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Abstract

We propose a facial landmarks detector, in which a part-
based model is incorporated with holistic face information.
In the part-based model, the face is modeled by the ap-
pearance of different face parts and their geometric rela-
tion. The appearance is described by pixel normalized dif-
ference descriptor. This descriptor is the lowest computa-
tional complexity as compared with existing state-of-the-
art while it has a similar accuracy. On the other hand, to
model the geometric relation between the face parts, the
complex Bingham distribution is adapted. This is because
the complex Bingham distribution has a symmetric prop-
erty so it is invariant to rotation, scale, and translation.
After that the global information is incorporated with the
local part-based model using a regression model. The re-
gression model estimates the displacement to the final face
shape model. The the proposed detector is evaluated on two
datasets. Experimental results show that it outperforms the
state-of-the-art approaches in detecting facial landmarks
accurately.

1. Introduction

Face understanding is considered one of the most im-
portant topics in computer vision field since the face is a
rich source of biometrics in social interaction. Facial land-
marks extraction is the corner stone in the success of dif-
ferent face analysis and understanding biometrics applica-
tions. Facial features, also known as facial landmarks or
facial fiducial points, have a semantic meaning. Facial fea-
tures are mainly located around facial components such as
eyes, mouth, nose, and chin. Facial feature points detec-
tion (FFPD) refers to a supervised or a semi-supervised pro-
cess using abundant manually labeled images. FFPD usu-
ally starts from a rectangular bounding box, which implies
the location of a face and is returned by a face detector e.g.,

[1, 2]. This bounding box can be employed to initialize the
positions of facial features.

Facial features can be classified into three types: Points
label parts of the face with an application-dependent sig-
nificance, such as the center of an eye or sharp corners of
a boundary. Points label application-independent elements,
such as the highest point on the face in a particular orienta-
tion, or the highest point along the bridge of the nose (the
curvature extrema). Finally, points are interpolated from
the previous two types such as points along the chin. Ac-
cording to various application scenarios, different numbers
(e.g., 17, 29, 68) of facial feature points are labeled. What-
ever the number of the points is, these points should cover
several frequently-used areas: eyes, nose, and mouth. These
areas carry the most important information for both discrim-
inative and generative purposes. Generally speaking, more
points indicate richer information, although it is more time-
consuming to detect all the points.

Detecting the facial features is a challenging problem
due to both the rigid (scale, rotation, and translation) and the
non-rigid (such as facial expression variation) face defor-
mations. Existing methods of facial features detection can
be broadly grouped into three categories: Constrained Lo-
cal Model (CLM)-based methods, active appearance model-
based methods, and regression-based methods.

Active Appearance Model (AAM)-based methods model
the appearance variation from a holistic perspective. In
the training phase of these algorithms, principal component
analysis (PCA) is applied to a set of labeled faces (manu-
ally annotated faces) to model the intrinsic variation in the
shape and the texture. This results in a parameterized model
(eigenshapes and eigenfaces) that can represent large vari-
ations in the shape and the texture with a small set of pa-
rameters. The AAM algorithm aims to find the model’s
coefficients that minimize the difference between the tex-
ture as sampled from a test image and the texture that is
synthesized by the model. However, the coefficients of the
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model are defined over a high dimensional space, making it
is impossible to find its global maximum. Many trials have
been done as an improvement and extension for AAM by
cootes [3]. In their survey paper, Gao et al. [4] discussed
the recent developments on AAM.

In the regression-based methods, the shape is directly es-
timated from the appearance without learning any shape or
appearance models. Regression-based approach learns a re-
gression function that maps the image appearance (features)
to the target output (shape). Zhou and Comaniciu [5] pro-
posed a shape regression method based on boosting [6, 7].
Their method proceeds in two stages: First, the rigid pa-
rameters are found by casting the problem as an object de-
tection problem, which is solved by a boosting-based re-
gression method. Second, a regularized regression func-
tion is learned from perturbed training examples to pre-
dict the non-rigid shape. Haar-like features are fed to the
non-rigid shape regressors. Cao et al. [23] proposed a two-
level cascaded learning framework based on boosted regres-
sion [9]. Unlike the method in [5], which learns the regres-
sion map for each individual facial feature, their method
directly learns a vectorial map that combines all landmarks.
The main drawbacks of the regression methods are the sen-
sitivity to initialization and the need of huge amount of
memory compared with the CLM-based methods.

In the constrained local model-based methods, the lo-
cal texture and the shape prior models are the main com-
ponents. For the texture model, the local texture around a
given facial feature is modeled i.e., the pixels intensity in a
small region around the feature point. While for the shape
model, the relationship among facial features are modeled.
Both models are learned from labeled exemplar images
(manually labeled images).

The texture-based features detection can be formulated
either as a regression or a classification problem. For the
regression problem, the displacement vector from an initial
point to the actual feature point is estimated. For the clas-
sification problem, a sliding window runs through the im-
age to determine if each pixel is a feature or a non-feature.
The sliding window searching approach is the standard ap-
proach for object detection. This approach requires two
steps object representation and classification. Instead of di-
rectly using the pixel intensity as a descriptor, the texture
model can be constructed using different descriptors such as
Haar-like [10], local binary pattern (LBP) [11], Gabor [12],
scale-invariant feature transform (SIFT) [13]. The seminal
work of viola and Jones [1] is considered the corner stone
for many development in the area of object detection. The
object is represented by Haar-like features and adaboost is
used for classification and feature selection. Recently, many
researchers [19] used the histogram of gradient orientation
for an object representation and Support Vector Machine
(SVM) for classification. The histogram of gradient orien-

tation is invariant to illumination and affine transformation.
However, the main drawback of using this representation
over Haar-like features with adaboost is the execution time.

Texture-based detectors are imperfect for many reasons.
One of them is the visual obstructions (e.g., hair, glasses,
hands, etc.), which can greatly affect the results. Another
reason is that the detection of each facial feature is inde-
pendent from the others and it ignores the relation among
these facial feature points. To overcome these disadvan-
tages, constraints related to the relative positions of the fa-
cial features can be established using a shape model. The
shape model either is used to filter the output of the texture
model or both models are combined together into a single
formula.

Cristinacce et al. [14] modeled the relative positions
of facial features by pairwise reinforcement of feature re-
sponses and modeled the texture around facial features
using PCA as in Active Shape Model (ASM). Valstar et
al. [15] modeled the shape using Markov Random Field
(MRF) and the texture using Haar-like features with a
boosting classifier. These two approaches use a shape
model to filter the output of the texture model. They use
a single distribution for the shape model, but this is not suit-
able for modeling a wide range of poses. Felzenszwalb et
al. [16] modeled the relation between facial features by a
graph tree where the relation between each two nodes is a
gaussian distribution and the texture is modeled using an
iconic representation. To handle different poses, Evering-
ham et al. [17] extended the relation between facial feature
points from a single Gaussian distribution into a mixture
of Gaussian trees. Also, they used Haar-like features with
boosting instead of the iconic representation to represent the
texture around facial feature points. Zhu et al. [18] built
on [17], but they combined the texture and shape models
into a single formula and used Histogram of Oriented Gra-
dients (HOG) features [19] to represent the texture around
each facial feature points. Belhumeur et al. [24] used a non-
parametric approach for shape modeling. They used infor-
mation from their large collection of diverse labeled exem-
plars and represented the texture around each facial feature
point using SIFT features. They used SVM [21] to classify
each pixel as a candidate facial feature or not. Their algo-
rithm takes 1 sec to detect a facial feature.

Unlike conventional state-of-the-art approaches, which
use the shape model to filter the results of texture-based
detectors, in the proposed work, the facial features detec-
tion problem is formulated as minimizing an energy func-
tion that simultaneously incorporates information from both
texture and shape models. However, the parametric shape
model have a drawback since it penalizes shapes that are
far from the mean shape. Therefore, we propose adding an-
other stage to refine the output, which corresponds to the
minimum energy, by using a regression model that esti-
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mates the displacement to the final face shape model. The
regression model is based on a global texture model to give
complementary information with the local texture model,
which is used in the previous stage. Therefore, the pro-
posed facial features detector combines the advantages of
the part-based face model and the holistic face model. The
face is modeled using a part-based model where the tex-
ture around facial points is modeled using the pixel dif-
ference descriptor and complex Bingham distributions are
used to model features’ relative positions (the shape). The
output of the first stage is refined by a regression model
that is build using non-parametric global information. We
built on Mostafa and Farag work [22], however, there are
two main differences: (a) The appearance is described by
a pixel normalized difference descriptor. This descriptor is
three times faster than other state-of-the-art texture descrip-
tors, as shown in experimental results. (b) Incorporate non
parametric holistic information to proposed face model for
achieving few pixels accuracy.

2. The Proposed Face Model
In the first stage, the facial image is modeled using a lo-

cal parametric model to detectN facial features. The model
is based on pixel normalized difference texture with a SVM
classifier as a local texture detector that is combined with
a mixture of complex Bingham distributions as parametric
shape model.

2.1. Local Texture Detector

The texture-based features detection is formulated as a
classification problem where a sliding window runs through
a sub-image and a SVM classifier determines if each pixel
is a feature or a non-feature. The texture around each facial
feature is represented by the difference in values of random
pixels in the neighbourhood of this feature. To make this
descriptor illumination invariant, the difference is normal-
ized by the average intensity. This descriptor is the lowest
computational complexity compared with existing state-of-
the-art while it has a similar accuracy.

To detect a facial point i, the sliding window-based clas-
sifier scans its corresponding search area. Then the score
S(Dzi), which measures if the pixel at position z is the fea-
ture i, is calculated as follows.

S(Dzi) =

r∑
t=1

αtiziSti , (1)

where αti is the weight of each support vector t for the fea-
ture i, zi is the extracted texture, which is the random pixel
normalized difference, and Sti are the support vectors [21].

For a perfect texture-based detector, the response map,
which represents the score at each pixel in the search area,
of the classifier is homogenous as the probability of the

pixel being a feature is high at the true position and de-
creases smoothly going away from this position. There-
fore, the output of the SVM classifier should be regular-
ized to handle false positives in the classification step. The
classifier is regularized with a variance normalization factor
by dividing the output probability of the classifier with the
standard deviation σℵ(z) of the output probability among
the neighborhood ℵ(z). Then, the texture-based probability
P (Dzi) of the position z to be the feature i can be written
as

P (Dzi) =
K

σℵ(zi)
S(Dzi), (2)

where K is a normalization constant.
Candidate positions of a feature are the peaks in the cor-

responding response map and they are estimated using the
non-maximal suppression technique. Figure 1 shows an ex-
ample of the response map for the tip of the nose as well
as its candidate positions. The candidates are illustrated for
subjects with different poses. Also, Fig. 2 shows a subset of
positive samples for the tip of the nose. This figure shows
the high variation of the appearance within the positive sam-
ples.

In the training stage, the face detection box is resized to
50× 50 pixels. The patch size around a given facial feature
position has been empirically determined to be 13×13 pix-
els for optimum running time and accuracy. Positive sam-
ples are chosen at the corresponding manually annotated lo-
cations. Whereas negative samples are chosen away from
the corresponding annotated locations by at least 10 pixels.

2.2. Combining Texture and Shape Model

We formulate this problem as hidden variables (positions
of facial features Z = [z1, z2...zN ]) are estimated based on
observable variables (image gray level I). This problem can
be represented as a Bayesian framework of Maximum-A-
Posteriori (MAP) estimation. The probability model of the
input image and the facial feature positions is given by the
joint distribution P (I, Z) = P (I|Z)P (Z), where P (I|Z)
is the conditional distribution of the original image given
the facial feature positions i.e., the texture-based model.
P (Z) is the distribution of the facial feature positions i.e.,
the shape prior model. The MAP estimate of facial feature
positions given the image is expressed as

Z∗ = argmaxP (I|Z)P (Z). (3)

Since each facial feature has its sliding window classifier
scanning its corresponding search area, the output of each
facial point texture detector can be considered independent
from the others. Therefore, P (I|Z), which represents the
probability of similarity between the texture of the face to
off-line model given the facial feature vector, is the overall
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Figure 1. The response map of the tip of the nose and examples of its candidates for different subjects.

probability of N facial features based only on the texture-
based detector and is given by

P (I|Z) =
N∏
i=1

P (Dzi). (4)

A mixture of complex Bingham distributions is chosen to
represent the shape model i.e., the distribution of the facial
feature positions P (Z). The complex Bingham distribution
is more robust in modeling the joint probability of the loca-
tion of facial features than existing models. Existing models
need a preprocessing step before using the shape prior to
filter out scale, translation, and rotation using least-square
approaches (e.g., Procrustes analysis), which can introduce
errors to the system due to noise and outliers. Since the
probability distribution function (PDF) of a complex Bing-
ham has a symmetric property, there is no need to filter out
rotation. Scale and translation can be easily removed by a
simple mean and normalization step [22].

Therefore, the MAP estimate of the features can be for-
mulated as an energy minimization of the function E(Z):

E(Z) = −HZ
∗AHZ

‖ HZ ‖2
−

N∑
i=1

logP (DZi
), (5)

where A is a (N − 1) × (N − 1) complex Bingham pa-
rameters matrix and H is the Helmert matrix. Note that this
energy function is non-linear so it is not amenable to gra-
dient descent-type algorithms. It is solved by a stochastic
approach, which is simulated annealing.

3. Non-parametric global information for de-
tection refinement

Random fern regression is used to find the displace-
ment from the positions of the detected features Z∗ that
minimize the energy function Eq. 5 to more accurate posi-
tions with few pixels accuracy. The regression model learns
the relation between the appearance around these detected
points Z∗ and their displacement from the ground truth po-
sitions. Since this relation is very complex, a single regres-
sion model is not sufficient.

Figure 2. Illustration of intrinsic variation in the appearance of the
nose tip

Therefore, a boosted regression model is used. Where
T = 500 random ferns regressors (=1,=2,...,=T ) are com-
bined in an additive manner. Given the face image I and the
detected facial feature points Z∗, each random fern com-
putes a shape increment δZ from the appearance descriptor
around these points and updates the detected facial feature
points in a cascaded manner:

Zt = Zt−1 + =t(I, Zt−1), t = 1, 2, ..., T (6)

where Zt is the positions of facial feature points that are
generated by the random fern regressor t, while Z0 = Z∗.
Each fern is learned by minimizing the sum of the align-
ment error in the training set. The alignment error is the
difference between the detected positions for facial feature
points and the corresponding ground truth positions. In the
training stage, the regression function =, is learned by min-
imizing the alignment error as follows.

=t = argmin ‖Ẑ − (Zt−1 + =t(I, Zt−1)‖, (7)

where Ẑ is the ground truth positions of the facial feature
points, which are manually annotated. For each regressor t,
the holistic appearance of the facial image is represented
by approximately 1000 normalized differences of pixels
that are randomly chosen around the shape Zt−1. To con-
struct a good fern, we downsample these descriptors such
that each descriptor in the fern is highly discriminative to
the regression target and the fern’s descriptors are comple-
mentary when they are composed. To achieve this, we use
correlation-based feature selection method [23]:
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Figure 3. Illustration of regression outputs using pixel difference-
based texture in the random tree regression.

1. Project the regression target, difference between posi-
tions of the current facial feature points and the ground
truth, to a random direction to produce a scalar.

2. Among 1000 descriptors, select a descriptor with the
highest correlation to the scalar.

3. Repeat steps (1) and (2) 5 times to obtain 5 descriptors.

4. Construct a fern by 5 descriptors with random thresh-
olds.

The regression function in each fern is estimated by divid-
ing the training data into 25 bins based on the selected 5
pixel difference descriptors. Each bin is associated with re-
gression output δZt that minimizes the alignment error of
the training samples falling into this bin. Figure 3 shows
an illustration for a testing fern using the pixel difference-
based texture.

4. Experiments
The first experiment is conducted to evaluate the effect of

using the pixel difference descriptor. Figure 4 shows a com-
parison between different descriptors: Haar-like, HOG, and
pixel difference descriptors with respect to the detection ac-
curacy. The histogram of orientated gradient and pixel dif-
ference descriptors show a similar detection accuracy. The
main differences are: the size of the window that describes
the facial point appearance in the HOG descriptor is half the
size of the window in the pixel difference descriptor. Larger
window size captures more global information, which may
be needed, however, the execution time will increase dra-
matically in the case of the HOG descriptor. On the other
hand, the execution time of the pixel difference descriptor-
based approach is not a function in the window size.

The performance of the proposed facial features detector
is evaluated on BIO-ID dataset and Labeled Face Parts in
the Wild (LFPW) dataset [24]. The number of facial fea-
tures is chosen to be 68 points. The facial feature points de-
tector is evaluated using the cumulative distribution of the
relative error. The relative error is the distance between the

Figure 4. A detection rate comparison between three different ap-
pearance descriptors: HOG, pixel difference, and Haar-like.

Figure 5. A comparison of the cumulative error distributions mea-
sured on BIO-ID dataset.

detected facial feature point and the corresponding manu-
ally annotated point (ground truth) divided by the ground
truth distance between the two eyes. At every point in the
curve, the x-axis shows the relative error, and the y-axis is
the percentage of facial feature points that have relative er-
ror less than or equal the value of x-axis.

The majority of the research about facial features detec-
tion in the literature reported their results on the BIO-ID
database. Therefore, it is included here as a testing dataset.
The BIO-ID dataset contains 1521 images for 23 distinct
subjects. Each image shows a near frontal view of a face in a
controlled indoor environment without illumination and oc-
clusion problems. On the other hand, Belhumeur et al. [24]
released LFPW as a challenging uncontrolled dataset. It
consists of 1432 faces from images collected from the web.
The dataset contains different challenges: pose, existence
of shadow, presence of occlusion objects as sunglasses or
subject’s hand, existence of in-plane rotation, and blurred
images.

Figure 5 shows the cumulative error distributions for the
proposed detector compared to those reported by [25], [18],
[24], [15], [17], and [14] on BIO-ID datasets, respectively.
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Figure 6. Samples of results of the proposed facial feature detector
on Labeled Faces Parts in the Wild (LFPW) dataset.

Figure 7. A comparison of the cumulative error distributions mea-
sured on LFPW dataset.

The proposed detector and detectors in [23], [18], [24], [15],
and [17] have comparable performance on BIO-ID, since
this database includes near frontal facial images, which are
captured in controlled indoor environments with no illu-
mination and occlusion problems. For the LFPW dataset,
Fig. 6 shows samples of the results of the proposed facial
features detector on this dataset. Figure 7 shows the cumu-
lative error distributions for the proposed detector compared
to the state-of-the-art approaches on this dataset. It is worth
mentioning that for such experiment Cao et al. [23] and Bur-
gos et al. [26] reported their performance using mean error
as percentage of interocular distance instead cumulative er-
ror distribution. Therefore, their results are not included
in Fig. 7. The proposed detector and the detector in [24]
show a similar performance. This performance is the high-
est accuracy as compared with other approaches. However,
the Belhumeur et al. detector [24] takes long time since

Figure 8. Effects of each component in the proposed approach:
local texture detector only, local texture detector with shape con-
straint, and the full proposed approach.

it is based on the SIFT representation, which is extensive
feature in extraction. Also, it needs extra memory as com-
pared with most of existing algorithm, since it needs to save
shapes instead of the parameters of the shape model. While
the proposed shape model is a mix between the parametric
and the non-parametric shape model. The parametric shape
model with the texture local detector does not need a lot
of memory. While, the regression random ferns need more
memory but it is still less than others.

Finally, three experiments are conducted to investigate
the performance of the approach’s components. Figure 8
shows the results of these experiments. The first experi-
ment highlights the accuracy of the local texture detector
where the pixel difference descriptor with support vector
machine is used to find the best candidate for each facial
feature point without any shape constraint. The second ex-
periment highlights the enhancement in the accuracy after
integrating the parametric shape model. In this experiment,
the facial feature points are detected based on optimized en-
ergy function 5 that combines the complex Bingham distri-
butions with the texture model. The last one highlights the
enhancement in the accuracy due to the fine tuning stage,
which is based on the ferns regression model.

5. Conclusion
In this work, we proposed a facial landmarks detector.

The proposed detector combines a part-based model and
holistic face information. In the part-based model, the fa-
cial features detection problem was formulated as an energy
minimization function that incorporates information from
both texture and shape models. The texture around facial
feature point was represented by the normalized difference
in values of random pixels in the neighbourhood of this fa-
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cial feature point. This descriptor is faster than other state-
of-the-art texture descriptors. A mixture of complex Bing-
ham distributions was chosen to represent the shape model.
Finally, the global information was incorporated with the
local part-based model using a regression model. The pro-
posed detector results outperform the state-of-the-art in de-
tecting facial landmarks.
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