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Abstract

The registration of video sequences captured using dif-
ferent types of sensors often relies on dense feature match-
ing methods, which are very costly. In this paper, we
study the problem of “almost planar” scene registration
(i.e. where the planar ground assumption is almost re-
spected) in multimodal imagery using target shape infor-
mation. We introduce a new strategy for robustly aligning
scene elements based on the random sampling of shape con-
tour correspondences and on the continuous update of our
transformation model’s parameters. We evaluate our solu-
tion on a public dataset and show its superiority by compar-
ing it to a recently published method that targets the same
problem. To make comparisons between such methods eas-
ier in the future, we provide our evaluation tools along with
a full implementation of our solution online.

1. Introduction
Although automatic multimodal image and video regis-

tration has been intensively studied over the years [25, 15],
most methods still rely on dense feature matching through
area-based similarity measures computation [17, 18, 11, 5].
While this approach has the advantage of being able to
register non-planar scenes, it is generally very computa-
tionally expensive, thus making it unsuitable for emerging
mobile and distributed computer vision applications where
information fusion might be required. Many multimodal
surveillance systems capture images at medium/long dis-
tances from their targets, meaning that in those cases, planar
models can be assumed without excessively compromising
registration quality. In this context, lightweight approxi-
mate registration solutions can be adopted to replace their
more complex counterparts. Instead of densely searching
for local correspondences between images, lightweight so-
lutions rely on sparse correspondences taken from common
salient features, which are fitted to a parametric model in or-
der to find a frame-wide rigid or projective transformation

(homography).
The main problem behind this simplified approach is

finding features that are shared between the studied image
modalities and that are easy to automatically identify and
match. As presented in [1], traditional keypoint detectors
and invariant descriptors are not well suited to multimodal
imagery, and require important tuning to achieve decent re-
sults. Specialized detection and description methods have
been proposed to address this problem [1, 14, 23], but these
methods do not work for image modalities where the rela-
tion between the appearance of objects is not easily defined.
These methods are also inadequate when image resolution
is too low or when there is a lack of similar textural con-
tent between the images. Therefore, more robust means of
finding matches between images have to be considered.

In this paper, we propose an automatic video registration
method that relies on correspondences found via shape-of-
interest matching. Instead of independently analyzing each
video frame to extract salient features or edge maps to use
for correspondences, we rely on shape contours found us-
ing continuous foreground-background video segmentation.
While this restricts our approach to applications where the
targets of interest can be automatically segmented, it is not
affected by the difference in pixel color characteristics of
the studied image modalities. This means that our method
can be used with any type of sensor, as the appearance of the
targets does not matter (as long as they can be segmented).

Our first contribution is a strategy to preserve good shape
contour matches throughout the analyzed sequences, which
makes our transformation estimation approach robust to
continuously imperfect segmentation and small, static tar-
gets that do not contribute useful correspondences. Instead
of temporally accumulating correspondences in a first-in,
first-out buffer for RANSAC-based fitting [9], we use a
buffer in which correspondences that are identified as per-
sistent outliers based on a voting scheme are randomly re-
placed. Our second contribution is a method for smooth-
ing transitions between transformations estimated at differ-
ent times based on the approximate overlap of the analyzed



foreground shapes. This prevents our solution from lock-
ing on to a global registration transformation that might
not adequately reflect the nature of the studied scene (e.g.
when the scene is not truly planar). Under the assumption
that the foreground shapes are the real targets of interest in
the scene, this smoothing approach allows improved overall
registration through the continuous update of the transfor-
mation model’s parameters.

We evaluate our solution by comparing it to a recently
proposed method using a public dataset, and show that our
overall strategy is superior. To make future comparisons on
this dataset and with our method easier, we have made our
source code public1, and we provide the video segmentation
masks and the evaluation tools we used2.

2. Related Work

As described in [11], a planar model can be assumed for
image or video registration in two cases: 1) when the sen-
sors are nearly collocated and the alignment targets are far
from them (infinite homographic registration), or 2) when
all alignment targets lie on the same plane in the scene (pla-
nar ground registration). In both cases, the parallax effects
caused by the camera baseline distance are assumed to be
negligible. Registration can then be achieved by having a
human expert select various keypoints in one image modal-
ity and search for their equivalent in the other, and by solv-
ing the parametric transformation model using these corre-
spondences. Manual registration is however troublesome
when large datasets containing many different sensor con-
figurations have to be processed, as it is extremely time-
consuming. Automatic video registration thus has to solve
the multimodal keypoint detection and matching problem,
and provide a robust way to identify the best homography
within a temporal window.

Target silhouette information and edge maps have been
used before to find correspondences between multimodal
image sets [7, 16, 14, 21]. Coiras et al. [7] estimated
transformations in outdoor urban environments by extract-
ing straight lines from edge maps and using them to find
correspondences between sets of polygons. More recently,
Pistarelli et al. [16] proposed to use Hough space as the
search domain to find multimodal correspondences between
segments under similar conditions. Mouats and Aouf [14]
opted to use a keypoint detector based on phase congru-
ency instead of edge points directly, but relied on local edge
histograms to describe and match them between modalities.
Tian et al. [21] also used edge maps for thermal-visible face
registration, but described point sets using shape context
[2]. In their case, the infrared images were very contrasted,
meaning that many strong edges were easily identifiable.

1https://bitbucket.org/pierre luc st charles/multimodal-vid-reg
2http://www.polymtl.ca/litiv/vid/index.php

Strategies based on silhouettes and edge maps are not al-
ways adequate, as contours representing region boundaries
are not guaranteed to be shared between all modalities. For
example, when using thermal-infrared sensors, objects with
uniform temperatures might not display any edges while
some are identifiable in other spectra.

The advantage of video registration over image registra-
tion is that methods can rely on target motion to find corre-
spondences more easily. Shape contours obtained via tem-
poral foreground-background segmentation [10, 3, 24, 19]
or shape trajectories [6, 4, 22] are viable strategies, as
long as they can properly distinguish targets from the back-
ground. Correspondences found between shape contours
or trajectories are used to find the transformation model pa-
rameters, but their quality highly depends on the accuracy of
the segmentation algorithm. In [10], a hierarchical genetic
algorithm is adopted to quickly find an optimal transforma-
tion while avoiding local maxima. In [24], the authors sim-
plified their transformation model using calibration priors;
they found optimal parameters through a 1D-scan approach
based on heuristics. The works of [19, 6, 22] all rely on a
similar strategy: correspondences from a temporal window
are added to a global potential match buffer (or “reservoir”),
which is then analyzed using a random sample consensus
(RANSAC)-based method [9] to find the parameters which
best fit the transformation model. In [6], correspondences
from all frames are used at once, meaning that it cannot
estimate the registration transformation in an online fash-
ion. In [19, 22], a small first-in, first-out (FIFO) buffer is
used to accumulate and analyze a few seconds worth of cor-
respondences. Our own strategy presented in Section 3.3
uses a similar RANSAC approach for online transforma-
tion estimation, but accumulates contour matches using a
random sampling and persistence voting approach (mean-
ing that these matches do not have a predefined lifetime in
the buffer).

The shape contour description and matching strategy that
most closely resembles ours is that of [19]: they used the
Discrete Curve Evolution (DCE) algorithm originally pro-
posed in [13] to prune foreground shapes into hexadecagons
with visually similar boundary parts. We believe that more
accurate registration can be achieved by describing and
matching all shape contour points without pruning, leaving
the filtering responsibility to RANSAC. Therefore, for our
own contour description and matching needs, we use shape
context [2], as detailed in Section 3.2.

3. Proposed method
Our method can be split into several parts, as shown in

Fig. 1. First, foreground-background segmentation is used
on each video frame to obtain shape contours from targets
present in the scene. Contour points are then described and
matched using the iterative shape context approach of [2].

https://bitbucket.org/pierre_luc_st_charles/multimodal-vid-reg
http://www.polymtl.ca/litiv/vid/index.php


Figure 1: Overview of our proposed method’s principal processing stages.

Following that, all matches are added to a correspondence
reservoir (i.e. a temporal buffer), which itself is analyzed by
a RANSAC algorithm to identify inliers and outliers and to
estimate ideal transformation parameters. Finally, the iden-
tified inliers are used for persistence voting in the reservoir,
and the estimated model parameters are used to update the
reference (or “best-so-far”) registration homography. In the
following subsections, we detail each step of this process.

3.1. Shape extraction

The initial step in our method is identifying targets of in-
terest in each video sequence using foreground-background
segmentation. Since the dataset we use in Section 4 only
contains sequences with static cameras, we opted for an ap-
proach based on change detection via background modeling
(commonly referred to as “background subtraction”). The
method we use is the one in [20]: it builds a statistical model
of the observed scene using color and binary features, and
uses feedback mechanisms to dynamically adapt to chang-
ing conditions. Getting shape contours from the binary im-
age masks provided by this method is trivial, and no prun-
ing or extra post-processing is done to simplify these fore-
ground shapes. We chose this segmentation method due to
its ease-of-use and because it provides good segmentation
results in image modalities inside and outside the visible
spectrum.

3.2. Contour points description and matching

We address the shape contour matching problem as the
task of establishing correspondences in a bipartite graph
where the disjoint sets are composed of noisy polygon ver-
tices taken from different image modalities. As mentioned
earlier, we follow the approach introduced in [2] to compare
foreground object contours. Our ultimate goal is to find, for
each contour point in the first image modality, the contour
point in the second modality that offers the best match given
their respective position within their original shapes.

This approach is straightforward: first, contour points

are all assigned a shape context descriptor which expresses
the relative disposition of other contour points in the same
modality using a uniform log-polar histogram (as shown
in Fig. 2). These descriptors are then exhaustively com-
pared using a χ2 test to determine similarity scores, and
the correspondence problem is solved using the Hungar-
ian method [12]. These three steps are repeated multiple
times for each frame in order to eliminate outlying matches
from the contours, which are identified after solving the cor-
respondence problem based on their low similarity scores.
Between each iteration, a Thin Plate Spine (TPS) model [8]
is used to determine the optimal elastic transformation that
aligns the filtered contours, and new descriptors based on
the transformed shapes are generated. Given a predeter-
mined maximum number of iterations to run, this approach
helps identify which correspondences will be used to find
the frame-wide registration transformation detailed in Sec-
tion 3.3. Note that the transformation estimated by the TPS
method cannot be used for frame-wide image registration,
as its elastically fitted solution might cause important distor-
tions in regions far from the analyzed contour points. There-
fore, it is only used as a temporary solution, and the contour
point matches later added to the correspondence buffer con-
tain their original coordinates.

Unlike the DCE approach of [19] that directly relies on
Euclidean distances between multimodal contours, our ap-
proach is completely invariant to translations and scaling
since all distances in shape context descriptors are relative
and normalized. Furthermore, it is not restricted to a con-
stant number of points per contour and it does not con-
sider boundary convexity as a shape attribute, meaning it
is more robust to noisy shapes caused by inadequate seg-
mentation. The correspondence problem is also solved op-
timally, which is better than using the greedy matching al-
gorithm of [19]. Besides, note that due to the unknown re-
lation between the analyzed image modalities, we do not
consider local appearance when computing the similarity
scores between shape contours.



Figure 2: Example of shape context description on a human
shape contour point using 5 radius bins and 8 angle bins.

3.3. Correspondence reservoir and voting

Using contour matches from a single frame pair for scene
registration would likely result in noisy transformations that
disregard large planar scene areas (which might be of inter-
est to some applications). Therefore, the homography we
are looking for has to be computed using correspondences
taken from multiple frames to ensure accurate scene-wide
registration. To address this problem, we use a temporal
buffer (or reservoir) to accumulate enough correspondences
so that a robust model fitting algorithm, RANSAC [9], can
estimate a proper global homography.

In [19], a first-in, first-out (FIFO) circular buffer strat-
egy was adopted to keep 100 frames worth of contour point
pairs. While easy to implement, the primary disadvantage
of this approach is that if the targets of interest remain static
(or do not move much) during those 100 frames, or if the
segmentation is continuously inaccurate, the buffer will be
filled with correspondences that are not representative of the
sought frame-wide transformation. To solve this problem,
we use an identically sized buffer, but instead of follow-
ing a FIFO rule, we replace the correspondences it contains
using a random policy reminiscent of conservative sample
consensus models.

Simply put, given a reservoirR = {p1, p2, . . . , pN} con-
taining N previously found point pairs, for each new point
pair p found by multimodal contour matching, we will ran-
domly pick one of the reservoir pairs and replace it, but
only if it is considered a “persistent outlier”. These per-
sistent outliers can be identified based on the number of
times they were omitted by the RANSAC algorithm during
the estimation of the homography parameters for each new
frame. To keep track of this, we define a voting map, noted
V = {c1, c2, . . . , cN}, which accumulates the inlier/outlier
counts of each point pair (following RANSAC fitting) based

on this logic:

ci =

{
ci + 1 if pi is an inlier according to RANSAC
ci − 1 otherwise

For a new frame, all pairs pi which have negative ci val-
ues are considered persistent outliers. In practice, we de-
termined that with this approach, the proportion of such
outliers is always around 50%, which means that the reser-
voir never saturates and new correspondences can always
be swapped in. We also determined that due to the presence
of our reservoir, even a small shape moving across a lim-
ited portion of the sensor’s field of view can provide enough
contour matches to estimate a good global homography; this
is discussed further in Section 4.

3.4. Homography smoothing

Following the planar ground assumption to simplify
video registration tasks might not always faithfully reflect
the reality of the observed scenes. Therefore, the goal of
our method is not to simply find a good frame-wide homog-
raphy for the entire analyzed sequence, but to make sure that
this transformation adequately aligns the targets of interest,
even when non-planar transformations are involved. Basi-
cally, we are looking for a middle ground between estimat-
ing a timeless, global homography and estimating one that
only focuses on aligning currently visible targets of interest
without regard to previously found homographies or to the
rest of the scene. To achieve this, while processing a pair
of video sequences, we continuously update the homogra-
phy which results in the best registration seen thus far (de-
termined heuristically) using the model parameters found
via RANSAC for each new frame. Under the assumption
that segmented foreground shapes are truly objects of inter-
est, this allows for slightly improved contour alignment in
“almost planar” scenes while minimally affecting the regis-
tration quality of other frame regions. When the analyzed
scene fully respects the planar assumption, the results pro-
vided by this middle ground approach are identical to those
of the global, timeless approach.

First, we describe how the registration quality of a ho-
mography is appraised at run time. The only data which
can be used to assess if a transformation is appropriate are
the foreground shapes obtained by the segmentation step.
Thus, the appraisal metric we use is the overlap error, de-
fined for two foreground shapes Si and Sj (both in the same
coordinate space) as

E(Si, Sj) = 1− #(Si ∩ Sj)
#(Si ∪ Sj)

, (1)

where #(S) returns the pixel count of foreground region S.
Given perfectly segmented targets in a truly planar scene, a
null overlap error would indicate an ideal registration trans-
formation (both shapes are perfectly aligned).



Algorithm 1 Homography smoothing for each frame.
1: if Enew < Ecurr
2: if Enew<Eref ∨ Enew<Ecurr ·2
3: α← 2
4: else
5: α← α+ 1
6: end if
7: β ← α−1

α
8: Eref ← Eref ·β + Enew ·(1− β)
9: Href ← Href ·β + Hnew ·(1− β)

10: end if

As for the smoothing step itself, given a smoothing factor
α (by default, α=2), a newly estimated homography Hnew,
its calculated foreground shape overlap error Enew, a refer-
ence (or “best-so-far”) homography Href , its reference (or
“best-so-far”) overlap error Eref , and finally Href ’s cur-
rent overlap error on the latest foreground shapes Ecurr,
we follow the strategy detailed in Algorithm 1 to smooth
the homography transition between two frames. In sum-
mary, if the new homography Hnew produces an overlap
error Enew smaller than what the reference homography
Href produced on the current foreground shapes (Ecurr),
then the reference needs to be updated. In that case, if the
disparity between the two errors is large enough, or if the
new error is simply smaller than the reference error (Eref ),
the reference homography (Href ) and error value (Eref )
will be replaced by the straight average between them and
their newly found counterparts. Otherwise, they will be re-
placed by a weighted mean which depends on the value of
the smoothing factor (α).

The role of α is to control the weight given to the ref-
erence homography when it is combined with a new one.
It is responsible for automatically balancing our method
between directly using new homographies for each frame
which focus on aligning matched contour points, and con-
verging to a global homography which fits the entire scene
more adequately. The latter case can be achieved when
α→∞, but in practice, this is unlikely to happen; as we
will see in Section 4, our method never truly stops adapting
to newly estimated homographies. Overall, as noted earlier,
this smoothing strategy allows for better alignment of con-
tours when considering “almost planar” scenes, and it helps
quickly stabilize the registration when processing the first
video frames with contour matches.

4. Evaluation
Evaluating how well a method behaves in terms of reg-

istration quality for “almost planar” scenes is not trivial. In
the case of real planar scenes, the sought homography can
be found manually, and registration quality can be evalu-
ated by calculating the distance between points projected

Figure 3: Example of the polygons used for quantitative
evaluation formed with manually identified keypoints in the
ninth sequence pair of the LITIV dataset.

using this homography and the automatically estimated one.
For scenes that do not fully respect the planar assump-
tion, results have to be qualitatively evaluated, or a criterion
based on the degree of overlap of manually identified scene
structures has to be used. Such a criterion is proposed by
Torabi et al. in [22]: for their own visible-infrared registra-
tion dataset, they manually selected points throughout the
frames of their sequence pairs which were easily identifi-
able and matchable, and connected them to create polygons
sets (an example of this operation is shown in Fig. 3). Once
a polygon set is projected into the other’s coordinate space,
the overlap error can be used as the criterion to judge the
image registration quality. By choosing points on scene el-
ements that do not respect the planar assumption, one can
highlight part of the non-rigid transformation that needs to
be modeled by the automatic approach. Using these poly-
gons instead of the segmented foreground shapes to calcu-
late the overlap error eliminates the uncertainty caused by
inaccurate video segmentation, and it allows a better cover-
age of the observed scene.

For our own tests, we also use the LITIV dataset of [22].
However, since the polygons they manually drew for their
quantitative evaluations could not be obtained, we had to
draw our own. To make future quantitative comparisons
between video registration methods easier, we have made
these new polygon sets, the segmentation masks we ob-
tained from [20] as well as our evaluation tools available
online, along with a C++ implementation of our method3.

In total, nine visible-infrared sequence pairs of lengths
varying between 200 and 1200 frames were analyzed.
These were taken with different sensor baselines at various
orientations from the ground plane. Homographies found
by matching manually identified points are provided in the
dataset, and are used in the following figures to illustrate
ground truth global registration results. The authors of [19]
provided us with an implementation of their own method,
which we use as our basis for comparison. For fairness,
both methods rely on the same segmentation results, both
are evaluated using the overlap error defined in (1), and both
use a single parameter set for all sequences.

3Links are given at the end of Section 1.



Figure 4: Registration results obtained at various moments of the first, second and fourth sequence pairs of the LITIV dataset
using our proposed method. The left image in each pair shows the estimated frame-wide registration, and the right shows
foreground shape registration at the same moment. The red dashed polygon shows the estimated transformation applied to
the infrared image boundary, and the green one shows the ground truth transformation applied to this same boundary.

We show in Fig. 4 how our method performs in the first,
second and fourth sequence pairs of the studied dataset. We
can see that for various sensor placements, an acceptable
alignment of foreground shapes is found soon after a tar-
get first becomes visible (this happens at different moments
in each sequence; our earliest results are shown in the left
column). Over time, this alignment is refined to make the
registration of other scene elements possible. For the first
sequence pair (top row), even though the detected targets
only travel in a small portion of the sensor’s field of view, a
very good transformation is found less than 30 frames after
the first appearance of foreground shapes.

For quantitative evaluation, since online video registra-
tion takes time to stabilize, it makes little sense to compare
average error measures that might be affected by important
aberrations present early in the analyzed sequences. Pre-
vious works [19, 22] addressed this issue by either con-
sidering only the minimum errors achieved for each se-
quence pair, or by arbitrarily picking time intervals where
the method is considered “stable”, and computing average
metrics from those. In our case, in order to present a global
view of how our method adapts to each newly estimated ho-
mography, we present error-to-time curves for our method
and compare them to those of [19] in Figs. 5 and 6. The
overlap errors of Fig. 5 are calculated using (1) with the
ground truth polygonal shapes, and the Euclidean distance
errors of Fig. 6 are calculated with the vertices of these
polygons. In both cases, the transformation is applied on
the infrared set, and the common coordinate space is in the

visible image.

From the results shown in Fig. 5, we can note that our
method reaches lower overlap errors faster than [19], stabi-
lizes at those levels more often, and manages to outperform
the ground truth homography in five out of nine sequence
pairs (LITIV-4 and LITIV-6 through LITIV-9). Outperfom-
ing the ground truth is possible because its homography re-
flects a global transformation only ideal for a planar scene,
and the manually drawn polygons, just like the rest of the
scene, do not fully respect the planar assumption. Since
these polygons are partially based on points found on the
targets of interest, transformations that focus on the align-
ment of these targets are more likely to get smaller overlap
errors.

Besides, our method had no trouble estimating frame-
wide registrations for LITIV-7 and LITIV-8, unlike [19],
which was unable to find adequate homographies through
the entire lengths of these sequences. In LITIV-7, we can
see a strong temporary increase in overlap error near the
end of the sequence: this is due to the matching of a single
small shape with a strong shadow which produces outliers
for a long period of time. This error quickly fades as better
homographies are estimated after the target starts moving in
the following frames.

As shown in Table 1, our method reached much lower
minimum errors than [19] in all but one sequence pair
(LITIV-5), where the difference between the two is very
small. In all cases except LITIV-4 and LITIV-7, an homog-
raphy resulting in an overlap error of less than 50% was
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Figure 5: Polygon overlap errors obtained using our method (solid red), the method of [19] (dashed blue), and the ground
truth homography (dotted gray) for the full lengths of all sequence pairs of the LITIV dataset.

Sequence pair Proposed Sonn et al. [19]
LITIV-1 0.187 0.217
LITIV-2 0.106 0.214
LITIV-3 0.108 0.258
LITIV-4 0.118 0.152
LITIV-5 0.172 0.167
LITIV-6 0.069 0.289
LITIV-7 0.091 0.379
LITIV-8 0.137 1.000
LITIV-9 0.095 0.117

Table 1: Minimum overlap errors achieved for all video se-
quence pairs of the LITIV dataset (bold entries indicate the
best result).

found after processing less than 30 frames (after the first
appearance of foreground) containing at least one shape vis-
ible in both fields of view.

The curves illustrating polygon vertices registration er-
rors shown in Fig. 6 generally depict the behavior observed
in Fig. 5, but with a larger gap between our method and [19]
for LITIV-6 through LITIV-9. In three of those cases, the
curves of [19] are mostly outside the 15 pixels error range
of the graphs, but our method reaches 2 or 3 pixels errors
by the end of each sequence pair. We can also notice in
the last graph of this new figure (LITIV-9) that our smooth-

ing approach prevents our solution from locking onto a “de-
cent” homography, and instead continuously refines one to
achieve extremely small registration errors at the end of the
sequence.

As for the computation time, when operating directly
on the foreground shapes provided by the video segmenta-
tion algorithm, our proposed registration method processed
video sequences at speeds varying between 15 and 150
frames per second, depending on the number of targets in
the scene (we used C++ code on a laptop’s 4th generation
Intel i7 CPU at 2.8 GHz).

5. Conclusion

In this paper, we presented an online multimodal video
registration method that relies on the matching of shape
contours to estimate the parameters of a planar transforma-
tion model. We showed that randomly sampling a corre-
spondence buffer and adding temporal smoothing between
estimated homographies can quickly lead to stable results,
and even allow “almost planar” scenes to be registered ad-
equately. Our solution outperforms a recently published
method. It manages to align manually annotated polygon
sets based on scene structures better than the ground truth
homography could in the majority of sequences we tested.
Given adequate target segmentation, this approach could be
used to register image sequences from cameras which are
slowly moving, but still have overlapping fields of view.
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Figure 6: Polygon vertices Euclidean distance errors (in pixels) obtained using our method (solid red), the method of [19]
(dashed blue), and the ground truth homography (dotted gray) for all sequences of the LITIV dataset. Note that the Y axis
has been cropped similarly for all graphs.

It could also be generalized to non-planar registration if
transformations were continuously estimated for each fore-
ground shape.
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