ScenePrior(0.8) 0.25 124 81.2
SGM ScenePrior(0.5) 0.10 39 77.5
SGM ScenePrior(0.2) 0.07 18 75.9

Table 4. Comparison of false positive point rates, num-
ber of frames with false positives, and detection rates on
Night/Rain/Snow Scenes (integrated over 3 scenes). pout in paren-
theses for the scene prior.

7. Conclusions and Future Work
We have presented a scene prior, incorporated both into

Graph Cut and Semi-Global Matching that is able to re-
duce false positive rates in driver assistance scenarios while
maintaining detection rate. Along the way, we obtained dis-
parity statistics for typical traffic scenes. The probabilistic
problem formulation allowed us to integrate the prior effi-
ciently into the data term applicable to any stereo algorithm
generating a matching cost volume. We showed efficient
ways to implement the scene prior both on CPU and FPGA
systems.

For future work, combining the prior with stereo confi-
dence is a promising line of research. Also, we will explore
the option to adapt the outlier rate of the scene prior to the
weather conditions.
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