
Self-Tuned Deep Super Resolution

Zhangyang Wang†, Yingzhen Yang†, Zhaowen Wang‡, Shiyu Chang†,
Wei Han†, Jianchao Yang♦, and Thomas Huang†

†Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
‡Adobe Systems Inc, San Jose, CA 95110, USA

♦ Snapchat Inc, Venice, CA 90291, USA
{zwang119, yyang58, wang308, chang87, weihan3, t-huang1}@illinois.edu

zhanwang@adobe.com jianchao.yang@snapchat.com

Abstract

Deep learning has been successfully applied to image
super resolution (SR). In this paper, we propose a deep
joint super resolution (DJSR) model to exploit both exter-
nal and self similarities for SR. A Stacked Denoising Con-
volutional Auto Encoder (SDCAE) is first pre-trained on ex-
ternal examples with proper data augmentations. It is then
fine-tuned with multi-scale self examples from each input,
where the reliability of self examples is explicitly taken into
account. We also enhance the model performance by sub-
model training and selection. The DJSR model is exten-
sively evaluated and compared with state-of-the-arts, and
show noticeable performance improvements both quantita-
tively and perceptually on a wide range of images.

1. Introduction

Super-resolution (SR) algorithms aim to construct a
high-resolution (HR) image from one or multiple low-
resolution (LR) inputs. Being ill-posed, SR has to resort
to strong image priors, ranging from the simplest analyti-
cal smoothness assumptions, to more complicated statisti-
cal and structural priors [25], [7]. The most popular SR
methods rely on a large and representative external set of
image pairs to learn the mapping between LR and HR im-
age patches [26]. Those methods are known for their capa-
bilities to produce plausible image appearances. However,
there is no guarantee that an arbitrary input patch can be
well matched or represented by a pre-chosen external set.
When there are rarely matching features for the input, ex-
ternal examples are prone to produce either noise or over-
smoothness [23]. Meanwhile, image patches tend to recur
within the same image [8], [23], or across different image
scales [7]. The self similarity property provides self ex-
amples that are highly relevant to the input, but only of a

limited number. Due to the insufficiency of self examples,
their mismatches often result in more visual artifacts. It is
recognized that external and self example-based SR meth-
ods each suffer from their inherent drawbacks [20].

The joint utilization of both external and self examples
has been first studied for image denoising [28]. Mosseri et.
al. [14] proposed that image patches have different prefer-
ences towards either external or self examples for denois-
ing. Such a preference is in essence the tradeoff between
noise-fitting versus signal-fitting. Burger et. al. [1] pro-
posed a learning-based approach that automatically com-
bines denoising results from an self example and an external
example-based method. In SR literature, the authors in [5]
incorporated both a local autoregressive (AR) model and a
nonlocal self similarity regularization term, into the sparse
representation framework. Yang et. al. [24] learned the ap-
proximated nonlinear SR mapping function from external
examples with the help of in-place self similarity. More re-
cently, a joint SR model was proposed in [19], [20] [21], to
adaptively combine the advantages of both external and self
examples. It is observed in [20] that external examples con-
tribute to visually pleasant SR results for relatively smooth
regions, while self examples reproduce recurring singular
features of the input. The complementary behavior has been
similarly verified in the the image denoising literature [1].

More recently, inspired by the great success achieved by
deep learning (DL) models in other computer vision tasks
[10], there is a growing interest in applying deep architec-
tures to image SR. A Super-Resolution Convolutional Neu-
ral Network (SRCNN) was proposed in [4]. Thanks to the
end-to-end training and the large learning capacity of the
CNN, the SRCNN obtains significant improvements over
classical non-DL methods. In SRCNN, the information ex-
ploited for reconstruction is comparatively larger than that
used in previous sparse coding approaches. However, the
SRCNN has not taken any self similarity property into ac-
count. The authors in [2] proposed the deep network cas-

1



cade (DNC) to embed self example-based approach to auto-
encoders (AEs). In each layer of the network, patchwise
non-local self similarity search is first performed to enhance
high-frequency details, and thus the whole model is not
specifically designed to be an end-to-end solution. So far,
there lacks a principled approach to utilize self similarity to
regularize deep learning models, not only for SR, but also
for general image restoration applications.

In this paper, we propose a unified deep learning frame-
work, to joint utilize both the wealth of external examples,
and the power of self examples specifically to the input.
We name our proposed model deep joint super resolution
(DJSR). While the mutually reinforcing properties of ex-
ternal and self similarities are utilized in classical example-
based methods [5], [24], [20], to our best knowledge, DJSR
is the first to adapt deep models for joint similarities. The
major contributions are summarized as multi-folds:

• We pre-train the model using an external set with
data augmentations. We then fine-tune it using self-
example pairs from the input image. Such a framework
can be easily extended to other applications.

• We propose to sample a large pool of self-example
pairs using multi-scale self similarity, each of which
is assigned a confidence weight during training. That
alleviates the insufficiency of reliable self examples.

• We extend DJSR into several dedicated sub-models,
and conduct selective training and patch processing.

Connecting SR to Domain Adaption The idea of DJSR
has certain connections to domain adaption or transfer
learning [9]. For domain adaption, given a source domain
having sufficient labeled data for training, and a target do-
main with insufficient labeled data and a different distribu-
tion, the problem is to have the model trained on the source
domain generalize well on the target domain. In our set-
ting, LR-HR pairs resemble the data-label tuples. The DJSR
model is first learned on the source domain of external ex-
amples, and then adapted to the target domain of self sam-
ples from the testing image. That explains why DJSR could
outperform previous models based on either external exam-
ples (applying source domain models directly to the target
domain) or self examples (relying on target domain only to
train models) from a domain adaption perspective.

2. Pre-Training Using External Examples
Several deep architectures have been explored for SR

previously. The authors of DNC [2] referred to a collabora-
tive local auto-encoder (CLA) to be stacked to form a cas-
cade. However, auto-encoders (AEs) rely mostly on fully-
connected models and ignore the 2D image structure [17].
In SRCNN [4], a fully convolutional network is learned to

predict the nonlinear LR-HR mapping. Such a model has a
clear analogy to classical sparse coding methods [25].

In [12], a Convolutional Auto Encoder (CAE) was pro-
posed to learn features using a hierarchical unsupervised
feature extractor while preserving spatial locality. CAEs
can be stacked to form a Stacked Convolutional Auto En-
coder (SCAE), where each layer receives its input from a
latent representation of the layer below. It was further re-
vealed in [17] that auto encoders are prone to learn trivial
projections and the learned filters are usually subject to ran-
dom corruptions. Denoising was thus suggested as a train-
ing criterion [17] to learn robust structural features, which
also proves to be effective for image restoration tasks be-
sides the original classification setting [22]. We employ a
Stacked Denoising Convolutional Auto-Encoder (SDCAE)
[12] to reconstruct HR images from its stochastically cor-
rupted LR versions. Such an architecture combines the in-
tuitive idea of AEs, and the power of CNNs to capture 2-D
structures efficiently. Note that more potential alternatives,
such as SRCNN, can possibly be adapted here.

Figure 1. The SDCAE architecture for SR.

While there are multiple SCAE implementations avail-
able, we adopt the implementation by [15] 1 as it has shown
some improvements over the one in [12] on the CIFAR-
10 benchmark. Their model is similar to the network in
[27] but without using sparse coding, and introducing zero-
biases [13] and ReLUs in the convolutional layers. To con-
vert the SCAE into a SDCAE, all we need to do is to add
a stochastic corruption (we use additive isotropic Gaussian
noise) step operating on the input. Assuming that the orig-
inal images are downsized by a scale s to generate LR-HR
example pairs for both training and evaluation, the SDCAE
architecture is depicted in Fig. 1, where the input is a LR
image and the output is its HR counterpart. The trained net-
work fits SR with a factor of s.

3. Fine-Tuning Using Self Examples
3.1. Self-example pairs by Multi-Scale Similarity

In [2], the authors enhanced high-frequency by employ-
ing non-local self similarity (NLSS) search over the succes-

1https://github.com/ifp-uiuc/anna



Algorithm 1 Generate A Hierarchy of Self Examples As-
sociated with Confidence Weights
Require: Input image Y, scaling factor s, number of scales

N , number of self-example pairs per patch m.
1: Upsample Y for N

2 − 1 times with a factor of s.
2: Downsample Y for N

2 − 1 times with a factor of s.
3: For each patch in original Y, find all spatially co-

located patches in other N − 1 resized versions.
4: For each co-located patch, find m

(N−1) best matched ex-
amples from its immediate upscaled version, using the
method in (1).

5: Make the co-located patch and each of its matched ex-
ample a self-example pair.

6: Record the NN matching error for each match.
7: Take the negative exponents of all matching errors, and

normalize them between [0,1]. Those will be used as
the associated confidence weights.

Ensure: m self-example pairs per patch in Y with weights.

sive blurred and downscaled versions of the input image.
By combining those internal matches, the estimated patch
usually contains more abundant texture information. How-
ever, it overlooks the across-scale similarity properties of
natural images [7], [24], that singular features like edges
and corners in small patches tend to repeat almost identi-
cally in their slightly upscaled versions. In addition, such
a pre-processing step is not jointly optimized with the deep
network cascade.

Freedman and Fattal [7] applied the “high frequency
transfer” method to search for the high-frequency compo-
nent of a target HR patch, by NN patch matching across
scales. Let X denote the HR image to be estimated from
the LR input Y. Xij and Yij stand for the (i, j)-th (i, j =
1, 2...) patch from X and Y, respectively. Defining a lin-
ear interpolation operator U and a downsampling operator
D, for the input LR image Y, we first obtain its initial up-
sampled image X′ = U(Y), and a smoothed input image
Y′ = D(U(Y)). Given the smoothed patch X′ij , the miss-
ing high-frequency band of each unknown patch Xij is pre-
dicted by first solving a NN matching (1):

(m,n) = argmin(m,n)∈Wij
‖Y′mn −X′ij‖2F , (1)

whereWij is defined as a searching window on image Y′.
With the co-located patch Ymn from Y, the high-frequency
band Ymn −Y′mn is pasted onto X′ij , i.e., Xij = X′ij +
Ymn −Y′mn.

Note the above methodology could be applied to con-
struct self-example pairs {Yij ,Xij} for a input image Y.
It is thus straightforward to consider adopting those self-
example pairs to fine-tune our pre-trained network. How-
ever, two problems obstacle such a practice:

• Insufficiency of Informative Examples The amount
of self examples is usually far less than the size of ex-
ternal training sets. For example, a 256 × 256 input
image can generate at most (256 − 9 + 1)2= 61,504
patches of a small size 9×9 (and thus the same amount
of self-example pairs) and a minimum stride of 1 [6].
Moreover, the information of those example pairs is
also far less rich.

• Limited Reliability In essence, a part of input patches
may be identified with few discernible repeating pat-
terns. They might thus not be able to find good
matches Y′mn within the same image, which consti-
tutes the visual artifacts in previous high frequency
transfer methods [7]. Besides, The matching of X′ij
over Y′ makes the core step of the high frequency
transfer scheme. However, NN matching (1) is not re-
liable under noise and outliers in LR images.

To resolve the above raised concerns, we sample a hier-
archy of self examples from multiple scales, each of which
is associated with a confidence weight calculated by the NN
matching error from (1). The key idea is to exploit cross-
scale patch redundancy embedded between multiple neigh-
borhood scales. The steps are outlined in Algorithm I.

3.2. Weighted Back Propagation

The self-example pairs obtained from Algorithm 1 can
be used to fine-tune the pre-trained SDCAE, making it spe-
cially adapted for the input. To incorporate the reliability
of the self-example pairs into the process, a variant of stan-
dard back propagation, called Weighted Back Propagation
(WBP), is developed to alleviate the negative impacts of
bad examples, without sacrificing the benefits of abundant
training data. In particular, assuming that ω is the normal-
ized confidence weight for the current self-example pair, let
ηf denote the learning rate for fine tuning and δ the gradient,
the weight matrices Wi (i is the layer index) are updated as:

δi+1 = ω · (ηf · ∂L
∂Wi

+ 0.9 · δi), Wi+1 =Wi + δi+1

(2)
Note each example pair possesses a different (and pre-
calculated) ω. Such an importance weighting strategy has
been commonly applied to transfer learning problems [11].
Yet to our best knowledge, there is no similar work in deep
learning. In all experiments, the learning rate ηf for fine-
tuning is set to be 0.5 by default, and will not be annealed.
That large value is empirically found to work well, leading
to a better presence of self similarity in final SR results.

4. Sub-model Training and Selection
Previous DL-based image SR methods aim at learning

one model that is capable to represent various image struc-
tures. Such a model lacks the adaptivity to local struc-



tures. In some cases, It might also lead to a model of overly
high complexity and redundancy [5]. When learning regres-
sors from LR to HR patches, it is observed that regressors
have different specialities at dealing with certain patches
[3]. Following this idea, external examples are partitioned
into many clusters, each of which consists of patches with
similar patterns and can be used to pre-train a sub SDCAE
model. Next, for each input patch, the most relevant sub-
model is first selected and then fine-tuned by its own self-
example pairs. Since a given patch can be better represented
by the adaptively selected sub-models, the whole HR image
can be more accurately reconstructed.

Provided with an external set, we first use the high-pass
filtering output of each LR patch as the feature for cluster-
ing. It allows us to focus on the edges and structures of
image patches. We then adopt K-means algorithm to par-
tition the whole set into K clusters, where µi denotes the
centroid of i-th cluster, i = 1, 2, ...,K. During model fine-
tuning (and testing), the best sub-model is chosen based on
the minimum distance between the LR patch and the cen-
troids. As suggested by [5], let U = [µ1, µ2, ...µK], its PCA
transformation matrix is obtained by applying SVD to the
co-variance matrix of U . We can compute the distance be-
tween input patch and cluster centroids more robustly in the
subspace spanned by the most significant eigenvectors [5].

5. Experiments

5.1. Implementation

The SDCAE is learned from an external training set with
91 images [26], which is also adopted in [4]. The 91-image
dataset can be decomposed into 24,800 sub-images of size
33× 33 for training purpose, which are extracted from orig-
inal images with a stride of 14. For each LR patch, we sub-
tract its mean and normalize its magnitude, which are later
put back to the recovered HR patch. While data augmenta-
tion is not adopted in SRCNN, we believe that it plays an
important role in training DJSR, to help it focus on mean-
ingful visual features rather than artifacts in training images.
We add the following distortions to training images:

• Translation: random x-y shifts between [-4, 4] pixels.

• Rotation: affine transform with random parameters.

• Zoom: random scaling factors between [1/1.2, 1.2].
Note it has to keep the ratio s unchanged.

SDCAE can also be viewed as a data augmentation way
by adding noise. We train SDCAE on sub-images, using
stochastic gradient descent with a constant momentum of
0.9, and a learning rate ηp of 0.01 (we do not anneal it
through training). Mean Squared Error (MSE) is used as
the loss function.

Since cross-scale self similarity performs best at small
scales [7], we stick to a small upscaling factor s (1.2 by
default) for model training, unless otherwise specified. To
achieve any targeted upscaling factor st, we zoom up an im-
age repeatedly using the learned DJSR model until it is at
least as large as the desired size. Then a bicubic interpola-
tion is used to downscale it to the target resolution if nec-
essary. We do not conduct extra joint optimization on the
resulting network cascade. The proposed networks are im-
plemented using the CUDA ConvNet package [10] and the
ANNA open source library [15], and run on a workstation
with 12 Intel Xeon 2.67GHz CPUs and 1 GTX680 GPU.

For color images, we apply SR algorithms to the illumi-
nance channel only, while interpolating the color layers (Cb,
Cr) using plain bi-cubic interpolation. However our model
is flexible to process more color channels without altering
the network design. To avoid border effects, all the convo-
lutional layers have no padding, and the network produces
a smaller central output [4].

5.2. Model Analysis

(a)

(b)

(c)

Figure 2. (a) the first layer convolutional filters learnt by SDCAE
without any data augmentation; (b) the first layer convolutional
filters learnt by SDCAE with data augmentations; (c) the first layer
convolutional filters in SRCNN (from the original Fig. 5 in [4]).

Validating Pre-Training We visualize the learned convo-
lutional filters in the first layers of SDCAEs without and
with augmentations. They are trained with a relatively large
scaling factor s = 2, so as to be compared with the first-layer
filter visualizations of SRCNN, as depicted in Fig. 2. The
training process takes around 7 hours. Both SDCAEs and



SRCNN have 64 channels of 9 × 9 convolutional filters in
the first layer. While there is hardly any recognizable struc-
tural features from the filters in (a), the introduction of data
augmentations leads to much more clear and interpretable
filter responses in (b), from simple edge (curve) detectors
at different directions (e.g., a, b and c), to more sophisti-
cated texture descriptors (e.g., d, e and f). On the other
hand, since the first layer of SRCNN is designed for patch
extraction and representation, it is natural that its learned fil-
ters show different from ours. One interesting observation
is that SRCNN suffers from several “dead” filters, whose
weights are all nearly zeros (as discussed in [4]), whereas
almost all filters of SDCAE are fairly strong and diverse.
Further, the SDCAE with augmentations obtains an average
PSNR of 36.43 dB when testing on the Set 5 [4] (with no
fine-tuning applied), where we see a notable performance
improvement of 1.44dB compared to the case without aug-
mentations (35.01 dB).
Understanding Fine-Tuning During fine-tuning, we sam-
ple LR patches from the input Yij with a default size of
15 × 15 and stride of 1. In this section, we take the Baby
LR image of size 256 × 256 for example,which will result
in 58,564 patches. Assuming SDCAE has been pre-trained,
by default, we fix N = 5 (defined in Algorithm 1), which
means the hierarchy will contain 2 upscaled layers (by fac-
tors of 1.2 and 1.44) and two downscaled layers (by fac-
tors of 1/1.2 and 1/1.44). Fine-tuning a trained SDCAE on
Baby takes less than 1 hour, and it could be potentially ac-
celerated to a large extent by avoiding working on those
homogeneous regions [24]. We will then investigate the in-
fluences of the parameter m (that controls the amount of
self-example pairs), and the effects of tuning the learning
rate ηf , as well as the effects of WBP algorithm.

Figure 3. The histogram of normalized weight values of all self-
example pairs obtained on Baby (m=8).

Fig. 3 depicts the distribution of normalized weight val-
ues of all self-example pairs obtained on Baby, with m =
8. Notably, two peaks appear on the histogram, one largest
peak near the weight value of 1, and the other lower one is

Table 1. The effects of m on the average effective volume and the
final PSNR (dB) after fine-tuning, when upscaling Baby image for
2 times (PSNR is 37.91dB before fine-tuning).

m 4 8 12 16
m

N−1 1 2 3 4
V 234,256 468,512 702,768 937,024
Ve 178, 597 365,251 397,242 400,272
V a
e 0.7624 0.7796 0.5653 0.4272

PNSR 38.01 38.87 38.90 38.91
PNSRNW 38.03 38.41 38.00 37.51

Table 2. The effects of ηf on the final PSNR (dB) after fine-tuning,
when upscaling Baby image for 2 times (The PSNR is 37.91dB
before fine-tuning).

ηf 0.01 0.1 0.3 0.5 0.6 0.8
PNSR 37.91 38.12 38.44 38.87 38.36 37.99

centered around 0.75. Further observations reveal that the
first peak corresponds to those in-place self examples as in
[24], which follow the local scale invariance property and
are usually very accurate matches. The second peak, with
relatively larger errors, mostly corresponds to the non-local
similar examples [7].

To further understand how the amount of self exam-
ples and their weights influence the fine-tuning, we intro-
duce several measurements: Let V denote the total vol-
ume of self-example pairs (thus V = 58, 564 × m). De-
fine the effective volume Ve as the (rounded) summations
of all normalized weights, and the average effective volume
V a
e = Ve

V . V a
e can be viewed as an indicator on how reli-

able and representative the chosen self-example set is. As
shown in Table 1, with m growing from 4 to 8, both Ve
and V a

e increase, implying that self similarity is better ex-
ploited. The PSNR improvement after fine-tuning also be-
comes more substantial. However, whenm continues going
up, both Ve and PSNR reach the plateau, whereas V a

e de-
creases dramatically. That clearly manifests that little self
similarity information remains to be excavated, and the self
example sets assumably turn redundant. Therefore, m is set
as 8 by default hereinafter. The last row of Table 1 lists
the PSNR results obtained from fine-tuning with standard
back propagation, denoted as PNSRNW . It is noteworthy
that without taking the confidence weights into considera-
tion, more self-example pairs may even harm the SR perfor-
mance of the pre-trained model when V a

e drops. The WBP
algorithm shows quite robust when more self examples are
used in fine-tuning.

Table 2 examines the PNSR changes with varying ηf .
We observe that a small learning rate (such as 0.01) does
not bring any notable improvement to final results. Until



(a) SRCNN (b) DNC (c) DJSR

Figure 4. 3× SR results of the Baby image by: (a) SRCNN, PSNR = 29.22 dB, SSIM = 0.9047; (b) DNC, PSNR = 26.65 dB, SSIM =
0.8490; (c) DJSR, PSNR = 28.74 dB, SSIM = 0.9074.

ηf = 0.5 (the empirical default value), a growing ηf leads
to a monotone increase in final PSNR results. That is in-
terpretable, as self examples in any way do not contain as
sufficient and diverse information as external examples do;
a large learning rate can strengthen their influences on the
pre-trained model. It may also help overcome some local
minima. However, when ηf is further improved beyond 0.5,
the performances start to be undermined, and more fluctua-
tions are observed during the convergence process (ηf = 0.8
actually does not lead to a stable convergence).

5.3. Comparison with State-of-the-Arts

We first compare DJSR qualitatively with two recent DL-
based SR methods, SRCNN [4] 2 and DNC [2] 3. Fig. 4,
5, and 6 demonstrate visual comparisons on three natural
images, Baby, Roman, and Train, respectively; all are up-
sampled by a factor st of 3. The zoomed regions are also
displayed. SCRNN performs reasonably well on Baby and
Train images, but are visually worse than DNC on the Ro-
man image, since Roman are abundant in repeating textures
on the pillars of the Parthenon, making self similarity espe-
cially powerful. DJSR produces image patterns with shaper
boundaries and richer textures (see the zoomed pillar re-
gions on Roman, and the numbers on Train), and suppresses
the jaggy and blockiness artifacts discernibly better.

PSNR and SSIM [18] are used to evaluate the perfor-
mances quantitatively (only the luminance channel is con-
sidered). While all three deep networks are optimized under
a MSE (equivalent to PSNR) loss, DJSR is slightly worse
than SRCNN on Baby in terms of PSNR, but obtains the
best performances on both Roman and Train images. What

2Results by using the original implementation available at:
http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html

3Results provided by the authors: http://vipl.ict.ac.cn/paperpage/DNC

is more, we notice that DJSR is particularly more favor-
able by SSIM, which measures image quality more consis-
tently with human perception than PSNR. The observation
is further verified on the commonly-adopted Set 5 and Set
14 datasets. Such an advantage can be owed to our fine-
tuning step, which further enhances the generic model by
exploiting the self similar structures of the input. Table 3
compares the average PSNR and SSIM results of the DJSR
and SRCNN 4, as well as a few other classical non-DL SR
methods, on the Set 5 and Set 14 datasets. DJSR obtains
an overall competitive performance, and especially gains a
consistent advantage over others in SSIM.

5.4. Evaluation of Sub-models

While the DJSR model could very well compete against
the state-of-the-arts, there is still potential room for im-
provements, by training a group of sub-models and select-
ing the optimal sub-models for each patch. The number of
clustersK is a parameter to be pre-determined. Specifically,
we train the sub-models under different K values, and ap-
plied them to upscale LR images in Set 5 (st = 2). Fig. 7
records the average PSNR values (the black dash line de-
notes the original DJSR model, i.e., K=1). We can see that
when K increases from 50 to 500, the PSNR results grad-
ually raise, as each sub-model is developed to describe a
smaller subset of similar image patches more precisely. Yet
a slight performance drop occurs at K =800 and continues
when K increases to 1,000. A closer look into the clusters
demonstrates that when K becomes too large, many clus-
ters contain only as few as thousands of examples, which
are inadequate for training a deep network. Such ”chaos”
sub-models will finally hamper the overall performance.

4DNC is not included, since neither the original codes nor any reported
result on the two sets are unavailable. A part of data in Table 3 is from [4]



(a) SRCNN (b) DNC (c) DJSR

Figure 5. 3× SR results of the Roman image by: (a) SRCNN, PSNR = 29.97 dB, SSIM = 0.9250; (b) DNC, PSNR = 30.08 dB, SSIM =
0.9293; (c) DJSR, PSNR = 30.69 dB, SSIM = 0.9337.

(a) SRCNN (b) DNC (c) DJSR

Figure 6. 3× SR results of the Train image by: (a) SRCNN, PSNR = 29.67 dB, SSIM = 0.9614; (b) DNC, PSNR = 28.02 dB, SSIM =
0.9392; (c) DJSR, PSNR = 30.57 dB, SSIM = 0.9706.

Figure 7. The average PSNR results on Set 5 for upscaling by 2
times, with varying K.

Fig. 7 reminds us that while dividing sub-models is usu-
ally supposed to be helpful, an improper choice of K can
impact the results negatively. The optimal selection of K
is a nontrivial task, and is subject to the bias and variance
tradeoff [5]. IfK is too small, the boundaries between clus-
ters will be smoothed out and the distinctiveness of sub-
models are compromised. On the other hand, an overly
larger K will make a part of sub-models unreliable. A sim-
ple heuristics is adopted in our experiments: the training
dataset is first partitioned into 100 clusters; next, those frag-
ment small clusters (e.g., containing less than 500 samples)

are merged into their neighboring clusters. That will usu-
ally lead to K between [40, 50]. We find that strategy leads
to a good and stable performance improvement, after we try
it on several different training sets.

6. Conclusion

In this paper, we investigate a deep joint super resolu-
tion (DJSR) model, to exploit external and self similarities
for image SR in a unified framework. We utilize exter-
nal examples to pre-train the model, and fine-tune it using
sufficient self examples weighted by their reliability. We
thoroughly analyze the model and interpret its behaviors.
DJSR is compared with several state-of-the-art SR methods
(both DL and non-DL) in our experiments, and shows a vis-
ible performance advantage both quantitatively and percep-
tually. Similar approaches can be extended to many other
image restoration applications.

References
[1] H. C. Burger, C. Schuler, and S. Harmeling. Learning how to

combine internal and external denoising methods. In Pattern
Recognition, pages 121–130. Springer, 2013. 1

[2] Z. Cui, H. Chang, S. Shan, B. Zhong, and X. Chen. Deep
network cascade for image super-resolution. In ECCV, pages
49–64. 2014. 1, 2, 6



Table 3. Average PSNR (dB) and SSIM performances comparisons on the Set 5 and Set 14 datasets

Bicubic Sparse Coding [26] Freedman et.al. [7] A+ [16] SRCNN [4] DJSR

Set 5, st=2
PSNR 33.66 35.27 33.61 36.24 36.66 36.78
SSIM 0.9299 0.9540 0.9375 0.9544 0.9542 0.9550

Set 5, st=3
PSNR 30.39 31.42 30.77 32.59 32.75 32.65
SSIM 0.8682 0.8821 0.8774 0.9088 0.9090 0.9161

Set 14, st=2
PSNR 30.23 31.34 31.99 32.58 32.45 32.51
SSIM 0.8687 0.8928 0.8921 0.9056 0.9067 0.9097

Set 14, st=3
PSNR 27.54 28.31 28.26 29.13 29.60 29.96
SSIM 0.7736 0.7954 0.8043 0.8188 0.8215 0.8229

[3] D. Dai, R. Timofte, and L. Van Gool. Jointly optimized re-
gressors for image super-resolution. 4

[4] C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep
convolutional network for image super-resolution. In ECCV,
pages 184–199. 2014. 1, 2, 4, 5, 6, 8

[5] W. Dong, D. Zhang, G. Shi, and X. Wu. Image deblurring
and super-resolution by adaptive sparse domain selection and
adaptive regularization. Image Processing, IEEE Transac-
tions on, 20(7):1838–1857, 2011. 1, 2, 4, 7

[6] M. Elad and M. Aharon. Image denoising via sparse and
redundant representations over learned dictionaries. Im-
age Processing, IEEE Transactions on, 15(12):3736–3745,
2006. 3

[7] G. Freedman and R. Fattal. Image and video upscaling
from local self-examples. ACM Transactions on Graphics,
30(2):12, 2011. 1, 3, 4, 5, 8

[8] D. Glasner, S. Bagon, and M. Irani. Super-resolution from a
single image. In ICCV, pages 349–356. IEEE, 2009. 1

[9] X. Glorot, A. Bordes, and Y. Bengio. Domain adaptation
for large-scale sentiment classification: A deep learning ap-
proach. In Proceedings of ICML, pages 513–520, 2011. 2

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, pages 1097–1105, 2012. 1, 4

[11] A. Liu and B. Ziebart. Robust classification under sample
selection bias. In NIPS, pages 37–45, 2014. 3

[12] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber. Stacked
convolutional auto-encoders for hierarchical feature extrac-
tion. In ICANN, pages 52–59. 2011. 2

[13] R. Memisevic, K. Konda, and D. Krueger. Zero-bias au-
toencoders and the benefits of co-adapting features. arXiv
preprint arXiv:1402.3337, 2014. 2

[14] I. Mosseri, M. Zontak, and M. Irani. Combining the power of
internal and external denoising. In ICCP, pages 1–9. IEEE,
2013. 1

[15] T. Paine, P. Khorrami, W. Han, and T. S. Huang. An analy-
sis of unsupervised pre-training in light of recent advances.
arXiv preprint arXiv:1412.6597, 2014. 2, 4

[16] R. Timofte, V. De Smet, and L. Van Gool. A+: Adjusted
anchored neighborhood regression for fast super-resolution.
8

[17] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A.
Manzagol. Stacked denoising autoencoders: Learning use-

ful representations in a deep network with a local denois-
ing criterion. The Journal of Machine Learning Research,
11:3371–3408, 2010. 2

[18] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.
Image quality assessment: from error visibility to struc-
tural similarity. Image Processing, IEEE Transactions on,
13(4):600–612, 2004. 6

[19] Z. Wang, Z. Wang, S. Chang, J. Yang, and T. Huang. A
joint perspective towards image super-resolution: Unifying
external-and self-examples. In WACV, pages 596–603. IEEE,
2014. 1

[20] Z. Wang, Y. Yang, Z. Wang, S. Chang, J. Yang, and T. S.
Huang. Learning super-resolution jointly from external and
internal examples. arXiv preprint arXiv:1503.01138, 2015.
1, 2

[21] Z. Wang, Y. Yang, J. Yang, and T. S. Huang. Designing a
composite dictionary adaptively from joint examples. arXiv
preprint arXiv:1503.03621, 2015. 1

[22] J. Xie, L. Xu, and E. Chen. Image denoising and inpainting
with deep neural networks. In NIPS, pages 341–349, 2012.
2

[23] C.-Y. Yang, J.-B. Huang, and M.-H. Yang. Exploiting self-
similarities for single frame super-resolution. In ACCV,
pages 497–510. 2011. 1

[24] J. Yang, Z. Lin, and S. Cohen. Fast image super-resolution
based on in-place example regression. In CVPR, pages
1059–1066. IEEE, 2013. 1, 2, 3, 5

[25] J. Yang, Z. Wang, Z. Lin, S. Cohen, and T. Huang. Coupled
dictionary training for image super-resolution. Image Pro-
cessing, IEEE Transactions on, 21(8):3467–3478, 2012. 1,
2

[26] J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image super-
resolution via sparse representation. Image Processing, IEEE
Transactions on, 19(11):2861–2873, 2010. 1, 4, 8

[27] M. Zeiler, G. Taylor, and R. Fergus. Adaptive deconvolu-
tional networks for mid and high level feature learning. In
ICCV, pages 2018–2025. IEEE, 2011. 2

[28] M. Zontak and M. Irani. Internal statistics of a single natural
image. In CVPR, pages 977–984. IEEE, 2011. 1


