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Abstract

Leader identification is a crucial task in social analysis,
crowd management and emergency planning. In this paper,
we investigate a computational model for the individuation
of leaders in crowded scenes. We deal with the lack of a
formal definition of leadership by learning, in a supervised
fashion, a metric space based exclusively on people spa-
tiotemporal information. Based on Tarde’s work on crowd
psychology, individuals are modeled as nodes of a directed
graph and leaders inherits their relevance thanks to other
members references. We note this is analogous to the way
websites are ranked by the PageRank algorithm. During ex-
periments, we observed different feature weights depending
on the specific type of crowd, highlighting the impossibil-
ity to provide a unique interpretation of leadership. To our
knowledge, this is the first attempt to study leader identifi-
cation as a metric learning problem.

1. Introduction
There is no single, agreed, computational definition of a

crowd. Still, it is beneficial to distinguish between a gather-
ing of people who simply share a location and a psycholog-
ical crowd, whose members also share a social identity. Re-
icher’s Social Identity Theory [16] explains the ability of a
crowd to spontaneously behave in a socially coherent man-
ner without any apparent or explicit exchange of informa-
tion. The theory proposes that people shift from a personal
and private identity to a shared one, resulting in strongly
influenced behaviors. A sense of shared social identity is
often created in the event of an emergency, enabling crowd
members to act as a source of strength for one another, when
dealing with regularly recurring crowds, such as football
matches and it is proportional to the extent of organization
within the crowd itself. A more organized crowd is more
likely to exhibit pre-planned, antisocial behavior such as in
a demonstration or a protest [3].

Nevertheless, not all the members of a crowd undergo
the same level of identity shift [7, 4, 14]. People who define
the norms and the values which then become shared among

all the other members are recognized as leaders. Leader
identification is a crucial task in crowd management, emer-
gency planning and sociological analysis. By finding and
disconnecting the leaders from the rest of the crowd, effi-
cient containment can be accomplished. On the other hand,
an influential voice of non-violence in a crowd can lead
to a mass sit-in and a strong leader can take control of an
emergency situation, initiate movement and guide suitable
crowd behavior avoiding panic [3]. Either way, leaders are
key subjects to pay attention to when dealing with otherwise
unmanageable crowds.

1.1. The leader in crowd psychology

There is a fundamentally problematic relationship be-
tween the leader and the crowd. Crowd phenomena
emerged as a democratic repulsive response to traditional
models of leadership; it almost seems paradoxical to ques-
tion the need of a crowd to reestablish a leader. In the last
century crowd psychology has tried to understand the true
role of leaders in crowds and the mechanisms by which they
are selected.

In his book The Crowd [7], Le Bon justifies the exis-
tence of a leader through the need of the crowd to place
trust in someone able to provide orientation and contribute
to its overall stability. A leader serves as a guide and mem-
bers of the crowd are led by direct imitation of the leader’s
will. Certainly, the leader is an important role to preserve
the crowd stability, but he is neither a founding figure nor is
he permanently established, see Fig. 1a. Instead, the crowd
formation is an emergent process that uses the leader as a
stabilizer. While for Le Bon the leader is an elected anony-
mous figure, in Freud’s Group Psychology [4] the leader
comes to play a constitutive role and every member of the
crowd identifies the leader as their “I”-ideal. With respect
to Le Bon self-organizing and emergent notion of crowds,
Freud provides a highly centralized model of the social
community, appreciable in Fig. 1b. The relation between
the leader and the crowd is thus radically asymmetric as the
members are submitted under the leader; relations between
crowd members are secondary. Eventually, and to even a
greater extent than Le Bon, Tarde [14] emphasizes the self-
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Figure 1: Different interpretation of relationships between a leader and other members in different crowd psychology theories.

referential emergence of crowd phenomena but characteriz-
ing the leader as the “spark” behind the organizational pat-
terns. Unlike Freud, Tarde was not interested in the leader’s
foundational role. Instead, he analyzes how the leader con-
tributes to the flow of imitation in a society and builds its
theory assuming that every process of imitation begins with
asymmetry, as highlighted in Fig. 1c. Nevertheless, as in-
dividuals initiative converge with leadership, the leader’s
identity may change without altering the crowd stability.

1.2. Related works

In crowd modeling and simulation, the problem of leader
identification is typically cast as the definition of a set of ge-
ometrical rules that agents can follow at simulation time to
select a leader inside their visual cone, providing virtual in-
dividuals with additional attraction forces [10, 12]. Exam-
ples of these rules include thresholds on distance and rela-
tive velocity with respect to anyone with whom they share
their walking direction. Leaders identification becomes thus
an individual task, possibly inconsistent across different
members of the same crowd, strictly direction-oriented and
unaware of social or behavioral information.

On the other hand, in visual crowd analysis leader iden-
tification is still an emerging topic. Andersson et al. [1]
state an individual can be said to be a leader if it does not
follow anyone and is followed by sufficiently many others
at a proximate distance for a minimum amount of time.
The concept of following is again based on geometrical
and static rules only, denying the complex social dynamics.
Yu et al. [17] provide a solution based on iterative modu-
larity clustering over distance information. They simultane-
ously retrieve social groups and, for each group, the leader
is defined as the member providing the dominant contribu-
tion to the clustering bisecting eigenvector. By construction,
their leader selection procedure is based on a centrality mea-
sure computed over the distance information graph, which
is only a small part of the behavioral clues that could be
exploited in the identification task. As a consequence, this
method applicability is mostly limited to standing scenarios.

A more complex approach is presented in Carmi et
al. [2], where a Bayesian Network is built upon members’
position and velocity information and the causality param-

eters are estimated by regression. By summing over the in-
coming and outgoing causality links over each member, it
is possible to measure individual’s contribution in shaping
the group’s collective behavior. More interestingly, Kjær-
gaard, et al. [5] and Sanchez-Cortes et al. [13] complete
the task by ranking group members. The former builds a
graph based on time-lag spatiotemporal features and em-
ploys PageRank to score the nodes by their importance.
This time-lag approach mimics the concept of temporal
causality introduced in Carmi et al. [2]. The latter instead,
exploit non-verbal features to obtain sets or ranking scores
that are uniformly combined to obtain the leader. Neverthe-
less, both [2, 5, 13] do not propose a method for weighting
the contribution of the different features, which may vary
from scene to scene. For this reason, in our method we in-
troduce a metric learning approach over the feature space.

2. Method overview
Building on Tarde’s theory [14] for the individuation of

leaders in crowds, in Sec. 3 we introduce a set of pairwise
features to evaluate social bonds among group members.
Our approach takes as input individuals spatiotemporal in-
formation (i.e. people trajectories) and their partitioning
into social groups, as shown in Fig. 2. During training, each
feature is used to produce a separate ranking of the members
of the considered group and Structural SVM [15] is em-
ployed to combine different features contribution, Sec. 4. At
test time, for each group, the algorithm returns a ranking of
the members, among which the highest will be predicted as
the leader. This ranking is computed through the PageRank
algorithm [11], able to take advantage of the referential and
asymmetric structure of the crowd model (Fig. 1c) to assess
the importance of each member. The process can be gener-
alized to the whole crowd by considering larger groups.

Notation Given a video, the sets of trajectories from each
group x = (Ta, Tb, . . . ) form the input to our algorithm,
where the generic trajectory Ta = {(t, xta, yta)}t contains
ground plane metric information. The training set is D =
{(xi,yi)}ni where yi is the correct ordering of the mem-
bers of the i-th group in the space of all possible orderings
Y(xi). The leader of xi is the j-th member if yi(j) = 1.



3. Social features for leader identification
Following Tarde’s perspective, leadership is a concept

that is established through an agreement among group
members. This agreement reflects in the way members in-
fluence each others path and is consequently visually gras-
pable. We refer to these features as time-lagged features,
fT , fṪ , fT̈ and fI , detailed in Sec. 3.1. Additionally, fol-
lowing relations have also been modeled by means of em-
pirical models built upon psychological experimental find-
ings. We consider these model based features, fs, fd and
fr in Sec. 3.2. Eventually, in groups with more than two
members, individuals position inside group fC and the size
of the group itself fM have proven useful in unveiling
leadership [12], Sec. 3.3. Consequently, the feature vec-
tor f between members a and b is described as f(a, b) =
[fT , fṪ , fT̈ , fI , fs, fd, fr, fM , fC ].

3.1. Time-lagged features

A generic time-lagged feature fψ(a, b) is computed eval-
uating a feature function ψ on a pair of trajectories Ta
and Tb under varying discrete temporal shifts (i.e. time-lag)
z ∈ [−K,+K], where K is a fixed number of frames. In
order to obtain a scalar value, fψ(a, b) is a inverse weighted
average over all the shifts:

fψ(a, b) =
1

M

∑
z

z · ψ(a, b; z)−1 (1)

where values ψ(a, b; z) are obtained by fixing Ta and shift-
ing Tb of z frames and M =

∑
z ψ(a, b; z)−1 is a normal-

ization factor. Eq. (1) evaluates the amount of influence (in
terms of feature ψ) of Tb over Ta; precisely if fψ(a, b) is
positive, we say Tb leads Ta with certainty |fψ(a, b)|. In this
work we consider as feature function ψ the Dynamic Time
Warping (DTW) distance between two time series consid-
ering their spatial coordinates (ψ ≡ T ), velocity (ψ ≡ Ṫ ),
acceleration vectors (ψ ≡ T̈ ) and mutual influence (ψ ≡ I).
DTW is useful to mitigate the small measurement noise that
occurs when observing real world trajectories and to neglect
moderate variations that naturally occur in moving groups.

Members have the tendency to follow the leader in order
to keep the group compact and reduce the risk of falling too
far from other members as well. This behavior reflects in
the way spatiotemporal information are correlated among
members of the same group. The distance feature fT is
computed by applying DTW to trajectories as a sequences
of point coordinates. In the same way, fṪ and fT̈ are com-
puted by employing velocity and acceleration discrete mea-
surements. Conversely, the mutual influence feature fI is an
unsigned fT , more formally I(a, b; z) = T (a, b; z) sign(z).
This feature measure only the strength of the interaction but
ignores the causality direction, highly penalizing members
who do not interact inside groups.
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Figure 2: Method overview: for each group, a set of PageR-
ank is computed. Given the correct labeling (GT), the Struc-
tural SVM learns how to aggregate ranks from different fea-
tures. Color intensity indicates leadership probability.

3.2. Model based features

Group dynamics literature has established different col-
lective locomotion patterns to characterize dyadic interac-
tion among members of a groups. These models consider
features such as speed, position, acceleration or a combi-
nation of them and, through formal empirical equation, de-
scribe how an individual a should move if it were to be con-
sidered as follower of b. The speed model [8] states that the
follower acceleration T̈a aims at compensating speed varia-
tions between he and the leader b:

T̈ sa (t) = cd[Ṫb(t)− Ṫa(t)]. (2)

A different strategy is for the follower a to keep its distance
to the group leader b fixed [6]. Accordingly, the follower
will accelerate (decelerate) to reduce (increse) this distance:

T̈ da (t) = cs[Tb(t)− Ta(t)− γ], (3)

where γ is the average distance among group members
in the considered time window. Eventually, Lemercier et
al. [9] observed that in walking scenarios the relative speed
between a leader and a follower goes to zero but modulated
by both the follower current speed and its distance from the
leader. This feature is referred to as the speed ratio [5]:

T̈ ra (t) = cr Ṫb(t)
Ṫb(t)− Ṫa(t)

Tb(t)− Ta(t)
(4)

In order to average out the noise in measurements, the final
features fs, fd, fr between a leader b and a follower a are



computed as the negative exponential of the mean differ-
ence between the observed acceleration vector T̈a(t) of the
follower a and the one obtained using the different models
T̈ sa (t), T̈ da (t) and T̈ ra (t).

3.3. Personal and group level features

It is known from literature [12] that people tend to dis-
pose in a specific set of predefined configurations when
moving inside a crowd. These configurations, which de-
pend on the group size, usually encourage social interac-
tions by placing the leader in a central position. As a con-
sequence, group size and individual position of a member
w.r.t. all the others in the group may result in a discriminant
information for leadership detection. The group size fM is
a group level feature as it is equal across all the members of
a group. Still it is important as the normalization induced by
the PageRank produces different values for groups of differ-
ent sizes. The centrality feature fC of a member inside the
group is computed as the average distance of that member
to all the others. This is an individual feature and can be
thought, in terms of PageRank, as the transition probability
of reaching a destination node independently of the starting
one.

4. Learning to rank leaders
To what extent the chosen features may contribute to

identify the leader is a matter of scenes and context. In
dense crowds leaders will lead the way through other groups
and distance won’t be a peculiar factor, as opposed to the
time to contact information. On the other hand, when the
crowd is sparse, groups will tend to reorganize in forma-
tions easing social interactions among members of the same
group and distance could here be a dominant factor. Other
than crowd density, cultural habits and environmental con-
straints may also play an important role in the way leaders
act. For these reasons a learning approach becomes manda-
tory for this task.

4.1. Features PageRank

Given a group xi, we build a graph of following rela-
tions Gif = (xi, f) for each feature f ∈ f , where nodes
represents the members and the edges contains the pairwise
feature information. Note that this graph is directed and
asymmetric, similar to the one reported in Fig. 1c. At this
point a [0, 1]-normalization is required to guarantee each el-
ement of Gif lays between 0 and 1 and the sum of elements
in each row is 1. These conditions make the graph a row
stochastic matrix and we can now interpret it as a transi-
tion graph, where each edge (Ta, Tb) ∈ (xi × xi) indicates
the probability of considering Tb a leader for Ta. Under
these premises, the PageRank algorithm is used to score
each node. Due to the properties of the graphGif , the eigen-
system (Gif )Tπif = πif has a unique solution, being πif the

dominant left eigenvector of Gif . The jth entry of πif is the
score computed for the group member j. The algebraic so-
lution of πif is given by

πif = (I− dMi
f )−1

1− d
|xi|

1, (5)

where d is the PageRank damping factor and |xi| is the size
of group xi. Mi

f = (D−1Gif )T is a column stochastic
matrix and D is the outdegrees diagonal matrix of Gif .

4.2. Structural SVM and optimization

We can now formulate the prediction problem as finding
the groups member which obtains the best combined rank-
ing score across all different feature graphs. We can lower
bound the problem as a supervised rank aggregation, aim-
ing to find the shared ranking across all feature graphs Gf
which maximizes the probabilities in highest positions:

F (x; w) = arg sort(wTΠT ) = arg max
y∈Y(x)

wTΠT ȳ, (6)

where the sort is considered in descending order.
Here Π = [πfT , πfṪ , πfT̈ , πfI , πfs , πfd , πfr , πfM , πfC ] is
the PageRank scores concatenation for group x and ȳ =
|x|−y+1 for notation convenience. By observing Eq. 6, we
can write the problem as a linear combination of the weight
vector and some combined representation Ψ(x,y) = ΠT ȳ.
The w-parameterization can now be learned through struc-
tured learning. Structural SVM [15] casts the problem of
learning in complex and interdependent output spaces as a
maximum margin problem:

min
w,ξ

1

2
‖w‖2 +

C

n

n∑
i=1

ξi

s.t. ∀i : ξi ≥ 0,

∀i,∀y ∈ Y(xi)\yi : wT δΨi(y) ≥ ∆(yi,y)− ξi,
(7)

where δΨi(y) = Ψ(xi,yi) − Ψ(xi,y), ξi are the slack
variables introduced in order to accommodate for margin
violations and ∆(yi,y) is the loss function. Intuitively, we
want to maximize the margin and jointly guarantee that for a
given input, every possible output result is considered worst
than the correct one by at least a margin of ∆(yi,y) − ξi,
where the loss is bigger when yi and y are known to be
more different. In particular, to measure how far a mem-
ber was classified w.r.t. its proper positions, we employ a
simple squared norm ∆(yi,y) = ‖yi − y‖2.

The quadratic program QP (7) introduces a constraint for
every wrong ranking of the group members. In order to deal
with this high number of constraints, we replaced them by n
piecewise-linear ones by defining the structured hinge-loss:

H̃(xi)
def
= max

y∈Y(xi)
∆(yi,y)−wT δΨi(y). (8)
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Figure 3: Cumulative accuracy when the leader is allowed
to occupy positions up to 3 in the predicted group ordering.

The computation of the structured hinge-loss for each ele-
ment i of the training set amounts to finding the most “vio-
lating” output y∗i for a given training pair (xi,yi). Now, we
only have n constraints of the form ξi ≥ H̃(xi) and QP (7)
reduces to minw

1
2‖w‖

2 + C
n

∑n
i=1 H̃(xi).

By disposing of a maximization oracle, i.e. a solver for
Eq. (8), and a computed solution y∗i given a generic exam-
ple xi, cutting plane or subgradient methods (e.g. [15]) can
easily be applied to the reduced quadratic program, being
∂wH̃(xi) = −δΨi(y

∗
i ). The choice of the loss, which is

linear w.r.t. the maximization argument y, let us search for
the most violating constraint as follows:

y∗i = arg max
y∈Y(xi)

‖yi − y‖2 + wTΠT
i ȳ

= arg max
y∈Y(xi)

−2yTi y + wTΠT
i ȳ

= arg max
y∈Y(xi)

(2yi + Πiw)T ȳ,

(9)

by noting that ‖yi‖2 = ‖y‖2 does not depend on the partic-
ular choice of y and the first term changed sign due to the
factoring under ȳ. Trough this shrewdness, the maximiza-
tion oracle can be efficiently computed as in Eq. 6.

5. Experimental settings and results
The proposed algorithm for the identification of lead-

ers in crowds has been tested on three publicly avail-
able datasets employed in crowd tracking and group de-
tection tasks: stu003, eth and GVEII. Visual exam-
ples of the datasets and the achieved results are shown in
Fig. 5. stu003 and GVEII present mildly dense but
highly group-structured crowds, characterized by the high
variability of groups motion patterns. Conversely, eth is
a low density crowd scenario where people tend to follow
straight paths. In all scenarios most of the group are pairs
(65% on average) but triplets and larger groups are present
as well. All videos were reduced to 10 fps and the annota-
tion was performed by a set of three independent observers
that marked both the leaders and ordered the members by
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Abstract

Multiple target tracking is an unsolved challenge since
the dawn of computer vision. Nevertheless, humans exhibit
a surprising capability of performing this task, even in ex-
tremely complex scenarios. We investigate the chance of
building a computational model that mimics the cognitive
attitude of human perception towards tracking. The per-
ceptual psychology paradigm of spatio-temporal dominance
and structured online learning are combined in a Cognitive
Multiple Target Tracking framework. Promising results on
benchmark sequences suggest that cognitive mechanisms can
bridge the gap between human and machines perception and
should be further studied in the visual tracking challenge.
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Figure 4: Learned weight importance for top 3 features for
every dataset.

our [5] [13] SVM
GVEII
groups 117 - 75 - 11

83.2 ± 0.01 73.5 69.1 67.4

stu003
groups 87 - 20 - 8

82.3± 0.08 71.6 70.3 78.3

eth
groups 37 - 10 - 10

92.4± 0.20 84.1 83.2 80.1

average results 85.98±0.1 76.4 74.2 75.2

Table 1: Leader detection comparative results. Number of
pairs, triplets and groups with more than three members are
specified under the dataset name.

relevance inside each group. Majority of votes has been
considered to establish the ground truth data. For testing
purposes, we employed the ground truth trajectories and
group annotation as the input of our algorithm. The training
of the SSVM is performed independently on every video
sequence on the first 20% of the groups. In all the exper-
iments the maximum lag K of the time-lagged features of
Sec. 3.1 is set to 5 seconds quantized in 6 intervals. The
parameters cd, cs, cr of the model based features (Sec. 3.2)
have been obtained through grid search on the training data.
Leader identification accuracy results are reported and com-
pared in Tab. 1 with the works of Kjærgaard et al. [5] and
Sanchez-Cortes et al. [13] and a SVM baseline, where the
leader in a group is the member, among the properly labeled
ones, with higher distance from the margin. We trained the
SVM with the same PageRank scores used as features in
our structured model. Details about leaders ranking in sec-
ondary positions are shown in Fig. 3, while Fig. 4 shows
the different features importance as the crowd type varies.

6. Discussion

The comparison of the obtained results with other meth-
ods in Tab. 1 highlights the ability of the proposed learning
framework to deal with the complexity of finding leaders
in groups. In particular, sociological models of leadership
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Figure 5: Visual results on the employed datasets. Groups are identified by the color of the shape containing their members
and leaders are marked with dots of pertinent colors.

exist, but are always context dependent and should be prop-
erly chosen. By learning to combine model-based features,
time-lagged cues, individual and group peculiarities we out-
perform state of the art approaches and define a joint lead-
ership model specifically tailored to the observed scenario,
as highlighted by different dominant features in Fig. 4.

The positive results obtained against the SVM approach
highlights the importance of the group structure in defining
the leader itself. The SVM neglects the contribution of oth-
ers group elements while, on the opposite, we evaluate the
influence of all the members through the adoption of struc-
tured learning. We experimentally observed how the lead-
ership is a shared concept among group members and thus
all the members influence should be accounted in a unique
framework to profitably obtain reliable results. Eventually,
the adoption of a learning framework exhibited the capa-
bility to adapt to different scenarios where the leadership
models may vary according to the people activity, their so-
cial identity and their purposes.
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