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Abstract—On-road vehicle detection and lane detection are
integral parts of most advanced driver assistance systems
(ADAS). In this paper, we introduce an integrated approach
called Efficient Lane and Vehicle detection with Integrated
Synergies (ELVIS), that exploits the inherent synergies between
lane and on-road vehicle detection to improve the overall com-
putational efficiency without compromising on the robustness
of both the tasks. Detailed evaluations show that the vehicle
detection component of ELVIS shows at least 50% lesser false
alarms with equal or better detection rates, and reducing the
computational costs by over 90% as compared to state-of-the-
art vehicle detection methods. Similarly, the lane detection
component shows more reliable lane feature extraction with
average computation costs that are at least 35% lesser than
existing techniques.
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computational efficiency

I. INTRODUCTION

In recent years, there has been an significant increase
in the number of the embedded electronic processors in
automobiles from 1% in 1980 to over 22% in 2007 [3]. The
presence of such systems directly impacts the overall power
consumption, which is especially critical in present times
when the automotive industry is moving towards battery-
powered hybrid and electric vehicles.

Among the different embedded sub-systems, vision-based
advanced driver assistance systems (ADAS) are becoming
more popular in recent times because of the availability
of low-cost, high-resolution and pervasive cameras [15].
In order to meet the increasing demand in vision-based
ADAS, manufacturers such as Texas Instruments etc. are
releasing newer embedded platforms that are specifically
catered for implementing vision algorithms in automobiles
[7]. Although such platforms do provide an advantage over
conventional processors and hardware systems, the effi-
ciency (both power and real-time operation) are constrained
by the implementation of the constituent vision algorithms
[14].

Various computer vision algorithms have been explored
for ADAS tasks such as detection of lanes, vehicles, pedes-
trians etc. in [11], [4] etc., wherein a variety of feature
extraction methods, classification techniques, and tracking
methods have been proposed for improving accuracy. While
robustness is critical in such vision-based active safety sys-
tems, exporting such data-intensive algorithms on embedded
platforms is still a challenging task [14], [10]. Although

Figure 1. (a) Sliding window of multiple sizes used across the image,
(b) Relationship between sliding window and the position of the leading
vehicles.

implementations such as lane detection in [6] demonstrate
the realization of ADAS algorithms on embedded platforms,
designing the algorithm itself to cater for more efficient
embedded realizations is less explored in current literature
[6], [10]. Similarly, vehicle detection is also mainly explored
for improving accuracy, which primarily focus on multi-
scale sliding window approach [11], [5]. There are a number
of such techniques in literature [13]; however, integrating the
two tasks, i.e. lane detection and vehicle detection, is less
explored [12].

In this paper, we propose an integrated approach
called ELVIS (Efficient Lane and Vehicle detection using
Integrated Synergies) that incorporates the lane information
to detect vehicles more efficiently in an informed manner
using a novel two-part based vehicle detection technique.
The vehicle detection outputs are further used in ELVIS
to improve the efficiency of the lane feature extraction
process. We will present detailed evaluations that show
significant gains in computational efficiency using ELVIS,
without compromising on accuracy of both lane and vehicle
detection.

II. ELVIS: PROPOSED INTEGRATED APPROACH

In this section, we will first propose the vehicle detection
component of ELVIS followed by the lane feature extraction
method that benefits from vehicle detection.

A. Vehicle Detection using Lane Information

Let us consider a typical road scene as shown in Fig.
1. Conventional classifier-based vehicle detection techniques
apply a sliding window of multiple scales (or the image
is scaled keeping the size of the window same) across
the input frame as shown in Fig. 1(a) to detect vehicles
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of multiple sizes. Although such techniques exhaustively
look for vehicles, they also result in false positives and can
be computationally overwhelming for embedded realization
with a few hundreds of thousands of windows for processing.
There is an additional computational overhead for eliminat-
ing false positives using tracking, the cost of which increases
with higher number of false positive windows.

In ELVIS, we consider the following observations about
on-road vehicle detection. The on-road vehicles appear in
an orderly manner along the road surface, with sizes that
are changing in an orderly way, especially in highway and
urban driving. Therefore, as shown in Fig. 1(b), if the image
is scanned along the road surface, the vehicles appearing
first in the direction of the road will appear bigger than the
vehicles that appear later.

In the proposed method, we use the lane information
and the contextual information described above to detect
the vehicles in an informed manner. The first part of the
proposed method is a one-time process to generate an LUT
(look-up table) of the positions and sizes of the windows
which should be used to detect the vehicles. In order to
do this, we use the inverse perspective mapping (IPM) of
the image, which is can be readily derived based on the
camera calibration [1]. Considering that IPM generation is
an integral part of most lane detection methods such as [8],
[2], [10], [1], it will reused for lane detection in ELVIS later.

Figure 2. Generating the LUT of windows and positions using lane and
IPM information.

Fig. 2 illustrates the LUT generation process. Given an
input image I , the IPM image IW is generated using the
homography matrix H [1]. Therefore, every point P (x, y)
in I is transformed to Pw in IW using H, i.e.,[

xw yw 1
]T

= kH
[
x y 1

]T (1)

where k is the calibration constant. Therefore, the four points
P ′1 to P ′4 in Fig. 2 in the image domain correspond to the
minimas and maximas in the IPM domain along the xw−yw
coordinates. The following parameters for each row IW are
determined: (1) the start position of road surface in the row,

i.e. P1W (Fig. 2), (2) the end position of the road surface
P2W , and (3) point P3W such that P3W − P1W = wW

V ,
where wW

V is the width of the vehicle as seen from top view.
Considering most consumer vehicles usually have a standard
axle length, wW

V can be pre-determined. Given P1W , P2W

and P3W , we use the inverse of H, i.e. H−1 to determine the
corresponding points P1, P2 and P3 in the image domain.
For each row index y in I , we now have the following:

xmin = x1 , xmax = x2 , wV = x3 − x1 (2)

where wV is the width of the window that should be used
for vehicle detection in the y-th row of I , and xmin and
xmax are the minimum and maximum indices along the x-
axis in I where the windows will be processed. The height
hV of the window was set to 1/1.2 times wV , which was
found suitable to detect most consumer vehicles. An LUT
is generated with the above variables for each row of the
input image I . Therefore, unlike the conventional way of
running the sliding window all over the image, we now have
a defined search space and specific scales of the window for
every row in the LUT to detect the vehicles.

Figure 3. Two-part based vehicle detection method in ELVIS.

In addition the LUT generation, we will now propose
a two-part based vehicle detection scheme in ELVIS that
incorporates the next contextual information about vehicles
moving in the road scene. In an ADAS application that re-
quires on-road vehicle detection such as collision avoidance
or lane change assistance, it is evident that the vehicles
are moving on the road surface. Therefore, the windows
are applied in the direction of the decreasing y-coordinate
(referring to the axes in Fig. 2), i.e. from the front of the
host-vehicle towards the vanishing line. Next, the window
IV is divided into two parts P1 and P2 such that if the
window is placed on the vehicle, they capture the two parts
of the vehicle as shown in Fig. 3. For an M ×N (rows by
columns) sized image patch IV , P1 and P2 are defined as
follows:

P1 = IV

(
1 :

2

3
M, 1 : N

)
P2 = IV

(
2

3
M : M, 1 : N

)
(3)

In ELVIS, we first detect the presence of lower part of the
vehicle, i.e. P2 because while traversing along the road, the
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lower part is expected to be seen first. The HOG feature
[4] of part P2 in IV denoted as h2 is computed first, and
classified using SVM classifier for P2. If the classification
of the lower part is positive, then HOG feature h1 for P1

is computed and classified using the SVM classifier for P1.
The classifier scores from the SVMs of parts P1 and P2

are used in the following way to give the final classification
result:

IV(x, y) = vehicle if p1(x, y)× p2(x, y) > Tp (4)

where p1 and p2 are the probability scores of the SVMs
for parts P1 and P2 respectively, and Tp is the threshold
for overall classification score. Non-maximal suppression is
applied to remove overlapping windows.

B. Improving Lane Detection using On-road Vehicle Infor-
mation

In this section, the performance of lane detection is
improved using the results obtained from the vehicle de-
tection algorithm. For most ADAS applications such as
lane departure warning, lane change assistance, collision
avoidance etc., lanes are required to either localize the ego-
vehicle in the lane or to maneuver the ego-vehicle between
the host lane and the adjacent lanes. Therefore, if there is
a leading vehicle in front of the ego-vehicle, detecting the
lanes between the two vehicles is sufficient. Also, presence
of a leading vehicle obstructs the view in front of the
ego-vehicle and lanes are not visible in the image plane
resulting in false lane features that affect the accuracy of
lane estimation [12]. We propose to use the positions of
the vehicles that were determined by the proposed vehicle
detection scheme in ELVIS to determine the regions in the
input image where the lanes must be detected.

We demonstrate this using one of the recently proposed
lane detection methods [10], [9] called LASeR (lane analysis
using selective regions). In this paper, we limit the scope of
the proposed lane detection approach to the host lane detec-
tion for the sake of explanation. Also, LASeR algorithm in
[10] is designed for host lane detection, which will be used
to demonstrate the proposed integrated method. In LASeR,
NB number of scan bands at positions Y = {yBj } along the
yw axis of the IPM image are processed where 1 ≤ j ≤ NB .
The bands are shown in Fig. 4 where the band closest to the
ego-vehicle is indexed as 1. Given that we have the positions
of the vehicles at PV (xV , yV ) in the image domain I from
ELVIS, we find their positions in the IPM domain using (1)
to get PV

W (xV
W , yVW ), i.e. PV

W = kHPV . Therefore, with
the leading vehicle at yVW , the index of the maximum band
along yW axis in the IPM image that must be processed in
LASeR is computed using the following equation:

N
max

= argmax
j

y
V
W ≤ y

B
j (5)

Referring to Fig. 4, the conventional LASeR algorithm
would have processed all the 5 scan bands shown in the IPM

image in Fig. 4. Due to the presence of vehicles in bands
B4 and B5, false lane features could be generated. However,
the integration of the vehicle detection method into the lane
detection process allows choosing Nmax = 3 bands, that
are processed by the next steps of LASeR algorithm. We
will demonstrate the advantages of the proposed integration
between lane and vehicle detection in terms of computational
complexity and accuracy in the next section.

Figure 4. Improving lane feature extraction using using vehicle positions.

III. PERFORMANCE EVALUATION

A. Vehicle Detection in ELVIS

1) Accuracy Analysis: The accuracy analysis setup in-
volved a training set comprising 1700 positive samples and
2500 negative samples. Each sub-image was divided into two
parts as shown in Fig. 3 and two different classifiers were
trained using the two sets of training samples. The testing
of the proposed vehicle detection component in ELVIS was
performed using three different datasets that do not contain
any of the training samples - Caltech 1999 (126 images),
LISA dataset 2 (300 images) and LISA dataset 3 (300
images) [11]. We use the following metrics described in [11]
for evaluating and comparing accuracy with results in [11]:

TPR =
True detections

Total num. of veh.
; FDR =

False positives
True det. + False pos.

(6)

FP

frame
=

False Positives
Total num. of frames

;
TP

frame
=

True positives
Total num. of images

(7)

where TPR is true positive rate and FDR is false detection
rate. Fig. 5 plots the receiver operating curves (ROCs)
showing the TPR versus FDR on applying ELVIS to the
three datasets. It can be seen that the proposed two-part
based method performs well with the Caltech dataset giving
over 90% TPR for less than 5% of false detection rate.
Coming to the LISA 2 dataset, the proposed method detected
the single vehicle in all cases giving 100% true positive rates
for all data points considered. In LISA 3 dataset ELVIS gives
over 95% TPR for less than 10% FDR.
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Figure 5. ROCs for detecting fully visible vehicles using the proposed
two-part based method.

Table I
COMPARISON BETWEEN ELVIS AND ALVERT IN [11]

TPR FDR TP/frame FP/frame
Caltech ’99 [11] 85% 5% NA NA
LISA 2 [11] 83.5% 79.7% 1 4
LISA 3 [11] 98.1% 45.8% 3.16 2.7
ELVIS - Caltech
’99

95% 7% 0.95 0.07

ELVIS - LISA 2 100% 53.1% 1 1.13
ELVIS - LISA 3 97.5% 26.7% 2.92 1.06

Table I compares the measures for the four different
metrics and three different datasets between the two-part
based vehicle detection technique in ELVIS and the passive
learning Adaboost based classifier in [11]. It can be seen that
in most cases the proposed method gives atleast 1-2% better
TPRs with more than 15% lower FDRs as compared to [11].
It should also be noted that the figures in Table I for [11]
involves tracking for LISA 2 and 3 datasets, whereas we
have reported detection rates for ELVIS without tracking.
We can see that FPs/frame have reduced by 2-3 times in
ELVIS, which implies that tracking will be more effective
in reducing the false positives further. Fig. 6 shows the
detection of fully visible vehicles on sample images from
different datasets that were evaluated in Table I.

Figure 6. Sample results of vehicle detection in ELVIS.

2) Computational Efficiency: In order to compare the
computational efficiency of the proposed vehicle detection
method in ELVIS against variants of existing sliding win-
dow based techniques, the following assumptions are made.
Firstly, the evaluation is performed for feature extraction
and classification steps only, and the cost of peripheral
steps such as non-maximal suppression and tracking is
assumed the same for all methods. Next, all techniques
are assumed to use the same kinds of feature vectors and
classifiers. Therefore, the computational cost is evaluated
based on the number of windows that are processed in each
method, which is a more generic and platform-independent
metric. Computation cost can also be directly translated to
computation time if required.

Let us first look at the computation cost of existing recent
techniques such as [11], [5]. In such methods, a sliding
window of multiple scales is traversed all over the image
to detect vehicles in every frame. Therefore, considering
an m × n (rows by columns) sized image frame I , if the
window slides over every sm and sn pixels along the rows
and columns respectively, the total number of windows that
will be processed in existing methods is equal to:

C1 = ns
m× n

sm × sn
(8)

where ns is the number of scales that are used for detection.
In the proposed method, the scale of the window for each

row in the image frame, and the start and end positions
to slide the window in each row are determined by the
formulations shown in equations (1) and (2) in Section II.
Therefore, the total number of windows which is equivalent
to the computational cost C2 of the proposed method is equal
to:

C2 =

ymax
sm

−1∑
j=0

xmax
smj+1 − xmin

smj+1

sn
(9)

where xmax and xmin are the maximum and minimum x-
coordinates in the image plane for the smj+1-th row. The
above equation is the summation of the number of windows
for each row in the image plane and within ymax-th and
ymax-th rows of the image where the step size of window
traversal is sm and sn pixels along the rows and columns
respectively. It is to be noted that the number of scales ns

is not a factor in C2. Additionally, the above equation gives
the worst case scenario for the proposed method because (9)
assumes that the entire window is processed throughout the
image. However, as discussed in Section II, we process 1/3-
rd of the window first, and the next 2/3-rd of the window
is processed only if the lower part is detected.

Fig. 7 shows the comparison of total computation cost in
terms of the number of windows for four different types
of methods. In order to compute the results in Fig. 7,
m = 720, n = 1280, ns = 10, sm = 1 and sn = 3
are considered. The first two methods (methods 1 and 2
on the x-axis of Fig. 7 refer to the conventional sliding
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window based methods such as [11]. Method 2 refers to
approaches where no knowledge of the region of interest is
considered and the windows are applied on the entire image.
In method 1, we assume that the vanishing line is available.
We consider ymax = 682 and ymin = 382 for the results
shown in Fig. 7, which are derived from some of the test
cases we considered during evaluation. Method 3 and 4 refer
to the proposed method. As discussed previously, we are
assuming the worst case in Method 3 by considering both
parts P1 and P2 of all windows are computed. In Method
4, we consider 10% of the windows only for processing
both parts, whereas the remaining 90% are processed for the
lower part only (10% is significantly higher than the actual
percentage we observed during our evaluation). Also, for
Methods 3 and 4, we consider the same region of interest
as in Method 1 in terms of y-axis. The x-axis limits are
determined by the proposed LUT generation step. Fig. 7
shows that the proposed method involves only 1/10-th the
number of computations as compared to 1 and 2. When the
part-based computations are also accounted in Method 4,
we see that the computations are further reduced. With such
significant savings in computations, ELVIS is more suitable
for embedded realization.

B. Lane Detection in ELVIS

In this section, we will evaluate the performance of lane
feature extraction step in ELVIS. Fig. 8 shows sample results
of a sequence on which the conventional LASeR algorithm
and ELVIS are applied. The first column of Fig. 8 shows that
the LASeR algorithm tries to detect lane features beyond the
obstructing lead vehicle in the ego-lane. In such scenarios,
the leading vehicle tends to introduce features that are often
mistaken for lane features. For example, lanes are estimated
as curving at the far end of the field of view. Therefore, in
the presence of an obstructing vehicle, the lane features that
are detected by LASeR are not credible enough to extend
the lanes beyond the leading vehicle [12].

Figure 7. Comparison of computation costs in terms of number of windows
(in log scale) on y-axis and the different techniques on x-axis: sliding
window approach [11] bound by ymax and ymin in (1), on the entire
image [11] (2), proposed method with both parts of all windows computed
(3), and computed for 10% of the total windows (4).

Figure 8. First column: lane detection using the conventional LASeR
algorithm. Second column: lane detection using the proposed integrated
approach.

The second column in Fig. 8 shows the lane detection
results from ELVIS, wherein the lanes are detected till the
position of the leading vehicle. It can be seen that the
features of the vehicles do not interfere in the process of
lane detection. It can be argued that the lanes are not being
detected in the full field of view. It should be noted that
in most ADAS applications, detecting the lanes between
the ego-vehicle and the leading vehicle (if present) is more
critical and necessary. If there is a requirement to detect the
lanes beyond the obstructing vehicle, it is more accurate
to extrapolate the lanes from existing lanes rather than
depending on the lane features that are not visible due
to obstructing vehicles. We compare the accuracy of lane
estimation using lane position deviation metric (LPD), which
computes the average error between the positions of the
lanes in ground truth and those estimated by a lane detection
algorithm [9] for every frame. Table II shows the mean,
standard deviation and maximum absolute LPDs for the right
lane from a set of 200 frames of the sequence shown in
Fig. 8. In the case of ground truth marking and ELVIS
algorithm, if the lane markings are not visible due to the
leading vehicle, the lanes are extrapolated as a tangent till
the maximum y-coordinate that is used by conventional
LASeR. It can be seen that the lanes estimated by ELVIS
are more aligned with the ground truth. In a similar manner,
the vehicles detected in the image scene can also be used to
eliminate false lane features that are detected due to vehicles
in neighboring lanes.

Let us now consider computational efficiency. If we con-
sider ADAS applications that involve both lane and vehicle
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Table II
PERFORMANCE EVALUATION OF LANE DETECTION

Comparison of Lane Position Deviation (LPD)
Method Mean Abso-

lute LPD
Stan. Dev. of Abso-
lute LPD

Maximum
Absolute LPD

ELVIS 8.3 pixels 3.3 pixels 18.7 pixels
LASeR [10] 9.3 pixels 3.3 pixels 19.1 pixels

Comparison of Computational Complexity
VioLET LASeR 2013 This work 2014
2006 [8] [10] Average Worst-case
300000 50000 32500 50000

detection tasks, it can be seen that the proposed ELVIS will
be computationally more efficient than LASeR. Considering
that the number of bands changes dynamically based on
the presence or absence of the leading vehicles in ELVIS,
the computational cost can be compared based on a given
test sequence. Using the formulation of computation cost
for LASeR from [10], the cost in LASeR is equivalent
to CL1 = NBwBhB where each band is wB pixels wide
and hB pixels high. In other IPM based lane detection
algorithms such as [8], the cost is given by CL2 = wBy

W
max,

where yWmax is the height of the IPM image [10]. However,
in ELVIS, the average computational cost per frame for
detecting lanes is given by:

CL3 =
1

Nf

Nf∑
j=1

N
max
j wBhB (10)

For the test sequence that is evaluated in this paper, Table II
lists the average computational cost per frame. It is assumed
that the lane detection is being performed for applications
that employ vehicle detection also, therefore the cost of
vehicle detection is assumed to be the same for all methods.
It can be seen that for the sequence considered, the ELVIS
gives an average computation cost savings of nearly 35% as
compared to LASeR and reduces the cost of the conventional
lane detection method such as VioLET by atleast 90%. The
worst case computation cost of the proposed approach is
maximum when there are no leading vehicles and all bands
in LASeR are processed. Therefore, the worst case average
computation cost of the integrated approach will never be
more than conventional LASeR.

IV. CONCLUDING REMARKS

In this paper, a novel integrated approach called ELVIS
is presented to detect on-road vehicles and lanes. We have
shown that using the information about the lanes and the
vehicle detection in a synergistic manner can help in de-
tecting both vehicles and lanes in a computationally more
efficient and robust manner. The proposed techniques have
been shown to detect fully visible vehicles with lower
false positive rates and nearly 90% lesser computations as
compared to existing methods. Similarly, the lane feature
extraction method is also shown to benefit with significant

cost savings by integrating the vehicle detection information.
The proposed techniques need to be further extended for
occluded vehicles, which is the next step in the proposed
research.
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