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Abstract—This paper proposes a new approach to upsample
depth maps when aligned high-resolution color images are
given. Such a task is referred to as guided depth upsampling
in our work. We formulate this problem based on the recently
developed sparse representation analysis models. More specif-
ically, we exploit the cosparsity of analytic analysis operators
performed on a depth map, together with data fidelity and color
guided smoothness constraints for upsampling. The formulated
problem is solved by the greedy analysis pursuit algorithm.
Since our approach relies on the analytic operators such as
the Wavelet transforms and the finite difference operators, it
does not require any training data but a single depth-color
image pair. A variety of experiments have been conducted on
both synthetic and real data. Experimental results demonstrate
that our approach outperforms the specialized state-of-the-art
algorithms.
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I. INTRODUCTION

Guided depth upsampling in this work refers to up-
sampling a depth map while an aligned high-resolution
image is taken as guidance. Such a task is desirable in
various computer vision applications. For instance, in tra-
ditional stereo vision, some techniques [1] reconstruct a
dense disparity map by upsampling sparse measurements
that are reliably obtained from point-wise correspondence
matching. These techniques circumvent matching ambigu-
ities occurred in homogenous or repetitively textured re-
gions, so that reconstruction quality is improved. Another
line of exemplary applications surges with the advent of
active range sensing technologies. State-of-the-art ranging
sensors, such as Velodyne HDL lidars [2], Time-of-Flight
(ToF) cameras [3] or Microsoft Kinects [4], are capable
of producing high quality range information in real time.
However, depth maps obtained by them are still low in
resolution, especially compared to high-resolution visual
images. Therefore, the ranging sensors are commonly used
in conjunction with conventional cameras, intriguing a group
of studies on guided depth enhancement [5], [6], [7].

As introduced above, guided depth upsampling aims to
generate high-resolution depth maps by integrating sparse
range data with visual information. Therefore, it belongs to a
multi-modal data fusion problem. This problem is conducted
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relying on an observation that depth discontinuities often
co-occur with color or intensity changes [5]. A variety
of approaches have been developed so far to exploit such
dependencies in order to enhance depth maps. Roughly
speaking, early methods are mainly based on filtering or
Markov Random Field (MRF) techniques. The former uses
joint bilateral filters and their variations [8] [6] to inte-
grate color information for depth enhancement. MRF-based
methods [5], [9], [10], [11] infer depth via optimizing
an energy function that consists of two or more terms:
one term evaluates depth consistency with known sparse
measurements and the others regularize first- or higher-order
depth smoothness according to color information.
Meanwhile, since depth upsampling is closely related to
intensity image super-resolution, sparse representation (SR)
techniques [12] that are prevalent in super-resolution have
also been employed. For example, Li er al. [13] jointly
train dictionaries for depth and color image patches and
reconstruct high-resolution depth maps in terms of SR of
learned dictionaries. Hawe et al. [1] achieve depth map
super-resolution by exploiting SR in the Wavelet domain
and a particular sampling strategy guided by intensity edges.
Both of these two methods rely on the SR synthesis models.
Very recently, cosparse analysis models [14], [15] were
proposed and their effectiveness in image reconstruction has
been successfully demonstrated. A pioneer work of applying
the analysis models to guided depth upsampling is reported
by Kiechle er al. [16]. It learns a depth-intensity bimodal
analysis operator offline and applies the bimodal cosparse
analysis model to reconstruct high-resolution depth maps.
Our work takes advantage of the sparse representation
analysis models as well. More specifically, the proposed
approach explores the cosparsity of analysis operators per-
formed on a depth map, together with data fidelity and color
guided smoothness constraints for upsampling. Instead of
learning operators [16], we employ the well known analytic
ones, such as the Wavelet transforms and the finite difference
operators, for our guided depth upsampling. It implies that
the approach requires no training data but a low-resolution
depth map and an aligned high-resolution color image. It is
therefore can be freely applied to either uniformly or non-
uniformly sampled low-resolution depth maps, for instance,



depth maps obtained by Kinects and sparse range data
collected by 3D lidars.

II. COSPARSE ANALYSIS MODELS

In contrast to the sparse representation synthesis mod-
els [17], [12] that have been extensively studied for decades,
cosparse analysis counterparts have started to be investigated
very recently. Therefore, we briefly review them in this
section and stress on the differences.

Let us consider a set of measurements y € R™, which
are sampled from an original signal x € R and are contam-
inated by noise v. That is, y = ®x + v, where ® € Rm*d
is a sampling matrix, and m < d. In order to reconstruct x,
a synthesis model pursues a sparse representation x = ¥z
with respect to a redundant dictionary ¥ € R¥"™ (n > d).
z € R" is the sparse coefficient vector obtained by the
following problem

st. y=®Wz+v. @)

Instead, an analysis model suggests that the analyzed vector
Qx is expected to be sparse, where €2 € RP*4d ig a redundant
analysis operator (p > d). Upon this, the original signal x
is recovered via

min ||z|o
z

st. y=®x+v. (2)

When both the dictionary W and the analysis operator €2
are square and invertible, the synthesis and the analysis
models are the same with @ = W~ Otherwise, there is
no straightforward relation between them.

By checking the above linear transformations, we find out
that the representation {2x cannot be very sparse if the rows
of € are linearly independent. The reason is that at least
p — d of the coefficients of 2x should be non-zeros if x #
0 [14]. Therefore, instead of focusing on nonzero elements,
the analysis model emphasizes sparse representation on the
number of zeros, which is referred to as cosparsity. That is,

= p—|[Qx[[o. 3

Generally speaking, the cosparse analysis model can be
viewed as a sparse synthesis model encoded with some
structure. The structure of the signal x is encoded by its
cosupport, which is defined as the index set of the zero
entries and denoted by

A= {j[{wj, %) = 0},

where w; is the j-th row of (.

When we use the above-defined analysis model to recon-
struct the original signal, a necessary number of measure-
ments must be given. Assuming that the sampling matrix &
and the analysis operator €2 are mutually independent, the
minimum number m should satisfy the following condition
in order to guarantee the uniqueness of a ¢-cosparse solution.

&)

min ||Q2x||o
X

Cosparsity:

“

m > 2 - max dim(W,),
AI>e

where W, = Null(£2,) is the nullspace of Q4, and |A] is
the cardinality of A (refer to [14] for more details). More
fortunately, when other constraints are taken into account
for upsampling, we expect to recover x with even less
measurements.

III. GUIDED DEPTH UPSAMPLING

The proposed approach for depth upsampling is based
on the cosparse analysis model, and meanwhile color in-
formation is integrated as guidance. In this section, we first
introduce the formulation of our guided depth upsampling.
Then, a numerical scheme relying on the Greedy Analysis
Pursuit (GAP) [14] algorithm is presented to solve the
formulized problem.

A. Problem Formulation

Assume that we are given a set of depth measurements
D, together with an aligned high-resolution color image
Iy. Our aim is to recover a depth map Dy to be of
the same resolution as the color image. Let x € R™ and
y € R™, respectively, be the vectorized high-resolution
depth map and the vectorized sparse depth measurements,
where n = h X w is the number of image pixels. Then,
our guided depth upsampling is achieved by minimizing the
following objective function:

E(x) = MEc(2,x)+ MEp(y,x) + A3Es(x), (6)

where Ec(€,x) is a term targeting at a cosparse rep-
resentation, Fp(y,x) evaluates the fidelity between the
measurements and the estimated depth values, and Fg(x)
stands for a term assessing the smoothness of the recovered
depth map. A;, Ao, and A3 are regularization parameters
balancing the three terms. The details of each term are
presented below.

1) Cosparse Analysis Term: Given an analysis operator
2, the cosparse analysis term aims to achieve a sparse
representation of €2x. Hence, it is defined as

Ec($2,x) = [[€2x]lo. (7

A critical point concerned in this term is the chosen of (2.
Several researches [18], [15], [19] have been studied on the
learning of analysis operators. Learned operators are consid-
ered to be of better performance in image super-resolution
than analytic ones such as Wavelets [20]. However, their
disadvantages are also obvious. For instance, it takes time
to learn an analysis operator and performance of the learned
operator highly depends on training sets. Moreover, due to
limitations of computational resources, operators are often
learned in a patch-wise way and are applied locally to image
patches [15].

In contrast to learned operators, analytic operators are able
to be utilized globally to an entire depth map. Operators such
as the wavelet transforms, the finite difference operators,
and the curvelet and shearlet transforms [21] have been



successfully used in signal processing applications. Thus, in
this work, we choose analytic operators for upsampling. We
also defend that, with the use of guided color information,
the upsampling performance of applying analytic analysis
operators is competitive to those using learned counter-
parts [16].

2) Data Fidelity Term: The data fidelity term evaluates
the errors between the sparse measurements and the corre-
sponding depth values that are recovered. It is designed as

Ep(y,x) = |ly — ®x]3, ®)

where ® represents the sampling matrix as before.

It needs mentioning that, when x is a vector of an entire
depth map, very large size matrices have to be constructed
to perform the matrix-vector multiplications of 2x and ®x,
which are not affordable in memory. Practically, both €2 and
® are implemented by functions. It in essence means that
2 stands for the process of applying the analysis transform
and ® represents the sampling procedure. We stick to the
notations in the form of matrix-vector multiplications for
simplicity and consistency with others’ work [14].

3) Smoothness Term: The smoothness term is based upon
a prior that depth maps are piecewise smooth. Constraints
such as minimizing total variations (TV) are often used for
preserving smoothness [1]. In this work, we prefer to design
the term as follows:

Es(x) = > wyllzs—a]l5,

t JEN(i)

€))

where z; is a pixel in x, and A/ (i) denotes the 4-connected
neighborhood of x; in the corresponding depth map Dy.
w;; is a weight that integrates color information for regular-
ization. It is defined by

in which I; and I; are color or intensity values of the
pixels registered to x; and x;, and o is a standard deviation.
This form is also the first-order smoothness constraint com-
monly used in the Markov Random Field framework [5].
It performs better than the TV norm [1], especially when
upsampling factor is large.

1L — 1,13

2072 (10)

wij = exp (—

B. Numerical Scheme

As one may notice, the formulated problem in Eq.(6)
degenerates to a MRF-based energy function when A\; = 0,
which can be solved efficiently by the well-known conjugate
gradient (CG) algorithm [5]. However, when A; is not
zero, the cosparse analysis term ||Q2x||p leads the entire
problem to be a NP-complete one. One way to approxi-
mately solve it is turning it to ||x]|;, a L;-minimization
problem. Whereas, in this work, we adopt a simple approach,
the Greedy Analysis Pursuit (GAP) algorithm, to find the
optimized solution.
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GAP imitates Orthogonal Matching Pursuit (OMP) [17]
with a form of Iterative Reweighted Least Squares
(IRLS) [22], [23]. It starts from a cosupport [XO that is
initialized to be the whole set. An initial estimation of the
depth map is obtained via

X0 = argm}jn M||9x[)3 + A Ep(y,x) + A\3Es(x), (11)

which is a least square optimization problem solved by
conjugate gradient in this work. Some elements outside
the cosupport set are first detected according to the values
of Q% and are removed from the set. With an updated
cosupport, x is re-estimated for removing more elements.
By this means, GAP iteratively reduces the cosupport set till
it reaches ¢-cosparsity or another stop criterion is satisfied.

The details of GAP-based guided depth upsampling is
illustrated in Algorithm 1.

Algorithm 1: GAP for Guided Depth Upsampling
Input: The analysis operator €2,
the sampling matrix P,
the sparse measurements y,
the target cosparsity £,
and a selection factor ¢t € (0, 1].
QOutput: Optimized X = Xy.
Initialization:
k= 0;
Initialize cosupport: Ay = {1,2,...,p};
Initialize solution:

Xo = arg min A1]|€23, x| 24X Ep(y, x)+A3E5(x).

while £ < p — (¢ do
=k+1;
Compute o = QX _1;
Find largest entries: 'y = {4 : |a;| > t max; |o|}
Update cosupport: Aj, = Ak_l\Fk;
Update solution:

X, = arg In)zn A]|€23, x| 24X Ep(y, X)+A3E5(x).

end

IV. EXPERIMENTS

Extensive experiments have been conducted in order to
validate the proposed approach. In this section, we first
present sets of experiments performed on the Middlebury
stereo dataset [24] and provide both quantitative and qualita-
tive comparison to state-of-the-art algorithms. Experimental
settings, such as the chosen of analysis operators and the
assigned parameters, are also discussed. In the end, we apply
our approach to upsample real-world lidar data collected by
a Velodyne HDL 64E lidar.



A. Depth Upsampling from Random Samples

This group of experiments is designed to investigate the
performance of the cosparse analysis model in contrast to
synthesis models. Therefore, we compare our approach to
the work done by Hawe et al. [1]. In order to achieve
quantitative evaluation, experiments are performed on the
Middlebury stereo dataset. Synthetic data are generated in
a way exactly the same as Hawe’s work. That is, we
randomly sample a certain percentage of points from known
depth maps, and include measurements on edges detected
by Canny filter as well. Aligned color images are taken as
guidance in both methods.

The parameters of our algorithm are experimentally as-
signed throughout all experiments as follows. The weighting
factors in Eq.(6) are A\; = 0.01, Ay =1, and A3 = 0.1. The
standard deviation in Eq.(10) is determined to ¢ = 30. Con-
sidering that depth discontinuities co-occur with intensity
changes, we take the cosparsity of an aligned intensity edge
map as the target cosparsity ¢, and set the selection factor ¢ =
0.6 in Algorithm 1. Moreover, we investigate two different
types of analytic analysis operators, which are Daubechies
wavelets (db2-wavelets) and the finite difference operators.
For the Daubechies wavelets, decomposition levels from one
to four are tested. We denote the corresponding operators,
respectively, by Qwri, Qwr2, Qwrs, and Qura. A finite
difference operator that concatenates the horizontal and
vertical derivatives and the other extra concatenating the
diagonal derivatives are examined as well, which are denoted
as Qprrr and Qprrr prac respectively. Table I illustrates
the dimensions of all the operators for each depth map. As
introduced in Section II, an operator is of p X d dimension.
d is the same as the resolution of an image and p is
different from case to case. Regarding to the extremely high
dimensionality, we implement the operators by functions
instead of matrices.

Tsukuba Venus Teddy, Cones
d=110592 | d=166222 | d = 168750
Qw1 111940 168296 170856
Qwrs 112963 169342 171918
Qwrs 113311 169762 172342
Qwra 113491 169978 172620
Qprrr 220512 331627 336675
OpIFF_DIAG 440354 662439 672527
Table I

THE DIMENSION p X d OF EACH ANALYSIS OPERATOR. d IS THE SAME
AS THE RESOLUTION OF AN IMAGE AND IS LISTED ON THE TOP. THE
REMAINING VALUES ARE p, WHICH VARIES FROM CASE TO CASE.

To obtain quantitative evaluation, we assess all experimen-
tal results in terms of the root mean square error (RMSE)
of the upsampled depth maps against to ground truth. As
in [16], each depth map is first scaled to a certain disparity
range that is required in the Middlebury website for evalua-
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tion. Table II reports the evaluation results for experiments
upsampling from 5%, 15%, and 25% randomly sampled
measurements. In the table, "CSC’ stands for the synthesis
model based upsampling method as explained in [1]. The
others are our approaches while using different analysis
operators. The results of ’CSC’ are obtained by running
the code released by the authors, with a large number of
iterations to make sure that each case converges. All other
parameters are set as reported in their paper. Table II shows
that, except for the (2,1 operator which fails in some cases,
all other analysis operators perform better than the synthesis
model (CSC). Among all, the Q14 operator performs best,
followed closely by Qprrr_prac and Qprpr. The results
also tell us that, for the same type of operators, the better
performance is obtained if the operator is more redundant.

Fig. 1 illustrates some comparative results upsampled
from 5% measurements, in which the columns (a) and (b)
are the aligned color images and ground truth depth maps,
the column (c) shows the sampled data, (d) are the results
of CSC, and the last column are obtained by our approach
using the Q74 operator. From the results we observe that
our approach preserves depth edges better. This superiority
not only benefits from our color guided smoothness term, but
also from the cosparse analysis term to a great extent. The
advantage of the cosparse analysis term will be demonstrated
further in the next experiment.

B. Depth Upsampling from Uniform Samples

Although random sampling together with edge samples
can improve performance, it is not able to obtain these
measurements in applications such as super-resolution of
depth maps captured by Kinects or ToF cameras. Therefore,
in this experiment, we explore the performance of our
approach when applied to uniformly sampled low-resolution
depth maps. Synthetic data are generated as the way in [16].
That is, we first smooth a high-resolution depth map [25]
and then downsample it through bicubic interpolation at a
certain sampling factor. Considering that bicubic interpola-
tion has edge effect near occlusion, the occluded regions are
inpainted by our approach before downsampling.

Among the developed depth map super-resolution tech-
niques, some [5], [16] use guidance information and the
others [26] do not. In our evaluation, only those methods
using guidance, for instance, bilateral filtering and MRF
based techniques, are chosen for comparison. Besides these
two typical techniques, we also compare our work to a
state-of-the-art method [16], which is based on a cosparse
analysis model as well. In contrast to us, it relies on
analysis operators learned from a training set. The results
of the bilateral filtering method are produced from our own
implementation. To achieve the results of MRF, we simply
set A1 = 0, Ay = 1, and A3 1 in our model. The
quantitative results of Kiechle et al.’s [16] work are from
their paper.



Method Scenario Tsukuba Venus Teddy Cones
5% [ 15% [ 25% 5% [ 15% [ 25% 5% [ 15% [ 25% 5% [ 15% [ 25%
CSC [1] 0.423 | 0.455 | 0.442 | 0.703 | 0.603 | 0.545 | 2.469 2.070 2.121 | 2.633 | 2266 | 2.113
Qw1 0.425 | 5.019 | 0.317 | 7.343 | 4.852 | 0.171 | 24.335 | 22.144 | 1.271 | 5.092 | 27.015 | 1.536
Qw2 0.406 | 0.257 | 0.187 | 0.116 | 0.134 | 0.105 1.427 1.001 0.967 | 1.594 | 1.080 | 0.886
Qwrs 0.399 | 0.243 | 0.194 | 0.127 | 0.041 | 0.042 | 1.326 0.918 0.844 | 1.276 | 0.909 | 0.769
Qwra 0.395 | 0.251 | 0.195 | 0.094 | 0.040 | 0.041 1.115 0.883 0.804 | 1.042 | 0.884 0.749
QOprrr 0.420 | 0.248 | 0.181 | 0.049 | 0.041 | 0.047 | 1.362 1.019 0945 | 1.112 | 0954 | 0.845
Qprrr_prac 0.451 | 0.383 | 0.217 | 0.105 | 0.057 | 0.048 | 1.057 0.867 | 0.794 1.060 | 0.891 | 0.715
Table 11

RMSE OF EXPERIMENTAL RESULTS THAT ARE UPSAMPLED FROM RANDOMLY SAMPLED DATA PLUS EDGE POINTS. FOR Qyy71, UNDERLINED
VALUES ARE THE FAILED CASES.

3 ' )
] e ﬂ
(a) Color image (b) Depth map (c) Sampled data (d) CSC [1] (e) Qwra

Figure 1. Visual comparison of experimental results upsampled from 5% measurements plus edge points. The four scenarios are *Tsukuba’, *Venus’,
"Teddy’, and *Cones’ respectively. The results show that our approach preserve depth edges better. (Zoom in for better view.)



(a) Ground truth

(b) Bilateral Filter

(c) MRF

(d) Qwra

(e) Qprrr_bprac

Figure 2. Visual comparison of experiments that are upsampled with a scaling factor 8. (Zoom in for better view.)

Scenario

Method Tsukuba Venus Teddy Cones
2x | 4x | 8x 2x | 4x | 8x 2x | 4x | 8x 2x | 4x | 8x
Kiechle et al. [16] 0.255 | 0.487 | 0.753 | 0.075 | 0.129 | 0.156 | 0.702 | 1.347 | 1.662 | 0.680 | 1.383 | 1.871
Bilateral Filter [8] 0.392 | 0.540 | 0.830 | 0.129 | 0.195 | 0.342 | 0.486 | 0.682 | 0.987 | 0.691 | 0.944 | 1.419
MREF [5] 0.479 | 0.646 | 0.855 | 0.142 | 0.181 | 0.255 | 0.461 | 0.580 | 0.780 | 0.664 | 0.851 | 1.263
Qwra 0.147 | 0.390 | 0.708 | 0.089 | 0.121 | 0.171 | 0.310 | 0.456 | 0.664 | 0.347 | 0.681 | 1.159
Qprrr 0.154 | 0.385 | 0.738 | 0.045 | 0.118 | 0.175 | 0.234 | 0.474 | 0.710 | 0.282 | 0.676 | 1.166
QpIFF_DIAG 0.074 | 0.339 | 0.722 | 0.029 | 0.113 | 0.172 | 0.213 | 0.478 | 0.769 | 0.247 | 0.659 | 1.167
Table III
RMSE OF EXPERIMENTS THAT ARE UPSAMPLED WITH A SCALING FACTOR OF 2, 4, AND 8 RESPECTIVELY.
Method Scenario Tsukuba Venus Teddy Cones
2x | 4x | 8x | 2x | 4x | 8x 2x | 4x | 8x | 2x | 4x | 8x
Kiechle ef al. [16] 047 | 1.73 | 3.53 | 0.09 | 0.25 | 0.33 141 | 354 | 649 | 1.81 | 5.16 | 9.22
Bilateral Filter [8] 089 | 1.19 | 1.87 | 0.15 | 0.21 | 0.43 1.58 | 3.21 | 540 | 1.39 | 1.88 | 3.31
MREF [5] 335 | 583 | 923 | 044 | 0.73 | 1.51 | 244 | 3.80 | 8.00 | 393 | 6.24 | 11.69
Qwra 031 | 1.78 | 454 | 031 | 022 | 040 | 1.26 | 2.18 | 5.76 | 1.23 | 3.15 | 7.45
Qprrr 0.19 | 1.32 | 475 1 0.03 | 0.13 | 030 | 0.57 | 2.16 | 579 | 0.66 | 2.55 | 7.39
Qprrr_prac 0.04 | 0.79 | 3.17 | 0.01 | 0.07 | 0.16 | 0.53 | 2.48 | 582 | 042 | 2.05 | 6.27
Table IV

THE PERCENTAGE OF BAD PIXELS OF THE EXPERIMENTS THAT ARE UPSAMPLED WITH A SCALING FACTOR OF 2, 4, AND 8 RESPECTIVELY.

729




Figure 3.

Results of the guided depth upsampling performed on a Velodyne 64E Lidar dataset. The first two rows, respectively, are high-resolution color

images and sparse 3D lidar points. The third row contains low-resolution maps obtained by registering 3D points to the images. The fourth row presents
upsampled depth maps, and the fifth shows the rendered dense 3D point clouds obtained from our upsampling results (sky regions are removed). For
comparison, the sparse rendered 3D point clouds are also provided in the last row.

Visual comparison of these methods behaved with a
upscaling factor of 8 are illustrated in Fig. 2. RMSE of
more experiments are listed in Table III. Moreover, Table IV
reports the percentage of bad pixels, whose error is greater
than one pixel. Considering the performance of our analysis
operators, we only report the results of Qs Qprrp,
Qprrr_prac here. The comparisons show that, with the
cosparse analysis term, we achieve sharper depth edges
than the MRF based technique and comparable to Bilateral
filtering. Among all, our approach with the Qprrr prac
operator performance best, followed by Qyy74.

C. Experiments on Lidar Data

Finally, we apply our approach to upsample lidar data
in order to finally achieve dense 3D reconstruction. Ex-
periments are conducted on the KITTI vision benchmark
suite [27]. This dataset consists of sparse lidar data and high-
resolution color images, which are simultaneously collected
by a Velodyne HDL 64E lidar and a video camera in real
road scenarios. With known sensor parameters, lidar points
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are first registered to images so that low-resolution depth
maps are obtained, as shown in the first three rows of
Fig. 3. Our approach is then applied to upsample these low-
resolution depth maps. The upsampled results are demon-
strated in the fourth row, followed by the rendered high-
resolution 3D point clouds. Meanwhile, we also provide
the sparse rendered 3D point clouds in the last row for
visual comparison. From the results we see that our approach
increases the resolution of 3D point clouds successfully.

V. CONCLUSIONS

In this paper, we have presented a new approach for
guided depth upsampling. It relies on the cosparse analysis
models and makes use of analytic operators. Different well
known operators have been investigated. The experimental
results show that, as opposed to the synthesis cases, more
redundant operators are preferred.

Benefitted from the use of analytic operators, the ap-
proach requires no training data. It can be applied to either



randomly or uniformly sampled low-resolution depth maps,
and achieves high performance even with very low sampling
rate. Numerous experiments have been conducted on both
synthetic and real data, while comparing to a synthesis
model based method [1], an analysis operator learning based
one [16], and two other typical guided depth upsampling
techniques. Experiments have shown that our approach out-
performs these state-of-the-art algorithms. Moreover, due to
the underline scheme, our approach can also be applied to
guided depth inpainting and denoising directly.
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