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Abstract
The current state-of-the-art indicates that a very discrim-

inative unsupervised face representation can be constructed
by encoding overlapping multi-scale face image patches at
facial landmarks. If fixed as such, there are even sugges-
tions (albeit subtle) that the underlying features may no
longer have as much meaning. In spite of the effective-
ness of this strategy, we argue that one may still afford to
improve especially at the feature level. In this paper, we in-
vestigate the role of overcompleteness in features for build-
ing unsupervised face representations. In our approach, we
first learn an overcomplete basis from a set of sampled face
image patches. Then, we use this basis to produce features
that are further encoded using the Bag-of-Features (BoF)
approach. Using our method, without an extensive use of
facial landmarks, one is able to construct a single-scale rep-
resentation reaching state-of-the-art performance in face
recognition and age estimation following the protocols of
LFW, FERET, and Adience benchmarks. Furthermore, we
make several interesting findings related, for example, to the
positive impact of applying soft feature encoding scheme
preceding standard dimensionality reduction. To this end,
making the encoding faster, we propose a novel method for
approximative soft-assignment which we show to perform
better than its hard-assigned counterpart.

1. Introduction
Face recognition has been investigated for several

decades. It remains a major topic and has applications
in a plethora of domains, the notable ones being security
and surveillance, content-based image retrieval, and human
computer interaction. Compared to other traditional bio-
metric traits (e.g. fingerprints and iris), processing with
faces has been claimed to be more acceptable among pop-
ulations [22]. It is also more practical as collecting face
images does not call for users to be in physical contact with
sensors.

Among the famous early techniques in automatic face
recognition are the Eigenfaces [39] and Fisherfaces [6]
methods, both of them processing input faces holistically.

Later, it was discovered that a more discriminative way
of processing is rather locally oriented. Among the no-
table local methods include those like Local Binary Pat-
terns (LBP) [1] and Scale Invariant Feature Transform
(SIFT) [29]. Currently, there are plenty of recent devel-
opments [11, 19, 34, 12, 26, 36, 8, 5, 31, 37] thanks to
challenging datasets and benchmarks publicly available for
fair evaluations and comparisons. In general, the current
top-performers are based on supervised convolutional neu-
ral networks [37]. However, to train such a variant, one
needs hundreds of thousands or even millions labeled face
images [37]. The problems related to obtaining and pro-
cessing such big training data makes unsupervised methods
an attractive option.

A characteristic termed overcompleteness has recently
been identified as a valuable ingredient in building discrim-
inative face representations [14, 12, 5]. In the given studies,
overcompleteness often refers to using large codebooks, but
also (in a less strict sense) to overlapping multiscale sam-
pling strategies. To make it more comprehensive, in this pa-
per, we investigate whether overcompleteness is also ben-
eficial in the feature level, which is the case that has not
been evaluated in face recognition so far, to our knowledge.
Particularly, we are comparing two methods based on In-
dependent Component Analysis (ICA). The first one is for
learning a complete basis, whereas the second one for an
overcomplete basis. With both of them, the result is a fil-
ter bank that we couple with the popular Bag-of-Features
(BoF) approach. To elicit the possible improvement brought
by overcompleteness, the literature suggests to apply di-
mensionality reduction [14, 12, 5]. Here we make a thor-
ough investigation of a method based on Principal Compo-
nent Analysis (PCA). Most importantly, we show that with
overcomplete features and larger codebooks before apply-
ing PCA, softer methods become necessary in the feature
encoding step. As the main obstacle of these softer meth-
ods is that they are more time-consuming, we present a fast
approximate approach for soft-assignment coding based on
adjancency matrices.

We evaluate our method in both face verification and in
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open-set face identification modes using the Labeled Faces
in the Wild (LFW) benchmark with the recently updated
and newly added protocols. We further perform cross-
database experiments in constrained face identification us-
ing the Facial Recognition Technology (FERET) bench-
mark and in age estimation using the recent Adience bench-
mark. Finally, we show strong results in all of our experi-
ments compared with the state-of-the-art.

2. Related Work
Since our focus is on unsupervised face descriptors, the

following review is limited to studies that are of unsuper-
vised methods in building representations for face and ob-
ject recognition.

The very first steps in face recognition are face detec-
tion and further landmark localization [35]. Then there is
face alignment [18] followed by the step for representing
faces [19, 37], and finally, learning similarity metrics for
matching the chosen representations [8, 7]. Here, we are
focused on representing faces that has been shown to be a
crucial component for achieving high performances in chal-
lenging unconstrained face recognition scenarios. Accord-
ing to the recent state-of-the-art studies, the recipe for con-
structing discriminative unsupervised face representations
for challenging unconstrained conditions should contain the
following ingredients: (i) local feature extraction and cod-
ing, (ii) high-dimensionality, and in the end, (iii) compact-
ness.

Currently there are two directions for how to extract
features and encode them. In detail, features can be ei-
ther extracted from regions around detected facial land-
marks or densely from every pixel location. The recent
state-of-the-art studies demonstrate that using highly engi-
neered and general purpose local descriptors such as LBP,
HOG, or SIFT, one can construct a very discriminative face
representation presuming the descriptor computations are
centralized at or around face landmark locations [12, 9].
Without prior information about face landmarks, the de-
scriptor computations are naturally accomplished on ev-
ery pixel location. Evidently, in order to achieve the best
possible result in this direction calls for descriptors that
are either more redundant [5] or somehow more sophisti-
cated [19, 14, 26, 37, 24].

High-dimensionality is not a key in itself to solve face
recognition, but rather a consequence of the former step
where features are extracted and encoded in a robust way.
In [12], Chen et al. empirically showed that increasing the
dimensionality of the representation has a positive impact
on the accuracy. Their representation is based on first de-
tecting face landmark locations (such as eyes, nose, and
mouth corners) and then describing image regions at those
locations using a multi-scale approach. They compared
several local descriptors which all ended up to improved

recognition accuracy while the feature dimension was in-
creased by using a larger number of landmarks and image
scales. Their best descriptor, called HighDimLBP, is based
on 27 landmarks and 5-scale image pyramid from which
they crop fixed-size image patches (at all landmarks) further
encoding them using LBP. In turn, Cao et al. [9] demon-
strated that by unsupervisedly learning feature encoders by
increasing the size of the dictionary has a positive effect
on the recognition performance. Their best representation
was based on describing aligned facial components using
LBP-like sampling and further encoding by using a random
projection tree. They named the resulting representation as
the Learning-based (LE) descriptor.

The findings of the studies above are in line with many
interesting works in object recognition. For example,
Coates et al. [13] showed that instead of choosing the fea-
ture, more weight should be put on finding out the most
optimal extraction strategy, meaning what is the step-size
(stride) and the size of receptive fields. Moreover, along
with denser samplings and multiple scales, a factor that has
been shown to have a positive impact on accuracy in object
recognition has been the use of larger codebooks [10, 40].
In spite of these results, a careful design of features may still
have a clear positive impact on the performance as it was
demonstrated in [26, 37]. One of the promising approaches
is to apply supervised [26] or unsupervised [24] learning
to produce filters that are then used to produce meaningful
features for later encoding steps.

The final step is often to compress the high-dimensional
representation to a more compact form. This can be done
either unsupervisedly (e.g. using WPCA) or supervisedly
(e.g. LDA). Using either way has proven to provide ex-
tra boost to the face recognition performance in many stud-
ies [19, 26, 14, 5]. The first benefit of using PCA or LDA-
based methods is the resulting reduced dimension of the
final representation (also the utilized class information in
LDA). The second benefit comes from the whitening part
where the features projected along the components account-
ing for the highest amount of variability are equalized by
scaling which has been shown to improve the matching pro-
cess. In the supervised setting this scaling can be accom-
plished via a transformation called Within-Class Covari-
ance Normalization (WCCN) [5].

Our proposed approach differs from the existing works
from many aspects. Instead of learning dictionaries directly
from pixel patches, like in [30] and [14], we use filter banks
to first transform pixel neighborhoods into a more expres-
sive domain. Unlike in [1, 19, 26, 9], we do not fix filter
coefficients by hand, but we use unsupervised learning let-
ting the data to fix them. We learn filters like in [24], but
instead of natural images, we use face images as a training
data. Moreover, instead of binary quantization [24], we use
learning based vector quantization. Finally, we argue that,



as a characteristic of face representations, overcompleteness
has not yet been investigated in depth, but it is only briefly
evaluated and discussed. At least, it has not been inspected
in the feature level in its most formal meaning. Here, we
evaluate overcompleteness in both feature and feature en-
coding levels. Finally, we show that the best results can
be obtained using soft-assignments in the feature encoding
step. To make it faster, we propose a novel approximate for
soft-assigning that utilizes adjacency matrices.

3. Complete vs Overcomplete Features
In [24], Kannala and Rahtu showed that learning features

from natural images using Independent Component Analy-
sis (ICA) works very well in the task of building discrim-
inative face representations. They applied ICA to learn a
complete basis that was then used as a filter bank to trans-
form input face image patches into features that were further
binarized using coordinate-based quantization. To comple-
ment their findings, we make a step further and compare
whether it is beneficial to learn an overcomplete set of fil-
ters instead of a complete one. With an overcomplete basis,
we hope to produce more expressive and redundant features
for the following encoding step.

Given x∈Rd of all raw pixel values of an image patch,
our aim is to learn a filter bank W ∈ Rn×d containing n
linear filters W (j) ∈ R1×d stacked row by row, so that
we can further produce local image features f = Wx,
f ∈ Rn. Both overcomplete and complete filter banks
can be learnt using algorithms based on Independent
Component Analysis (ICA).

Standard ICA. As described in [25], given a set of unla-
beled data [x1, x2, ..., xm], xi ∈ Rd, with zero mean and
unit covariance, the standard ICA can be defined as the fol-
lowing constrained optimization problem:

min
W

m∑
i=1

n∑
j=1

g(W (j)xi), s.t. WW> = I (1)

where g is a nonliear convex function (good for measuring
sparsity, for example g(·) = log cosh(·)), W ∈ Rn×d
is the weight matrix, n is the number of components,
and W (j) is one row (feature) in W . The orthonormality
constraint WW> = I is used to impose the components
to be orthogonal. Using standard ICA, we can easily
learn undercomplete and complete set of W (j), meaning a
situation where n ≤ d.

Reconstruction Cost for ICA (RICA). For producing an
overcomplete set of W (j) (i.e. when n > d) the orthogo-
nality constraint in (1) must be omitted. In [25], motivated
by sparse coding and auto-encoders, Le et al. proposed a
soft reconstruction cost for ICA for producing overcomplete
features. RICA is based on the following unconstrained op-

timization problem:

min
W

m∑
i=1

n∑
j=1

g(W (j)xi) +
λ

m

m∑
i=1

δ(W,xi), (2)

where the penalty function δ(W,x) =
∥∥W>Wx− x

∥∥2
2

measures the difference between the original sample and its
reconstructed version. In general, it has been shown that
solving either (1) or (2) using training data sampled from
natural images yields features that are localized in space,
frequency, and orientation, being similar to Gabor func-
tions [21]. According to [25], RICA coincides with sparse
autoencoders and sparse coding if one uses linear activa-
tions, soft penalties, and some other relaxed constraints.

In our experiments, we vary the number of learned fea-
tures and always compare a filter bank produced with ICA
with its overcomplete version produced with RICA. More-
over, we are always operating in a whitened and dimen-
sionality reduced space accomplished with PCA. In detail,
we first decompose W into two parts W = UV , where
V ∈ Rd′×d (d′ < d) contains both whitening and dimen-
sionality reduction, and U ∈ Rd′×d′ (or U ∈ Rvd′×d′ in the
v-times overcomplete case) which is produced using ICA
(or RICA). Thus, we first reduce the dimension of our train-
ing sample vectors z = V x, so that z ∈ Rd′ with d′ being
equal to n. This procedure means we reduce the dimen-
sion of our training vectors to the length equal to the de-
sired number of filters in the complete case. Strictly speak-
ing, with ICA our features are always undercomplete with
respect to the original sample space, but with respect to pre-
processed training vectors, the features are complete and
further overcomplete with RICA. Finally, the features are
produced by f = Uz = UV x. By whitening and dimen-
sionality reduction we reduce the possibility to learn noisy
bases. For learning the basis based on ICA and RICA we
used the methods described in [20] and [25], respectively.

4. Overcomplete Face Descriptor
Once we have learnt the filters, we propose to use them

to produce features that are further used in learning higher
dimensional descriptors more expressive in describing
faces. To make the final descriptor tuned for different facial
regions we learn a set of region specific overcomplete
visual dictionaries that are used to map the input feature
vectors to an expressive descriptor space. The final face
descriptor is then formed by simply concatenating the
resulting high-dimensional block-based descriptors. To
achieve compactness, we project the resulting face descrip-
tors into a lower dimension using the Whitening Principal
Component Analysis (WPCA).

Feature Encoding. As usual, the idea is to partition the
local feature space into informative regions resulting in an
overcomplete dictionary (or codebook) of so called visual



words. We use k-means clustering to construct our code-
books that we finally denote by a matrixB ∈ Rd×L contain-
ing L visual words bj ∈ Rd as colums. The codebook con-
struction is done similarly for each facial region. For B, d
is often less than L, but in the so called codebook overcom-
pleteness, the case is d� L [14]. Now, if we let f ∈ Rd be
a local feature vector from a specific facial region, u ∈ RL
the assignment (or coding coefficient) vector of f , and u(j)

the assignment with respect to word bj , we can formu-
late several types of encoding strategies. In this work we
are particularly interested in the hard-assignment and soft-
assignment encodings, as they are among the fastest as-
signment methods [10]. As for other encoding schemes, it
was shown that the localized soft assignment coding, which
is utilized here, can perform comparably or even better to
sparse and local coding schemes [28].

In hard-assignment (HA) coding, each feature vector f
is mapped to a high-dimensional descriptor u with only one
nonzero coding coefficient that is set to one in the standard
case. The codebook entry or visual word that is selected for
the feature is based on the shortest distance, i.e. its nearest
neighbour (1-NN) in B. The major setback of HA is that
even small variation in some coordinates of f may cause
totally different assignments [40, 32].

The shortcomings of HA led to the development of soft-
assigment (SA) coding [23, 28]. In this case, instead of
indicating 1-NN with 1, each feature vector is encoded with
a weighted set of k visual words using the k-NN rule. In
detail, for each f the output is a high-dimensional descriptor
with coefficients u(j) so that

u(j) =

{
α exp(−βd(f, bj)) if j ∈ k-NN(f,B)

0 otherwise , (3)

where d(f, bj) is the distance between vectors f and bj
(usually Euclidean), β controls the softness of the assign-
ment, and α = 1/

∑k
j=1 exp(−βd(f, bj)) is theL1 normal-

ization coefficient ensuring the weights sum up to 1. Note
that if β is set to 0 and k is set to 1, the strategy in (3) coin-
cidences with HA.

The well-known drawback of SA coding is that its com-
putational overhead compared with HA grows all the time
with the size of the codebook, the dimension of the features,
and the number of nearest neighbors sought. To make soft
assignment coding faster, we argue that it does not make so
much difference whether the assignment is done based on
the distance between feature f and its nearest words bj in
B or between the visual word bi ∈ 1-NN(f,B) and its near-
est words bj in B (with bi itself counted as the nearest one).
If this is the case, SA can be accomplished via first apply-
ing HA and then multiplying the resulting sparse descriptor
with a matrix containing the assignment weights.

Giving a codebook B, our fast approximate SA (FASA)
coding method is based on a smoothing matrix Sβ,k ∈

RL×L with elements

s
(i,j)
β,k =

{
α exp(−βd(bi, bj)) if bj ∈ k-NN(bi, B),

0 otherwise (4)

where L is the size of the codebook and others like previ-
ously. It is important to note now that Sβ,k does not depend
on features f , but only on codebook elements bj . This
enables us to compute the smoothing matrix in advance
so that run-time nearest neighbors search can be limited
to the nearest one. Moreover, if we set the parameter
k so that k � L and used the coding given in (4), the
result is that Sβ,k becomes sparse which makes it also
memory efficient. In the end, FASA can be applied via one
matrix-vector product, Sβ,ku, where u is a hard-assigned
coding coefficient vector.

Pooling. Given the coding coefficient vectors of all features
in an image area, we pool the descriptors to obtain the
final region-level representation h ∈ RL. In detail, we
use sum-pooling in which the jth component of h is
h(j) =

∑N
i=1 u

(j)
i , where N is the total number of encoded

features ui in an image area. While using FASA coding, it
is noteworthy that the matrix-vector multiplication can be
done after pooling by Sβ,kh.

Dimensionality Reduction. Once the block-based descrip-
tors are computed we next concatenate them forming the
representation for the whole face area. In our case, this
yields a high-dimensional descriptor especially when large
codebooks are in use. For having a more compact repre-
sentation, we transform our high-dimensional descriptors
into a lower dimensional space using the Whitening PCA
(WPCA) transformation. Besides making our descriptor
more compact, we will show that using WPCA also sig-
nificantly improves the final recognition rates.

Furthermore, in our experiments, WPCA has an essen-
tial role in the respect that we use it to reveal the added
accuracy of overcompleteness in features and codebooks as
hinted in [5].

Face Matching. Three different similarity measures are
used in our experiments depending on the representation
and whether the scenario is unsupervised or supervised. Re-
gardless of any circumstance, before dimensionality reduc-
tion, we always preprocess our raw face descriptors based
on the Hellinger kernel [2].

For applying the Hellinger kernel, we first L1 normalize
the raw face descriptor vectors and then replace all coordi-
nate values by their square roots. Finally, comparing face
descriptors without dimensionality reduction, the distance
can be measured as simply as [2] d(p, q) = 2−2 p>q, where
p and q are two properly preprocessed face descriptors. If
we apply dimensionality reduction, we will use the Cosine
distance which means that before distance computation we
further L2 normalize the compact descriptors projected by
WPCA.



We perform supervised similarity calculations using the
Joint Bayesian (JointBayes) [11] algorithm based on mod-
eling the joint distribution of two input face descriptors. In
JointBayes there is a prior according to which a face de-
scriptor p is a summation of two variables p = µ+ε, where
µ is for identity and ε for within-person variation. Based on
this prior, after solving the covariance matrices Sµ and Sε, a
closed-form solution can be derived for measuring the sim-
ilarity of two input face descriptors p and q based on a log
likelihood ratio test between two joint probabilities so that
r(p, q) = logP (p, q|HI) − logP (p, q|HE), where HI is
the intra and HE the extra-person hypothesis, respectively.
According to [11], the required Sµ and Sε can be approxi-
mated by between-class covariance and within-class covari-
ance matrices used in classic Linear Discriminant Analysis
(LDA).

In both unsupervised and supervised scenarios, the final
performances are measured by applying the flip-free aug-
mentation [16]. That means, instead of direct similarity cal-
culation between two input representations, we horizontally
flip both images before feature extraction and calculate the
average similarity between all possible four combinations
of the two representations.

5. Experiments
We evaluate our method on the LFW benchmark using

the updated protocol (LFW-updated) [17] and the novel
supplementary protocol denoted as LFW large-scale (LFW-
ls) [27]. For LFW-updated, we evaluate our method solely
in the unsupervised mode, whereas for LFW-ls, we per-
form evaluations solely in the supervised mode coupling our
unsupervised face descriptor with the state-of-the-art Joint-
Bayes [11] metric learning method.

To emphasize the efficiency of our method, we further
evaluate our description construction algorithm on con-
strained (controlled) face identification using FERET [33],
and finally, on age estimation in unconstrained scenarios
using the recent Adience [15] benchmark. For benchmark-
ing with these datasets, we use the filters and codebooks
learnt from LFW images, but the WPCA projections are
learnt based on the face descriptors of face images belong-
ing to the dataset under evaluation. In addition, we do not
utilize the flip-free augmentation in these experiments. Fi-
nally, we use linear SVM for the age estimation experiment.

Setup. LFW consists of 13,233 images of 5,749 people.
The LFW-updated benchmark is divided into two disjoint
subsets called View1 and View2. View1 is designed for al-
gorithm development, whereas View2 is a 10-fold cross-
validation set with 6,000 face pairs for reporting the final
accuracy. As a benchmark, LFW-updated is designed solely
for face verification.

LFW-ls is a supplementary protocol for large-scale un-

constrained face recognition under both verification and
open-set identification modes. Besides enabling bench-
marking in open-set face identification, the protocol pro-
vides a very large set of match and non-match pairs en-
abling statistically stable evaluations at lower false accep-
tance rates compared with its counterpart, LFW-updated.
LFW-ls contains a development set and an evaluation set of
10 random partitions for reporting the final performance in
a cross-validatory fashion.

For all LFW experiments, we use the LFW-a [41] distri-
bution, where all the original LFW images are aligned using
a commercial face alignment system. We crop the inner por-
tion of these images of a size 150 × 81 pixels (see Fig. 3
(a)) and use blocks of a size 30×27 pixels with a horizontal
and vertical overlap of 10 and 9, respectively. Each block
is then separately coded using one of the feature encoding
methods represented here and finally concatenated to form
the final representation. We also fix the filter size to 11×11
and, before learning, project the resulting 121-dimensional
training vectors first into a lower dimensional space. As
the number of filters based on a complete basis (with ICA)
is set to 16, the dimension of the reduced training vectors
equals to that. With RICA, we learned a basis testing 2 and
3-times overcomplete versions compared to the one learned
with ICA, yielding 32 and 48 filters, respectively. Filters
and codebooks are learned block-wisely so that there will
be a specific set of them for each facial region.

For experimenting with FERET, we are interested in the
frontal profile images, which are divided into fa, fb, fc,
dup1, and dup2. Each set has it own characteristics with
regards to, for example, illumination and expression. Adi-
ence, in turn, is a large dataset composed of over 19,000
face images. The age estimation protocol there is based on
eight age groups and the final performance is set to be re-
ported using the mean accuracy (±standard error) over five
folds. Further, we use the aligned Adience distribution. For
constructing descriptors, we take the best performing com-
bination of filters and codebooks learnt from LFW View1
faces. We roughly aligned all FERET and Adience faces
with the LFW-a coordinate frame relying only on eye lo-
cations (see Fig. 3 (a)). For FERET, we further applied a
pre-processing step given in [38]. Finally, we found that
using LFW faces in learning the WPCA projection does not
yield the best possible performance while applied to FERET
and Adience faces. Therefore, WPCA is trained using de-
scriptors extracted from the faces of the benchmark under
evaluation. To construct a general WPCA is of interest in
our future studies.

5.1. Results

We started our experiments with View1 according to
LFW-updated. Our preliminary results are mainly for un-
derstanding whether, for the codebook constructions, it



makes sense to use learnt filters to extract features rather
than just to use raw pixels as features. For pixel features,
we sampled a set of training image patches straightly from
face regions (or blocks) and then applied k-means to learn a
codebook for each of these blocks. For filter-based features,
we convolved input face blocks with a set of filters (learned
from the face image patches sampled from the same re-
gion) and then applied k-means to the resulting feature vec-
tors. Regardless of the underlying features, we normalized
the training vectors to unit L2 norm for reducing the il-
lumination changes and suppressing the scale effect [14].
Besides deciding between the underlying features (pixels,
ICA, or RICA), it was of major interest to see the effect
of using larger codebooks and the potential of learning the
filters from face images rather than from some more gen-
eral images (like in [24]). The results of Table 1 clearly
demonstrate that using face images in filter learning (ICA
and RICA) is valuable. Also, using larger codebooks, i.e.
to have more overcompleteness in codebooks, enhances the
performance, as hinted in the literature. However, it seems
that the benefits of overcompleteness in features is not yet
evident.

codebook 256 512 1024 2048 4096
pixels .8157 .8237 .8325 .8397 .8463
ICA-16 (using natural images) .8305 .8384 .8503 .8539 .8611
ICA-16 .8291 .8398 .8513 .8600 .8699
RICA-32 .8266 .8428 .8522 .8618 .8662
RICA-48 .8272 .8416 .8507 .8612 .8676

Table 1. Preliminary results on LFW View1 reporting the AUC
value. All results are based on HA (no WPCA).

To see whether feature overcompleteness truly benefits,
we took the WPCA transformation and started gradually
projecting the high-dimensional face descriptors into lower
dimensional spaces. In Fig. 1 and 2 we can see that (in-
cluding to the benefits of overcompleteness in codebooks)
there are indications that it may also benefit in features. In-
terestingly, while using larger codebooks soft-assignments
become necessary in order to maintain the performance lev-
els. For SA encoded descriptors we varied k and β so that
for 256-codebooks it was k ∈ [5, 10:10:30] with β ∈ [0.2:
0.1:0.6] and for 4096-codebooks k ∈ [5, 10:10:50] with β
as above.

For the following experiments, we used mainly 4096-
codebooks trained using features resulting from filtering
with ICA and 2-times overcomplete RICA, and for both
learning only from face image patches. For feature en-
coding, we used soft assignment and compared it to its
fast approximate version for which the adjacency matrices
were learned offline using the codebooks applying the
best k and β (based on the SA evaluations on View1). For
learning block-specific filter banks and codebooks, we
sampled altogether 100,000 face image patches from the
corresponding region of the faces in the training set. The
length of the final descriptor finally yielded over 144K and
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Figure 1. A plot of AUC values on View1 with face descriptors
using ICA features together with 256 and 4096 size of codebooks
varying the feature encoding strategy and the parameter values.
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Figure 2. A plot of AUC values on View1 with face descriptors
using ICA and RICA-32 features together with 4096-codebooks
varying the feature encoding strategy and the parameter values.

280K for 4096 and 10000-codebooks, respectively.

LFW-updated. We herein use the View2 portion of the
LFW-updated benchmark. Because of the particular set-
ting of View2, everything is learned altogether 10 times. On
every round, all filters, codebooks, and the WPCA projec-
tion are learned using only images belonging to other nine
folds separate from the fold currently under evaluation. Be-
fore learning the block-specific filters and codebooks, we
proceeded by evenly sampling patches from all face im-
ages in the current training set so that we finally had the
desired amount of training data for each block. Besides
4096-codebooks, we also tested block-specific codebooks
of 10,000 elements. After feature extraction, encodings,
and concatenations the length of the descriptor is over 114K
and 280K for 4096 and 10000-codebooks, respectively. The
compact descriptor is then achieved by learning a WPCA
projection from these descriptors. Following the protocol
under unsupervised evaluation category, we report the per-
formance of our methods by measuring the area under the
average ROC curve (AUC) over 10 trials.

The obtained results are summarized in Tables 2 and 3.
These results clearly indicate that our approach outperforms
not only almost all state-of-the-art methods shown in Table
3 but also other recent methods including HighDimLBP, LE



and LBP. All these methods are fairly evaluated using the
same protocol. As MRF-Fusion-CSKDA [3] uses different
kind of pose correction and a fusion strategy the results are
not directly comparable to ours.

descriptor raw wpca-400 raw ff wpca-400 ff
ICA HA .8650 .8912 .8858 .9097
ICA SA .8469 .9173 .8630 .9359
ICA FASA .8251 .9088 .8412 .9251
RICA HA .8693 .8912 .8906 .9095
RICA SA .8372 .9189 .8513 .9368
RICA FASA .8047 .9133 .8135 .9299
HighDimLBP .7947 .9292 - -
LE .8064 .8905 - -
LBP .7782 .8819 - -

Table 2. Results of LFW-updated View2 under the unsupervised
evaluation category. With SA, for both ICA and RICA, we set β =
0.2 and k as 15 and 40, respectively. For FASA, we set k and β as
in the corresponding SA. ff stands for the flip-free augmentation.

descriptor wpca-400 wpca-900 wpca-3000
RICA-32 4,096 SA .9189 / .9368 .9259 / .9425 .9263 / .9462
RICA-32 10,000 SA .9189 / .9372 .9264 / .9436 .9325 / .9480
HighDimLBP [12] .9292 .9338 .9350
MRF-LBP (WPCA) [4] .8994 (WPCA dim not reported in [4])
PAF (WPCA) [43] .9405 (WPCA dim not reported in [43])
MRF-Fusion-CSKDA [3] .9894 (WPCA dim not reported in [3])

Table 3. Final evaluation on LFW View2 under the unsupervised
evaluation category according to [17]. For both 4,096 and 10,000-
codebooks, the parameters are set as β = 0.2 and k as 40 and 60,
respectively. The first value is for direct distance calculations and
the second (after slash and if given) for flip-free augmented.

LFW-ls. Like previously, we learn all filters, codebooks,
and the WPCA transformation so that for each trial we use
only those faces that belong to the current training set. Now,
as we are using the JointBayes method, we also need to
compute within-class and between-class scatter matrices on
every trial. As there are 10 trials, we repeat these steps as
many times. All parameters are fixed as in the previous ex-
periments, but here we are using only 4096-codebooks. In
face verification, we report the performance of our meth-
ods in terms of verification rates at FAR = 0.1% and 1%.
For the open-set identification, we report the rank 1 detec-
tion and identification rate (DIR) at FAR = 1% and 10%. In
both cases, we use the µ − σ measure [27]. The baseline
results of HighDimLBP, LE, and LBP are from [27].

The obtained results in Table 5 and 6 indicate that using
RICA features with SA gives better results than the current
reported best one, namely HighDimLBP, in large-scale face
verification, but slightly falls behind it in the large-scale
open-set identification scenario. However, all the proposed
methods perform better compared with LE and LBP.

Cross-database evaluation. For both FERET and Adience
evaluations we took our best performing model which was a
combination of RICA-32 and 10K-codebooks coupled with
SA encoding setting k = 60 and β = 0.2. For FERET,
we learnt the WPCA projection using the gallery set (also

(a) (b)
Figure 3. (a) Examples of the cropped LFW, FERET, and Adi-
ence faces used in our experiments. (b) Illustration of the fiducial
points and image scales used in our HighDimLBP implementation
(see details of the used landmark detection method and used image
scales in [12]).

known as fa) keeping the maximum amount of dimensions
possible, i.e. #gallerySamples − 1. For Adience, we
learnt block-specific WPCA projections instead of a global
one, which has been shown to perform poorly [15] in age
estimation. Also, rather than fixing the number of dimen-
sions, we evaluated the performance by keeping the 30, 40,
and 50% of the variance for each block-based projection
on every iteration (using 40% the length of the final com-
pact descriptor was around 500 on average over all folds).
For every iteration, we picked 2,000 face images to train a
WPCA projection. Based on the results given in Table 4 and
5, we outperformed the state-of-the-art in FERET among
single scale descriptors (no-fusion) and in Adience among
the methods given in [15]. The HighDimLBP result here is
based on our own implementation (see Fig. 3 (b)) based on
the same landmark localization method used in [12] com-
bined with uniform LBP codes setting P = 8 and r = 3.

descriptor HighDimLBP DFD [26] LGXP [42] G-LQP [19] Ours
fb 99.4 99.4 99.0 99.9 99.6
fc 99.5 100 100 100 100

dup1 88.6 91.8 92.0 93.2 94.9
dup2 83.3 92.3 91.0 91.1 93.6

Table 6. Comparison to the state-of-the-art methods on FERET.
All but LGXP uses WPCA for compression. LGXP uses super-
vised Fisher Linear Discriminant (FLD) approach. For both High-
DimLBP and our proposed method, WPCA dim is set as 1195.

method accuracies
LBP+FPLBP (PCA / raw / Drop-out) [15] 38.1±1.4 / 44.5±2.3 / 45.1±2.6
Ours (0.3 / 0.4 / 0.5) 47.1±2.9 / 48.1±2.7 / 47.2±2.5

Table 7. Comparison to the current best methods on unconstrained
age estimation using the Adience benchmark.

6. Discussion and Conclusion
The inclusion of overcompleteness has recently been ar-

gued crucial for building discriminative unsupervised face
representations. In this paper, we investigated this state-
ment from many aspects. Finally, we showed that a state-of-
the-art description can be constucted by coupling overcom-
plete codebook learning with a well-defined set of overcom-
plete features. We compared our method with ones utiliz-
ing multi-scale descriptors and facial landmark-based com-



method HighDimLBP LE LBP ICA HA ICA SA ICA FASA RICA HA RICA SA RICA FASA
FAR = 0.1% .4166 .2331 .1418 .2571 / .2895 .3843 / .4133 .3393 / .3702 .2555 / .2906 .3919 / .4234 .3529 / .3839
FAR = 1% .6585 .4660 .3139 .5313 / .5521 .6469 / .6609 .6086 / .6272 .5270 / .5523 .6444 / .6641 .6130 / .6332

Table 4. Face verification results following the LFW-ls protocol. The reported numbers are the mean verification rates (%) subtracted by the
corresponding standard deviations over 10 trials. The first value is for direct distance calculations and the second (after slash) for flip-free
augmented.

method HighDimLBP LE LBP ICA HA ICA SA ICA FASA RICA HA RICA SA RICA FASA
FAR = 1% .1807 .1126 .0882 .0546 / .0510 .1308 / .1515 .1108 / .1073 .0556 / .0541 .1514 / .1622 .1193 / .1210
FAR = 10% .3263 .2073 .1661 .1845 / .2018 .2865 / .3023 .2486 / .2690 .1843 / .2034 .2899 / .3337 .2574 / .2739

Table 5. Open-set identification results at rank-1 following the LFW-ls protocol. The reported numbers are the mean detection and identi-
fication rates (%) subtracted by the corresponding standard deviations over 10 trials.

putations being able to perform on par using only single-
scale features and without any use of facial landmarks.
While WPCA has been earlier shown to be powerful, we
demonstrated that using codebook-based methods with soft-
assignments makes it even more powerful. We also pro-
posed a novel method for approximative soft-assignment by
using sparse adjacency matrices, but further analysis and
experiments are needed to better understand its potential.

Based on our experiments, one may still afford to im-
prove unsupervised face description process especially at
the feature level. We base our claim on the observation
which shows that without an extensive use of facial land-
marks we were able to construct a descriptor that performed
on par with methods like HighDimLBP and PAF that are
the top-performing ones among the unsupervised landmark-
oriented facial descriptors. Based on our FERET experi-
ment, one may raise further questions whether landmark-
oriented HighDimLBP method is the optimal one for pro-
cessing with frontal faces. Our approach, in turn, out-
performs the current state-of-the-art methods reported on
FERET benchmark with frontal faces. We also applied our
approach to age estimation showing promising results. We
showed that applying dimensionality reduction is beneficial,
but it seems it must be done block-wisely. In our future
work, we are planning to make an in-depth comparison be-
tween global and block-wise linear projections used as di-
mensionality reduction for producing unsupervised face de-
scriptors for age estimation.
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