
A Stream Algebra for Computer Vision Pipelines

Mohamed A. Helala, Ken Q. Pu, Faisal Z. Qureshi
Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada

{Mohamed.Helala, Ken.Pu, Faisal.Qureshi}@uoit.ca

Abstract—Recent interest in developing online computer vision
algorithms is spurred in part by a growth of applications
capable of generating large volumes of images and videos.
These applications are rich sources of images and video
streams. Online vision algorithms for managing, processing and
analyzing these streams need to rely upon streaming concepts,
such as pipelines, to ensure timely and incremental processing
of data. This paper is a first attempt at defining a formal
stream algebra that provides a mathematical description of
vision pipelines and describes the distributed manipulation of
image and video streams. We also show how our algebra can
effectively describe the vision pipelines of two state of the art
techniques.

Keywords-Image and Video Streams; Stream Algebra; Com-
puter Vision Pipelines; Stream Operators

I. INTRODUCTION

Advances in computation, storage and networking have
increased our ability to generate, store and consume vast
amounts of data manyfolds. The recent emphasis on “Big
Data” methods is a response to this development. There
is a lot of interest in theories, algorithms and techniques
for managing, analyzing and exploiting the data that we are
now able to generate and collect. Big data research is in its
infancy still, and much work is yet to be done. A promising
direction of research in big data is stream processing. Stream
processing refers to the class of techniques that deal with
continuous streams of data. Data streams can take many
forms and come from a variety of sources [1], [2], [3], [4].
E.g., Twitter1 feeds can be considered text streams, videos
collected by traffic cameras can be seen as video streams,
temperature and humidity readings from a collection of
physical sensors2 installed at a winery can be seen as a data
stream, etc. In order to efficiently process these streams,
stream algebras [5], [6], [7] have been proposed in the
database literature as a formal language for building and
optimizing data streaming pipelines. This paper proposes a
stream algebra that formalizes stream processing computer
vision systems capable of dealing with image and video
streams. We refer to these streams as Vision Streams.
Our interest in stream processing computer vision systems
stems from three observations. First, text-based stream pro-
cessing has found wide-spread use in database and informa-
tion system communities [8], [9], [10], [11], [12]. Stream

1Twitter: www.twitter.com (last accessed on 20 March 2014).
2TandD Corporation: www.tandd.com (last accessed on 20 March 2014).

processing systems for managing and analyzing text-streams
have been studied in that community for many years now
and various stream algebras have been developed in an effort
to formalize and understand text stream processing. Text
stream algebras, however, rely upon relational algebra and
related data analytic methods and cannot be readily used for
designing stream processing systems that deal with vision
streams. Second, many classical computer vision algorithms,
and especially those that deal with multiple images and
videos, can be naturally formulated as a vision stream
processing problem. Online vision algorithms, in particular,
stand to benefit from vision stream processing [13], [14],
[15], [4], [16], [17], [18]. Lastly, the emergence of large
scale camera networks and web scale vision has brought
the need of big data computer vision algorithms into sharp
focus. The recently announced Amazon Kinesis platform, for
example, can acquire and process, in real-time, data streams
from thousands of different web sources at a data rate of
several terabytes per hour [19]. These observations show that
developing stream algebras for vision stream processing is
an essential step towards realizing big data computer vision
systems of the future.
As stated earlier, this paper develops an algebra for con-
structing stream processing pipelines for dealing with vision
streams. The proposed algebra can be used to realize vision
systems for a wide range of computer vision applications by
treating existing domain specific vision algorithms as stream
operators. Furthermore, the proposed algebra is defined by
formal semantics, which enable us to leverage formal meth-
ods for studying, designing and optimizing vision streams.

A. Stream Algebra

To date a number of stream algebras have been developed
within the database and information systems communities
in an attempt to describe queries over events or relational
streams [20], [5], [6], [7]. There are many advantages to
expressing stream processing systems using these algebras.
For example, these algebras can be used to study these
systems formally with a view to resolve blocking operations,
schedule asynchronous tasks, implement dynamic execution
plans, apply incremental evaluation, define common pipeline
optimization and cost models, etc.
Existing stream algebras, however, are designed for textual
streams with well-defined schemas. Consequently, exist-
ing algebras are not suitable for vision streams, which

786

are characterized by complex multi-modal data and high-
dimensional features. Furthermore, vision stream processors
need careful tuning to achieve acceptable rates. Indeed
many existing computer vision algorithms work in batch
mode and cannot be used as stream processors.3 Other
challenges exist as well. For example, processing times
of a vision algorithm may vary widely due to changes in
the input size or content. Vision algorithms typically have
several run-time parameters that control their accuracy or
speed. These parameters are typically tuned in isolation
of other vision algorithms that may present in the system.
Moreover, vision algorithms may exist in multiple run-time
environments (CPU, GPGPU, FPGA, etc.) with different
accuracy and processing speed profiles. Dynamic run-time
environment selection of a particular vision algorithm (or
vision stream operator) should ideally take into account other
vision algorithms in the system.
A number of frameworks have recently been proposed
within the computer vision community to design vi-
sion pipelines [13], [14], [15], [4], [16], [17], [18].
Gstreamer [21] is a widely used streaming library for con-
structing vision pipelines. Twitter has recently released the
Storm [22] framework. None of the existing vision pipeline
frameworks, however, define a stream algebra i.e., these
frameworks cannot formally define a vision stream or the
associated stream operators. Which in turn suggests that
these frameworks cannot benefit from formal methods that
have proven valuable in understanding, characterizing and
optimizing stream processing systems in other domains.

B. Contributions and Outline

The contributions of this work are twofold. First, we present
a stream algebra that allows efficient implementation of
state-of-the-art computer vision pipelines processing stream-
ing data. Second, we define a set of concurrent algebraic
operators, which revise the previous operators found in text
stream algebras, in such a way to develop an abstraction
suitable for mapping computer vision pipelines, and to meet
the recent processing patterns used in frameworks such as
Gstreamer and Storm. The algebra includes operators for
both data processing and flow control, which can be used to
build scalable vision pipelines. To the best of our knowledge,
ours is the first attempt at developing a stream algebra for
computer vision tasks.
The paper is organized as follows: Section II describes the
related work. We present the proposed stream algebra in
Section III. Then in the following section we describe vision
pipelines corresponding to several state-of-the-art computer
vision tasks. We discuss the implications of the proposed
stream algebra in Section V. Finally, Section VI concludes
the paper.

3Stream processors must by necessity be online algorithms.

II. BACKGROUND LITERATURE

This section briefly reviews 1) existing work on stream
algebras and 2) frameworks that have been developed within
the computer vision and image processing communities to
construct processing pipelines for streaming (online) com-
puter vision systems.

A. Stream Algebra in Databases

Database community has been fascinated with formulating
algebras for data streams, where a data streams is defined as
an infinite sequence of tuples. For example, Broy et al. [5]
defined streaming pipelines as data flow networks. They
studied the algebra of these networks and related it to the
calculus of flownomials that depends on the basic network
algebra. The core of the algebra is a set of algebraic
operators that can construct data flow networks as graphs
of stream processing functions.
Carlson and Lisper [6] presented an event detection algebra
for reactive systems in which the system should respond
to external events and produce corresponding actions. The
algebra focused on composite events and consisted of five
operators: i) disjunction, ii) conjunction, iii) negation, iv)
sequence, and v) temporal restriction. The authors also
provided an imperative algorithm to evaluate the algebraic
expressions and produce the corresponding output streams.
Demers et al. [7] proposed another algebra that extends
event algebras to describe queries on event streams. The
algebraic extension includes a set of stream operators with
well defined semantics for stock quote streams. The opera-
tors include unary operators, binary operators, and aggrega-
tors.

B. Stream Processing in Computer Vision

A number of recent vision applications use stream process-
ing concepts for online image and video analysis. These
applications span several areas such as the analysis of
community photos, activity recognition, video surveillance,
and satellite imagery. For example, Schuster et al. [23]
proposed a method for online detection of unusual regions
in surveillance video streams. The method partitions each
image and extracts a local model for each partition. These
models are continuously updated (according to a set of
heuristics) in response to scene changes. The method was
applied to guide camera operators to the areas of interest.
Gunhee et al. [24] proposed another method for multiple
foreground cosegmentation of similar objects within an
image stream. This method oversegments each image into a
set of segments, which are grouped using an iterative scheme
into a k region foreground model. The algorithm is applied
to Flickr4 photostreams and the ImageNet dataset, and the
results are promising.

4Flickr - http://www.flickr.com (last accessed on 20 March 2014).

787

Cao et al. [25] proposed a method for recognizing human
activities from video streams in which part of the activities
are missing. They cast the problem within a probabilistic
framework and use sparse coding to calculate the likelihoods
of a test video toward a set of trained activities. Finally, the
activity with the maximum likelihood is selected.

III. PROPOSED STREAM ALGEBRA

The stream algebra is defined using the common algebraic
definitions of Communicating Sequential Processes (CSPs)
and Stream Processing (SP). These definitions have shown
useful in several contexts. For example, CSPs influenced the
design of the concurrency model of the Go language [26] and
UNIX pipes, where SP were used to handle stream queries in
Microsoft StreamInsight [27]. The stream algebra has three
main parts, notation of a common streaming model shared
by the operators, the operators and the formal semantics that
define correct pipeline expressions.

A. Notation

We define an algebra for declaratively constructing the vision
pipeline.

Definition 1 (Data streams). A data stream is an infinite
sequence of data. Given a stream s, there are two functions
for write to, and read from the stream:

λx : x→ s

← s

The set of all possible streams are denoted by S. To signify
that a stream is to contain data of a particular type, we will
use the generic type notation of S 〈T 〉 where T is a data
type.

Definition 2 (Operators). A stream operator is a function
that maps m input streams to n output streams. (Typically
n = 1.)

h : Sm → Sn : S1
in, . . . , S

m
in → S1

out, . . . , S
n
out

The definitions of the standard operators are limited to
following constructs:
• Shared states:

state u
indicates that u is a state for subsequent loops.

• Concurrency:
loop : body of loop
iterates over the body forever. Note that each loop runs
in its own concurrent container (e.g. threads), but all
loops of the same operator share the states. If there are
multiple concurrent loops, we may use loopj to indicate
that it’s the j-th concurrent session.

• Atomicity:
{ statements }

executes the statements as an atomic operation5.
• Stream I/O:
x ← s reads from a stream and save the result in x,
and e→ s writes the expression e to stream.

B. First-order operators

We begin the algebra with some classical stream operators.
We will illustrate the formal notation we use to define our
operators. The operator definitions all follow the following
style:
• Declaration: an operator, X may be parameterized

by zero or more user specified functions. If there
are functional parameters, we indicate the functional
parameters, we indicate the functional signatures of
each parameter, and then show the derived operator
instance as a stream operator in the following format:

f1 : signature1, . . . , fk : signaturek
X(f1, . . . , fk) : S

m → Sn

• Implementation: we define the semantics of the de-
rived operator using the syntactic constructs of shared
states, concurrency, atomicity and stream I/O.

Map is an operator which synchronously reads from k in-
coming streams to build a k-dimensional vector of readings,
and apply a user-defined function to compute the value to
be written out to the outgoing stream.

f : X1 ×X2 × . . . Xk → Y

MAP(f) : S 〈X1〉 × . . .S 〈Xk〉 → S 〈Y 〉

loop : f(← S1
in, . . . ,← Sk

in)→ Sout

This operator is parametrized by a simple function f that
maps elements from k input streams to one output stream.

Reduce is an operator which maintains internal states. For
each reading from the incoming stream, reduce updates
the state and generates an output for the outgoing stream.
Reduce operators are parametrized by the function that
updates the internal state and computes the output value
based on the input and the previous state.

u0 : U , g : U ×X → U × Y
REDUCE(g, u0) : S 〈X〉 → S 〈Y 〉

state u = u0

loop : u, y = g(u,← Sin)

y → Sout

Copy makes duplicates of the incoming stream. It is impor-
tant to observe that Copy writes its output synchronously

5It is interesting to note that the system level implementation of atomicity
can range from the classical semaphores to software transaction memory
[28].

788

on all duplicated outgoing streams. We will see that the
duplicated outgoing streams can be transformed into asyn-
chronous streams via other operators such as Cut and Latch.
The Copy operator has no parameters. COPY : S→ Sn

loop : x← Sin

x→ Si
out for all i ≤ n

Filter only keeps certain readings from the incoming stream.
It’s parameterized by a predicate.

θ : X → boolean
FILTER : S 〈X〉 → S 〈X〉

loop : x← Sin

if θ(x) then x→ Sout

C. Rate controlling operators

Latch operator allows the incoming and outgoing streams to
be asynchronous (namely transmitting at different rates). It
does so by remembering the most recent incoming reading,
and aggressively write it to the outgoing stream whenever
writes are possible. The streaming rate of the incoming and
outgoing streams are unrelated. LATCH : S→ S.

state u
loop1 : x← Sin

{u = x}
loop2 : {u→ Sout}

Cut operator decouples the outgoing stream from the input
stream, just like Latch. The difference is that Cut does not
latch on the last reading if the outgoing stream has a higher
streaming rate. Instead, Cut guarantees that every incoming
reading is written once to the outgoing stream. A nil value
is used for the extra write operations. CUT() : S→ S

state u = nil
loop : x← Sin

{u = x}
loop : {y = u ;u = nil}

y → Sout

Left multiply operator reads from two incoming streams S1
in

and S2
in, and outputs pairs (x1, x2) to the outgoing stream.

Unlike Map, left multiple synchronizes the writes with S1
in,

and latches on S2
in. This means that the outgoing rate is

determined by the incoming rate of S1
in, and independent of

S2
in. One can think of S1

in as a clock stream which triggers
the samples of S2

in. Thus, left multiple is a generalized
sampling operator. MULT : S 〈X1〉×S 〈X2〉 → S 〈X1 ×X2〉

loop :

[
← S1

in

← LATCH(S2
in)

]
→ Sout

The right multiply can be defined similarly.
Add operator merges multiple incoming streams in a greedy
fashion. It performs best effort reads on the incoming
streams asynchronously, and writes to the outgoing stream.
ADD : S× S→ S.

loop : x← S1
in

x→ Sout

loop : x← S2
in

x→ Sout

D. Higher order operators

In Section III-B, the operators are functions with streams
as inputs and outputs, and are parameterized by simple
functions (as in the cases of MAP and REDUCE). Collectively,
they are called first-order operators. Any composition of
first-order operators are first order operators as well.
In this section, we extend the operators to include second-
order operators. These operators have collections of streams
as inputs and outputs, and are parameterized by functions
and first-order operators.

Scatter reads from an incoming stream, but generates a
list of outgoing streams. The list of outgoing streams can
be arbitrary size. Scatter is parameterized by an output
generator f : X → LIST 〈Y 〉 that computes the list of output
values to be emitted from the value read from the incoming
stream. Scatter is also parameterized by a partition function
p : Y → N which maps the output values y to the p(y)-th
stream in the outgoing streams.

f : X → LIST 〈Y 〉 , p : Y → N
SCATTER(f, p) : S 〈X〉 → LIST 〈S 〈X〉〉

let Sout = EMPTY-LIST 〈S 〈X〉〉
loop : y = f(← Sin)

yi → Sout[p(yi)] for all yi ∈ y

List map is a higher order operator whose input and output
are collections of streams. With scatter, one can generate
collections of streams, and with first order operators, one
can build up stream pipelines using composition. List map
allows one to apply first-order stream pipelines to collections
of streams.

h : S 〈X〉 → S 〈Y 〉
LIST-MAP(h) : LIST 〈S 〈X〉〉 → LIST 〈S 〈Y 〉〉

LIST-MAP : Sin 7→ Sout
let Sout = EMPTY-LIST 〈S 〈Y 〉〉
for all i ≤ len(Sin)

loop : y ← h(Sin[i])
y → Sout[i]

Merge operator is the “inverse” of scatter in the sense that
it merges a collection of incoming streams back into a single
outgoing stream. It reads from all the n incoming streams
of type X in the input collection into a buffer of size n
(one slot for each incoming stream). A selection function is
used to pick the element in the buffer to be written to the
outgoing stream. The selection function f : X → (Y,�)
has a partial order over Y which is used to determine that a
minimal element (w.r.t. �) is to be removed from the buffer
and written to the output stream.

f : X → (Y,�)
MERGE(f,�) : LIST 〈S 〈X〉〉 → S 〈X〉

789

◦ // ◦

''◦ SCATTER //

77

''

◦LIST-MAP// ◦ MERGE // ◦

◦ // ◦

77

Figure 1. An example of a concurrency pattern expressed in our algebra.

MERGE(f) : Sin 7→ Sout

State : B where |B| = |Sin|.
for each Sin = Sin[i]:

loop : {if B[i] == nil then B[i]← Sin}
end for
loop : if nil 6∈ B then

i∗ = argmin�{f(B[i])}
{B[i∗]→ Sout;B[i∗] = nil}

end if
The higher order functions allow our algebra to generate
and work with collections of streams. This is particularly
important when working with stream runtime environments
with high degrees of concurrency. By utilizing patterns such
as the one in Figure 1, the algebra can express utilization
of concurrent processing environments such as distributed
server clusters, multicore processors and GPGPU processing
quite naturally.
We will demonstrate in Section V that the higher order
operators can be instrumental in automatic optimization of
first-order stream processing. Namely, user can express the
processing using simple MAP, which can be automatically
compiled into an equivalent, but more optimal execution plan
involving SCATTER, LIST-MAP and MERGE.

IV. COMPUTER VISION ALGORITHMS

There is a continuous need for computer vision algorithms
that can process large scale vision streams in realtime or
provide a series of approximate results, that are improved
over time. In this section, we present two state-of-the-art
algorithms, that successfully applied data streaming concepts
for processing vision streams. Particularly and without loss
of generality, we will show how our stream algebra can
effectively describe the vision pipelines of these algorithms
using a set of equations over data streams.

A. Activity Recognition

The goal of activity recognition is to identify the type of
actions that are occurring between one or more objects in a
sequence of images. Ryoo [13] presented a recent algorithm
for early prediction of human activities. They addressed six
human activities: hand shaking, hugging, kicking, pointing,
punching and pushing. The algorithm operates in two main
stages, an offline learning stage and an online prediction
stage.

In the offline learning stage, the algorithm receives as
input, a group of human activities and a set of training
videos for each human activity. Then, 3-D spatio-temporal
features are extracted from each video. A Bag-of-Words
(BoW) model is then constructed by clustering the features
of all videos into k visual words. This model is used to
build an integral histogram for each training video. The
integral histogram is a sequence of visual word histograms
Hi = (H0

i , H
1
i , ...,H

j
i ,) where Hj

i is the accumulated
histogram of visual words in video i up to frame j, and
k = |Hj

i |. The algorithm then defines one integral histogram
for each human activity by averaging the integral histograms
of all its input videos. The output integral histogram works
as an activity model and we will refer to all output models
by the set D.
In the online prediction stage, the algorithm receives
an input video stream. This stream is divided into a
sequence of clips C = {Cq|q = 0, 1, ...} of duration
4t. For each clip Cq , the algorithm extracts the 3-D
spatio-temporal features and converts them into visual
words using the learned BoW model. Then, an integral
histogram H = (H0, H1, ...,Hq, ...) is constructed where
Hq is the accumulated histogram of visual words up
to the qth clip. As time progress, the algorithm uses
dynamic programming to compare the integral histogram
H towards the activity models in D and generates a
likelihood stream L = (L0, L1, ..., Lq, ...), where Lq is the
accumulated likelihood vector up to the qth clip. Note that
each activity has an element in Lq . The algorithm then
outputs an activity stream A = (A0, A1, ..., Aq, ...), where
Aq = argmax0≤i≤|Lq| L

q
i is the activity with the maximum

likelihood value in Lq . Now we will describe the online
prediction stage using our algebra. The data types defined
by the algorithm are,

Frame : 2DImage; Feature : Rl

Video : S 〈Frame〉 ; Clip : LIST 〈Frame〉

where a Frame is a single 2D image, a Feature is a
vector in a high dimensional space Rl, a Video is a stream
of frames, and a Clip is a list of frames that represent a
certain time interval in a Video. Given the data types, we
start by dividing an incoming video stream V ∈ Video
into a stream of non-overlapping clips using the function,

g : Clip× Frame→ Clip× Clip

g(u, x) = { if duration(u) ≥ 4t then
u′ = ∅; y = u

else
u′ = u⊕ x //append x to clip u
y = ∅

return(u′, y) }

790

This function keeps appending the incoming frames to a clip
u′ and setting the output y to an empty clip. When the clip
size is greater or equals to a time interval 4t, the function
copies the clip to the output y and resets u′ back to an empty
list. We can now use the function g with a REDUCE operator
to obtain the stream,

•∅ // . . . // •C0 // •∅ // . . . // •C1 // · · ·

where the arrow indicates time direction. This stream can
be filtered using a FILTER operator to remove the empty
elements and obtain the clip stream C : S 〈Clip〉,

C , FILTER(λ x : |x| 6= 0) ◦ REDUCE(g, ∅)(V)

•C0 // •C1 // · · · // •Cq // · · ·

where the ◦ operator takes the output stream from the right
operand and feeds it as an input stream to the left operand.
The algorithm then converts each clip in C to a list of
features using the function f1 : Clip→ LIST 〈Feature〉,
which can be used with a MAP operator to obtain the
features stream F : S 〈LIST 〈Feature〉〉,

F , MAP(f1)(C)

Another algorithm function f2 : LIST 〈Feature〉 →
LIST 〈Word〉 is defined by [13] and uses the learned BoW
model to transform every feature from the input list to a
corresponding word in the output list. This function can
be used with a MAP operator to define the word stream
W : S 〈LIST 〈Word〉〉,

W , MAP(f2)(F)

The word stream is then used to construct an integral
histogram by using the function,

g2 : Histogram× LIST 〈Word〉 → Histogram× Histogram

g2(u, x) = { u′ = u+ x

return(u′, u′)
}

where + accumulates the input list of words on the
histogram u to construct a new histogram u′, which is
copied to the output. So, the function g2 can be used
together with a REDUCE operator to define a histogram
stream H which is itself an integral histogram,

H , REDUCE(g2, empty-histogram)(W)

•H0 // •H1 // · · · // •Hq // · · ·

The algorithm then calculates a likelihood score for each
histogram Hq in the stream H . This score is calculated

using a function d : Histogram × ActivityModel → R that
calculates the distance between Hq to an activity model
from the set D ∈ LIST 〈ActivityModel〉 of learned activity
models (see [13] for details). The d function is used to
define a new function,

f3 : Histogram→ LIST 〈R〉
f3(x) = {return [d(x,D[i]) for i ≤ |D|]}

that returns a likelihood vector for each histogram Hq

in the stream H . Note that this vector has one entry for
each activity. So, the function f3 can be used with a MAP
operator to define a likelihood stream K : S 〈LIST 〈R〉〉,

K , MAP(f3)(H)

•K0 // •K1 // · · · // •Kq // · · ·

The algorithm of [13] then defines a function for Bayesian
combination of likelihoods f4 : LIST 〈R〉 × LIST 〈R〉 →
LIST 〈R〉, which can be used to define the function,

g3 : LIST 〈R〉 × LIST 〈R〉 → LIST 〈R〉 × LIST 〈R〉

g3(u, x) = { u′ = f4(u, x)

return(u′, u′)
}

which keeps returning an accumulated likelihood vector
and can be used with a reduce operator to obtain the
accumulated likelihood stream L : S 〈LIST 〈R〉〉,

L , REDUCE(g3, 0)(W)

•L0 // •L1 // · · · // •Lq // · · ·

and 0 is the zero vector. Finally a function
f5 = λx : argmax0≤i≤|x| xi is applied to each vector in L
to return the index of the activity of maximum likelihood.
We can use f5 as a parameter to a final MAP operator and
obtain the output activity stream A : S 〈R+〉,

A , MAP(f5)(L)

•A0 // •A1 // · · · // •Aq // · · ·

B. Other vision problems

Due to space limitation, we briefly describe the algebra
of another example algorithm that implements hierarchical
video segmentation [15] in a streaming fashion. This
algorithm starts by dividing the input video into a sequence
of non-overlapping clips of duration 4t. Each clip is
represented as a 3D space-time volume and is segmented
into a collection of 3D space-time segments. Then,
hierarchical clustering is applied on these segments to
generate a segmentation hierarchy. The method also uses a

791

Markovian assumption to build the hierarchy of the current
clip using the hierarchy generated for the previous clip. In
order to map this technique into our algebra, we will reuse
the definitions of the previous section. Where again, we have
an input video V ∈ Video that is divided into a stream of
non-overlapping clips C : S 〈Clip〉. This can be done using
the same REDUCE(g, ∅)(V) operator used in the algebra
of the previous algorithm. The core of [15] is a function
f6 : Hierarchy × Clip → Hierarchy that maps each clip
from the stream C, together with the segmentation hierarchy
computed for the previous clip, to a new segmentation
hierarchy. This function can be used to define a function
g4 : Hierarchy×Clip→ Hierarchy×Hierarchy, that has a
similar body to the function g3 with only replacing f4 with
f6. The function g4 can be used with a REDUCE operator
to define the output stream of segmentation hierarchies
H : S 〈Hierarchy〉 where,

H , REDUCE(g4, empty-hierarchy)(C).

Other algorithms [4], [18], [14], that span different computer
vision problems, can be similarly defined using our algebra.

V. DISCUSSIONS

The examples shown in the previous section, suggest how
our stream algebra may fit naturally in expressing a wide
range of computer vision algorithms that manipulate differ-
ent vision streams. In each discussed algorithm, we define
the vision pipeline using a set of formal equations that use
a common set of abstract operators. Thereby providing an
abstract description that better illustrates the semantics of
computer vision operations, and helps in scaling up the
techniques for big data analysis. For example, the algebraic
description of the activity prediction example highlights the
most salient algorithmic functions. These functions are f1
for feature extraction, f2 for transforming features using the
learned BoW model, f3 for likelihood estimation using a
statistical model, and f4 for accumulating likelihoods using
a Bayesian framework. The remaining operations of [13] can
be efficiently and precisely expressed in our algebra.
In addition, The algebra allows several optimizations on the
vision pipelines, that can maximize performance and en-
hance resource allocation. For example, a REDUCE operator
followed by a MAP operator can both be replaced by one
equivalent REDUCE operator that apply the map function
to its output. Another optimization can replace the MAP
operator with the concurrency pattern shown in figure 1.
Thereby, maximizing the throughput of a heavyweight map
operation. One can see that the two previous optimizations
are conflicting and it is up to the runtime to select the
optimal execution plan that maximize the overall pipeline
performance. The algebra also provides a group of operators
that can control the data flow rates such as CUT, LATCH,
COPY, ADD and LEFT MULTIPLE. These operators allow

flexible integration of different computer vision algorithms,
that work at different data rates, without interfering one an-
other. They also can support realtime streaming by efficiently
implementing blocking resolution and rate matching. This
is important for synchronizing between different processing
tasks in streaming pipelines and can help in dealing with
unbounded data rates of large (and possibly infinite) scale
data.
Our stream algebra opens new research directions in com-
puter vision. For example, feedback control loops can be
expressed using the COPY and ADD operators which allow
adaptive parameters selection, performance tuning and re-
source reallocation. Pipeline instrumentation is another prob-
lem, which can enable real-time debugging, performance
monitoring and bottleneck identification. The algebra also
opens new directions in stream clustering and on the fly class
discovery. For example, the SCATTER operator can be seen
as a clustering operator that clusters the input data stream
into different output stream clusters.
Limitations: The selection of stream operators presented
here is the result of a careful study of stream algebras
found in the database literature. While we cannot prove
it, we expect that the proposed set of stream operators is
able to describe a variety of computer vision applications.
Much work is still needed to show that the proposed set
of operators is minimal and complete with respect to a
given set of vision applications. It is also not immediately
obvious how the proposed stream algebra can dynamically
tune application specific vision algorithms embedded within
the stream operators to guarantee quality of service.

VI. CONCLUSION

This paper develops a first of its kind stream algebra for for-
mally defining computer vision pipelines—online vision sys-
tems that deal with incoming image and video data (vision
streams). The algebra treats vision streams as operands and
defines a set of concurrent operators, which can succinctly
describe computer vision pipelines. We have demonstrated
the expressiveness of our algebra by describing two state-of-
the-art computer vision applications. The proposed algebra
brings forth formal methods to design, analyze and optimize
vision pipelines. Such algebras are urgently needed as we
move towards “big data” vision systems. Our work opens
up many exciting avenues for research, including stream
clustering, feedback control, instrumentation, performance
tuning and global optimization and dynamic reconfiguration
of vision pipelines.

REFERENCES

[1] B. Zhao, L. Fei-Fei, and E. Xing, “Online detection of unusual
events in videos via dynamic sparse coding,” in CVPR,
Colorado Springs, June 2011, pp. 3313–3320.

792

[2] A. Meghdadi and P. Irani, “Interactive exploration of surveil-
lance video through action shot summarization and trajectory
visualization,” IEEE Trans. on Visualization and Computer
Graphics, vol. 19, no. 12, pp. 2119–2128, Dec 2013.

[3] S. Yenikaya, G. Yenikaya, and E. Düven, “Keeping the
vehicle on the road: A survey on on-road lane detection
systems,” ACM Comput. Surv., vol. 46, no. 1, pp. 2:1–2:43,
Jul. 2013.

[4] C. Loy, T. Hospedales, T. Xiang, and S. Gong, “Stream-based
joint exploration-exploitation active learning,” in CVPR, 2012,
pp. 1560–1567.

[5] M. Broy and G. Stefanescu, “The algebra of stream process-
ing functions,” Theoretical Computer Science, vol. 258, no.
1-2, pp. 99 – 129, 2001.

[6] J. Carlson and B. Lisper, “An event detection algebra for re-
active systems,” in Proceedings of the 4th ACM International
Conference on Embedded Software, 2004, pp. 147–154.

[7] A. Demers, J. Gehrke, M. Hong, M. Riedewald, and
W. White, “A general algebra and implementation for mon-
itoring event streams,” Cornell University, Technical Report,
2005.

[8] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework
for clustering evolving data streams,” in VLDB, vol. 29, 2003,
pp. 81–92.

[9] A. Bifet, G. Holmes, B. Pfahringer, P. Kranen, H. Kremer,
T. Jansen, and T. Seidl, “Moa: Massive online analysis, a
framework for stream classification and clustering,” in JMLR,
2010, pp. 44–50.

[10] D. Wang, E. A. Rundensteiner, and T. R. I. Ellison, “Active
complex event processing over event streams,” VLDB, vol. 4,
no. 10, pp. 634–645, Jul. 2011.

[11] A. Arasu, B. Babcock, S. Babu, J. McAlister, and J. Widom,
“Characterizing memory requirements for queries over con-
tinuous data streams,” Stanford InfoLab, Technical Report
2002-29, May 2002.

[12] R. Ananthanarayanan, V. Basker, S. Das, A. Gupta, H. Jiang,
T. Qiu, A. Reznichenko, D. Ryabkov, M. Singh, and
S. Venkataraman, “Photon: Fault-tolerant and scalable joining
of continuous data streams,” in SIGMOD, New York, NY,
USA, 2013, pp. 577–588.

[13] M. S. Ryoo, “Human activity prediction: Early recogni-
tion of ongoing activities from streaming videos,” in ICCV,
Barcelona, Spain, 2011, pp. 1036–1043.

[14] C. Lu, J. Shi, and J. Jia, “Online robust dictionary learning,”
in IEEE CVPR, 2013, pp. 415–422.

[15] C. Xuand, C. Xiong, and J. Corso, “Streaming hierarchical
video segmentation,” in ECCV, vol. VI, 2012, pp. 626–639.

[16] N. Harbi and Y. Gotoh, “Spatio-temporal human body seg-
mentation from video stream,” in Computer Analysis of
Images and Patterns. Springer, 2013, vol. 8047, pp. 78–
85.

[17] J. Yang, J. Luo, J. Yu, and T. Huang, “Photo stream alignment
and summarization for collaborative photo collection and
sharing,” IEEE Trans. on Multimedia, vol. 14, no. 6, pp.
1642–1651, 2012.

[18] G. Kim and E. Xing, “Jointly aligning and segmenting
multiple web photo streams for the inference of collective
photo storylines,” in CVPR, 2013, pp. 620–627.

[19] A. Kinesis, aws.amazon.com/kinesis/, accessed: 2014-02-27.

[20] G. Chkodrov, P. Ringseth, T. Tarnavski, A. Shen, R. Barga,
and J. Goldstein, “Implementation of stream algebra over
class instances, Google patents,” Patent US20 130 014 094 A1,
jan, 2013.

[21] GStreamer, http://gstreamer.freedesktop.org, accessed: 2014-
01-26.

[22] Twitter’s Storm, http://storm.incubator.apache.org, accessed:
2014-01-26.

[23] R. Schuster, R. Mörzinger, W. Haas, H. Grabner, and L. V.
Gool, “Real-time detection of unusual regions in image
streams,” in Proceedings of the International Conference on
Multimedia, 2010, pp. 1307–1310.

[24] K. Gunhee and E. Xing, “On multiple foreground cosegmen-
tation,” in CVPR, Providence, USA, June 2012, pp. 837–844.

[25] Y. Cao, D. Barrett, A. Barbu, S. Narayanaswamy, H. Yu,
A. Michaux, Y. Lin, S. Dickinson, J. Siskind, and S. Wang,
“Recognize human activities from partially observed videos,”
in CVPR, Oregon, USA, June 2013, pp. 2658–2665.

[26] A. Vajda, Programming Many-Core Chips. New York
Dordrecht Heidelberg London: Springer, 2011.

[27] M. H. Ali, B. Chandramoul, B. S. Raman, and E. Katibah,
“Spatio-temporal stream processing in microsoft streamin-
sight.” IEEE Data Eng. Bull., vol. 33, no. 2, pp. 69–74, 2010.

[28] N. Shavit and D. Touitou, “Software transactional memory,”
Distributed Computing, vol. 10, no. 2, pp. 99–116, 1997.

793

