
FPGA-based fast response image analysis for
autonomous or semi-autonomous indoor flight

Robert Ladig, Kazuhiro Shimonomura
Department of Robotics, Ritsumeikan University

Kusatsu, Shiga, 525-8577 Japan
gr0150ff@ed.ritsumei.ac.jp, skazu@fc.ritsumei.ac.jp

Abstract

Small aerial vehicles, like quadrotor, have a high po-
tential to be helpful tools in first response scenarios like
earthquakes, landslides and fires. But even simple tasks like
holding position and altitude can be challenging to accom-
plish by a human operator and even more challenging au-
tonomously. When outdoors, using GPS and pressure sen-
sors is feasible, but indoors or in GPS denied environments
it is not. Until now, for indoor flight scenarios either a lot of
energy consuming sensors and hardware or a perfectly de-
fined surrounding is required. In this approach, the viability
of an onboard FPGA based indoor flight navigation system
with a pan-tilt camera mount and a single VGA camera is
tested. It can be used to either support an operator per-
forming a hold position and altitude task, or act completely
autonomously to achieve this task.

1. Introduction

Due to the decrease of cost and size of accelerom-
eters and other sensors needed for a stable autonomous
flight [10], in recent years the interest and research in aerial
robotics has continuously grown and surely will continue
to grow even faster. Because of the rather simple dy-
namic model of a certain type of aerial vehicles, so called
quadrotor, we have not only seen wide commercial suc-
cess and public recognition (as with the smart phone con-
trolled AR.Drone [6]) but also a rapid miniaturization in the
last few years (for example the 19g light Crazyflie quadro-
tor [2]). The possibilities that open up, especially in search
and rescue (SAR), with the use of autonomous air vehicles
are numerous. Due to their small design and a mobility that
is independent of terrain, they seem to be the perfect tools
for locating areas of attention in a catastrophic event like
earthquakes, fires or landslides. Yet, even though the tech-
nology is openly available and affordable, the systems used
in SAR are mostly ground based, e.g. described by Casper

and Murphy in the case of the World Trade Center rescue
efforts [3].

There are several reasons why quadrotor are not yet
widely used in SAR operations. One reason is the need for
an experienced operator, when using a quadrotor, to avoid
crashes. Even simple tasks like holding a certain position
and height are a challenge to inexperienced operators. This
is especially true for indoor usage where, due to the turbu-
lences produced by a medium sized quadrotor, disturbance
correction requires high steering accuracy by the operator.
Especially in high stress situations, an autonomous or semi-
autonomous solution to support the operator in the task at
hand is highly desired.

There are solutions that use multiple calibrated cameras
and a base-station connected via remote signals to achieve
a hold position task (for example Michal et al. [5]). And
while this approach gives very precise results, it is unfortu-
nately not viable in a SAR situation that requires a fast, or
if possible zero, setup time. This makes an on board solu-
tion desirable. But if we desire an onboard vision analysis
solution, we have to keep track of space, weight and energy
consumption. These are all resources that are vital to the
successful operation of a quadrotor and usually very sparse.

One possibility to solve this problem is to use a highly
specialized integrated circuit that takes care of the naviga-
tional control of the quadrotor. Furthermore, to reduce the
stress on the onboard battery, a low amount of energy ef-
ficient sensors would be required. One approach to keep
the number of sensors low is the use of only one camera.
While this monocular vision approach has been explored in
the past, (e.g. by Yang, Scherer and Zell [11] or Tournier et
al. [8]), using a low power consumption system on a chip
device like a FPGA for onboard navigation and image anal-
ysis computation, instead of a general purpose microproces-
sor system or a base station, has yet to be fully explored.

The goal of this study therefore was to develop a zero-
setup, vision analysis system via field programmable gate
array (FPGA), using a single camera mounted on a quadro-
tor.

1668

Figure 1. Picture of the test platform

2. Setup

The quadrotor used in this project is based on the open
source project Arducopter [1]. The flight controller that is
used, the Ardu Pilot Mega (APM), has an Atmega1280 as
main processor and an Atmega328 co-processor to handle
the RC interface processing. It is connected with an inertia
measurement unit (IMU) shield. The sensors that are avail-
able on this shield consist of a 3-Axis accelerometer, z-gyro,
xy-gyro, pressure sensor and a digital compass. We are us-
ing the standard Arducopter dome to protect the electronics
and a custom designed 3d-printed ABS case to protect the
quadrotor blades. The size of the quadrotor is 70x70cm and,
with all added electronics and 3300 milliampere battery that
grants around 15min flight time, measures in at 1,8kg (see
Figure 1).

The firmware of the APM was modified to enable the
transmission of roll and pitch position of the quadrotor from
the APM via pulse-width modulation (PWM) to the FPGA.

The FPGA used in this research is a XC6SLX100 of the
Xilinx Spartan 6 family. It is configured to have sixteen in-
puts and twenty-two outputs. We distinguish between four
different input groups and four different outputs groups.

The first input group consists solely of the clock, which
is running at 50MHz and is actually hardwired on the FPGA
board. The second group contains the data signals we re-
ceive from the camera CMOS and other signals necessary
for the picture acquisition. The third group is made up of
pitch and roll information processed by the APM and send
via PWM to the FPGA. The last group consists of the PWM
signals received by the remote of the operator. They involve
potential operator steering and correction signals.

The first of the four output groups that have been config-
ured are the control signals necessary for the operation of
the camera. The second group consists of the roll and pitch
signals for the mini servos of the 2-axis camera mount. The
third group involves the modified control signals as PWM.
The last and final group is necessary to have a standard

Figure 2. Schematic of the FPGA in- and outputs

Figure 3. Signal diagram

60Hz VGA monitor output, but is not required for opera-
tion. Nevertheless they proved very valuable for debugging
of the FPGA. A schematic of the FPGA in- and outputs can
be seen in Figure 2 and a schematic how it is implemented
in the overall system can be seen at Figure 3.

3. Approach
The initial task that was chosen to evaluate the use of

an FPGA for image analysis and quadrotor control is the
tracking of a round target of known size and color. The
navigational task is to stay directly over this target in a cer-
tain flight height. The target chosen in this approach is a
circular piece of red styrofoam with a 25cm diameter.

There is a fundamental difference between designing a
system on a CPU or FPGA. One common limitation when

669

Figure 4. The camera mount in frontal (upper picture) and top-
down (lower picture) position

working with a CPU is the clocking speed. Since the pro-
cessing tasks of a CPU are usually linear structured, the
faster the CPU the more instructions we are able to pro-
cess in a certain amount of time. Since the common task
structure of a FPGA program is highly parallel, FPGAs can
outperform CPUs with much higher clocking speed if spe-
cialized for a certain task (e.g. shown by Underwood [9]).
This means the limiting factor of the FPGA is not the clock-
ing speed, but the number of gates available on the FPGA.
Therefore it is important to optimize the number of gates
used as often as possible, especially when implementing a
rather complex task as vision analysis.

So instead of performing an distortion correction by cal-
culating the visual Jacobean(as explained by Mahony et
al. [4]) via FPGA, it was therefore decided to solve the
problem of perspective distortion of the projected camera
image on a ground target, produced by roll and pitch move-
ment of the quadrotor, by using a simple two-axis camera
mount (Figure 4). The camera is driven by two mini ser-
vos controlled by the FPGA which is correcting the camera
position by

[
campitch(t)
camroll(t)

]
=

[
kpθ(θerror(t)) + kdθ(˙θerror(t))

kpφ(φerror(t)) + kdφ(˙φerror(t))

]
,

(1)

where k represents the specific gains and θ, φ the pan-
tilt angle. This is keeping the camera in a perpendicular
position to the ground at all time, preventing perspective
distortion. The gains in this formula have been experimen-
tally obtained and can differ when a another frame design,
motors or blades are used.

The image data is received as a 10bit YUV steam and
converted in to a 24bit RGB stream. To reduce the limited
amount of block memory used the initial resolution of the
camera, 640x480 pixel, is down scaled to 320x240 pixel.
To improve debugging and prototyping, the timing for the

Figure 5. A visualization of the the creation of a weighted average
mean via FPGA. With this, the target position can be determined.

image analysis has been decided to be the same timing as
the output signal, 25MHZ.

With every clock impulse, the RGB information of one
pixel is written as 24 bit in block ram. After the end of each
line of a frame, a computation to achieve target estimation
via histogram analysis is initiated. The assumption is made,
that the illumination of the scene is appropriate enough to
have a clear, untainted sight on the tracking target. Since
the color of the desired object is known beforehand, the eu-
clidean distance of the pixel color is compared with the de-
sired color:

distRGB =

∣∣∣∣∣∣
desrdesg
desb

−

pixelrpixelg
pixelb

∣∣∣∣∣∣ . (2)

If the pixel is in the desired color range, the pixel is
marked as hit and furthermore the number of hits in the
current row and the current column is raised by one. At
the same time, the weighted arithmetic mean of the average
target pixel position u and v is computed by:

u =

∑xhits

i=1 wixi∑xhits

i=1 wi

v =

∑yhits

i=1 wiyi∑yhits

i=1 wi
. (3)

To enhance accuracy while still maintaining a one-pass
approach, the weight wi is dependent on the number of hits
already encountered in the corresponding row or column.
This lowers the influence that noise and other outliers pro-
duce on the overall result. To further illustrate the whole
process as it is processed by the FPGA, a simple 10x5 pixel
frame sample is given in Figure 5.

After the processing of each pixel in the current frame,
the weighted average mean is immediately computed. Since

670

Figure 6. Debug output of the FPGA. The correct acquisition of
the target position and size and the histograms are shown.

in this process the number of pixels found in each row and
column is also written to block ram, it is also possible to use
this data to create a histogram as visualization (Figure 6).
After the weighted arithmetic mean of the vertical and hor-
izontal histogram is computed, it is assumed that we found
the middle of the tracking target. Since a tracking target
of circular shape is used, we can simply use horizontal and
vertical Histogram Hh and Hv

d =
Hh(u) +Hv(v)

2
, (4)

to also extract the estimated target diameter. To further im-
prove accuracy, a mean of several lines around the horizon-
tal and vertical histogram mean can be used.

After processing the estimated center and estimated size
of the target, there are several checks to ensure a save track-
ing when the image analysis algorithm is used in-flight.

As a first step, the size of the acquired target is checked.
If the acquired targets diameter is not reaching a size of at
least 5 pixel in horizontal and vertical direction, it is as-
sumed that the right target could not be found.

If the circular tracking target touches the edge of the pic-
ture frame, the assumption that the projected image area is
circular does not hold true anymore. This leads to wrong
results of the weighted mean average and target size esti-
mation. To counter this problem it is assumed that the last
known size of the target equals the current target size. This
assumption can be made since normally in a stable and con-
trolled indoor flight, sudden changes in z-direction are not
desired. We also assume that we are able to get back to a po-
sition where the target is in the picture frame again, before
significant changes in the z direction can happen. We can
thus just ignore the faulty data in one dimension (the one
were loss of information is expected) and only use knowl-
edge about the last target size and the horizontal or respec-
tively the vertical histogram data in addition to the knowl-
edge which frame border is breached. This proves to be

Figure 7. Debug output of the FPGA in case occlusion of the
target by the image frame border. The correct size and last relative
direction can still be computed.

sufficient information to still compute a result that is good
enough to move the quadrotor, and with this the projected
camera image, back to a position that is able to catch the
full target yet again (Figure 7).

To calculate the altitude of the quadrotor, we assume the
camera lens as a thin lens and using the relationship be-
tween the beforehand known focal length f , the measured
image distance s′, magnification m and object distance s:

1

f
=

1

s
+

1

s′
(5)

m = s′/s (6)

s = f(1 +
1

m
). (7)

Since object diameter D, object diameter in pixel d, pixel
size on the image sensor p and focal length f are given we
can calculate m also by:

m =
d× p

D
, (8)

and get

z = f(1 +
D

d× p
), (9)

thus giving us the distance of the camera towards the track-
ing target.

A PD-controller was implemented for controlling the x
and y position of the quadrotor and a PID-controller for the
control of height. The desired position in the picture frame
is notated with udes, vdes and is located in its middle while
the desired hight zdes is controllable by the operator. We
get the FPGA computed control signals F :

ue = udes − u

ve = vdes − v (10)
ze = zdes − z

671

 Fpitch(t)Froll(t)
Fthrust(t)

 =

 kpx(ue)(t) + kdx
d
dt (ue)(t)

kpy(ve)(t) + kdy
d
dt (ve)(t)

kpz(ze)(t) + kiz
∫ t
0
(ze)(τ)dτ + kdz

d
dt (ze)(t)

 . (11)

The gains k here have also been experimentally obtained
and, as the gains of the camera mount, can greatly differ de-
pending on frame, blades, motors and load. The differential
part of the controllers is gained by comparing the estimated
positions of the current frame and the last sampled frame.
The sampling rate for this process is the same timing as the
image analysis part of the FPGA. In this case it is 25MHz.
The kp, kd and ki parameters were estimated experimen-
tally and separately for pitch,roll and thrust signal.

The FPGA computed control signals F are mixed to-
gether as PWM signals with the operator signals O as: mod pitch(t)mod roll(t)

mod thrust(t)

 =

Fpitch(t)Froll(t)
Fthr.(t)

+

Opitch(t)Oroll(t)
Othr.(t)

 . (12)

The control signals F are limited to a threshold lower
than half of the maximum steering signal the operator is
able to produce. This ensures a save flight, even if the image
data should be temporarily misinterpreted. It gives the op-
erator the possibility to override the FPGA created signals
at any given time, given that a continuous misinterpretation
of the image data will lead to a crash and possible damage
of the hardware.

These control signals are then transmitted to the flight
controllers trajectory planer, and converted to the corre-
sponding motor speeds. Since we do not require knowledge
of the motor speeds, most of the flight controller is treated
as a black box. For the flight controller, there is no dif-
ference between a normal operator input and a FPGA pro-
cessed input, so the FPGA is effectively acting as a virtual
remote. The advantage of this approach is that the system
is not only limited on this hardware (frame and flight con-
troller), but can, with minimal adaptations, potentially be
ported to other systems that are able to do a hovering flight
and require pitch, roll and thrust signals.

4. Results
Our prove of concept prototype is able to generate and

modulate operator signals according to the picture per-
ceived by the onboard camera. This enables the quadrotor
to do stable hover flight over a predetermined tracking tar-
get of known size as seen on Figure 8. We achieve a stable
hover flight by using only a FPGA as control signal genera-
tor and a pan-tilt camera with an accuracy of around 20 cm.
This has been measured by analyzing videos of the flight of

Figure 8. Successful test of the hold position and altitude task in
a corridor

the quadrotor over multiple flights manually. The perceived
tracking image is analyzed fast enough to counter chaotic
air distortions that occur when a rather large quadrotor like
this flies in a confined area like a corridor. In our case, the
response time is dependent on the transport protocol used.
Since the output of the calculated data as a PWM signal
is initiated with 50Hz, the worst case response time (new
output data computed on clock after the PWM output was
initiated) is 20ms. A table of the specifications of the hard-
ware used, response time we can achieve with this setup and
detailed statistics of how much resources of the FPGA were
used for this project can be seen in Table 1.

Since additionally the original operator signals are mixed
with the FPGA signals, it is also possible to fly in an as-
sisted semiautomatic flight modus. This enables also inex-
perienced operators to safely control the quadrotor even in
confined areas. The operator is able to fly the quadrotor in
a certain area of operation, surrounding the tracking target.
If the operator chooses to stop the control, the quadrotor
returns to its stable hovering position over the tracking tar-
get. In this scenario though, the possible area of operation
is limited by the ground area visible by the camera, in other
words the maximum possible flight height of the surround-
ing area.

A log of the control signals generated by the FPGA while
tracking a target indoors can be seen in Figure 9.

5. Future Development
While the preliminary system works for the task it was

optimized for, there is room for improvement. The top-
down view of the camera proved very limiting for the area
of operation and can also lead to a loss of the tracking tar-
get, if the flight height should be too low and thus being
outside of the camera view angle at any given point in time.
In the future we hope to tackle this problem with a tracking
of more sophisticated image feature points. In an indoor
flight scenario, the use of vanishing point estimation ,simi-

672

Figure 9. Roll (red) and pitch (green) control signals generated by the FPGA (upper graph) and by an operator (lower graph) while
hovering over a tracking target. The FPGA generated control signals produce less spikes and more simultaneous pitch and roll corrections
then a human operator.

Resolution 320x240px
Camera frame rate 30fps
FPGA family XILINX Spartan-6
Model XC6SLX100
Number of occupied Slices 24%
Number of RAMB16BWERs 40%
Number of bonded IOBs 21%
FPGA clock 50MHz
Output frequency 50Hz
Highest response time 20ms

Table 1. Major specifications of the currently implemented vision
system

lar to Shi and Samarabandu [7], will be one of the elements
that will be explored in a future research.

There are much higher timings for the image analysis
process possible than the timings achieved in this approach.
One of the limiting factor is the time is takes to capture a
single image frame. If required, the use of a camera with
higher frame rate is possible and it would impact the already
established implementation only minimal while greatly im-
proving the overall result.

To improve the reliability of this approach in regard to
different illumination, it would be of benefit to use not the
RGB space to classify the target, but to use a color space
more indifferent to illumination (e.g. YUV).

One problem evaluating the approach has been that the
ground truth of the quadrotors position in 3d space is not ex-
actly measured. When exactly measured, it would be easier
to show the feasibility of the approach in graphs.

Since the hardware has been prepared and has proven to
be feasible, it is reasonable to assume that a future research
will be build on the foundation that has been laid by this
work.

6. Conclusion
With the successful implementation of the hold altitude

and position tracking-task, it was shown that the utiliza-

tion of FPGA in flying robotics applications is feasible. A
hold altitude and position task was accomplished, generat-
ing control signals by only using a single camera mounted
on a pan-tilt 2-axes mount and a FPGA for image analysis
connected to a flight controller.

References
[1] Arducopter-Project-Website.

http://code.google.com/p/arducopter/. 2
[2] BitcrazeAB. http://www.bitcraze.se/crazyflie/. 1
[3] J. Casper and R. R. Murphy. Human-robot interactions dur-

ing the robot-assisted urban search and rescue response at the
world trade center. Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on, 33(3):367–385, 2003. 1

[4] R. Mahony, V. Kumar, and P. Corke. Multirotor aerial
vehicles: Modeling, estimation, and control of quadrotor.
Robotics & Automation Magazine, IEEE, 19(3):20–32,
2012. 3

[5] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar. The
grasp multiple micro-uav testbed. Robotics & Automa-
tion Magazine, IEEE, 17(3):56–65, 2010. 1

[6] ParrotSA. http://ardrone2.parrot.com. 1
[7] W. Shi and J. Samarabandu. Corridor line detection for vi-

sion based indoor robot navigation. In Electrical and Com-
puter Engineering, 2006. CCECE’06. Canadian Conference
on, pages 1988–1991. IEEE, 2006. 6

[8] G. P. Tournier, M. Valenti, J. P. How, and E. Feron. Esti-
mation and control of a quadrotor vehicle using monocular
vision and moire patterns. In AIAA Guidance, Navigation
and Control Conference and Exhibit, pages 21–24, 2006. 1

[9] K. Underwood. Fpgas vs. cpus: trends in peak floating-
point performance. In Proceedings of the 2004 ACM/SIGDA
12th international symposium on Field programmable gate
arrays, pages 171–180. ACM, 2004. 3

[10] P. L. Walter. The history of the accelerometer. Sound and
vibration, 31(3):16–23, 1997. 1

[11] S. Yang, S. A. Scherer, and A. Zell. An onboard monocular
vision system for autonomous takeoff, hovering and landing
of a micro aerial vehicle. Journal of Intelligent & Robotic
Systems, 69(1-4):499–515, 2013. 1

673

