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Abstract

Superpixels enable a scene to be analyzed on a larger

scale, by examining regions that have a high level of simi-

larity. These regions can change depending on how similar-

ity is measured. Color is a simple and effective measure, but

it is adversely affected in environments where the boundary

between objects and the surrounding environment are dif-

ficult to detect due to similar colors and/or shadows. We

extend a common superpixel algorithm (SLIC) to include

near-infrared intensity information and measured distance

information to help oversegmentation in complex environ-

ments. We demonstrate the efficacy of our approach on two

problems: object segmentation and scene segmentation.

1. Introduction

Superpixels transform an image from a relatively mean-

ingless collection of pixels to small regions with similar

characteristics. From the perspective of an autonomous mo-

bile robot, superpixels have a wide range of possible appli-

cations including finding navigable paths [6, 13, 5] and lo-

calizing objects [4]. In order to accomplish tasks such as

these, the superpixel boundaries should closely align with

the contours of the objects in the scene. These contours can

sometimes be quite difficult to find, particularly in outdoor

environments which provide lots of places for an object to

be obscured, either intentionally or unintentionally. Addi-

tionally, the object might be hidden by shadows, or partially

buried. Outdoor environments can also provide a great deal

of clutter, sometimes due to natural textures like long grass

and leaves. Indoor environments present their own chal-

lenges with objects of similar color, harsh lighting (espe-

cially in scenes containing windows), and occlusions. Fig-

ure 1 shows typical indoor and outdoor environments that

are difficult to oversegment. In Figure 1(a), the foreground

is difficult to oversegement since it is washed out, while in

Figure 1(b), difficulties arise from the matching color of the

munitions and grass.

(a) Indoor

(b) Outdoor

Figure 1. Typical indoor and outdoor scenes that are difficult to

accurately oversegment.

One promising way of finding superpixels is with an

algorithm known as SLIC (simple linear iterative cluster-

ing) [1]. SLIC operates by clustering together pixels that

are similarly colored over small regions of the image. By

clustering in this manner, superpixels can be computed ef-
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Figure 2. An example of how SLIC is sensitive to lighting condi-

tions in unstructured environments. Note that the superpixels do

not adhere to the bottom of the black box, nor to the leaves in the

foreground.

ficiently and accurately. Prior work has shown that SLIC

superpixels can be computed in real time via a GPU [14]

(which makes SLIC attractive for autonomous robotics).

Like other superpixel algorithms, SLIC is sensitive to

lighting conditions and clutter: detecting boundaries is chal-

lenging in shadows, both for inside and outdoor scenes. For

example, looking closely at Figure 2, one notices that the

superpixels do not adhere to all the boundaries of the leaves,

nor the bottom boundary of the black case. Examples like

these are typical for autonomous robots, which tend to be

close to the ground, thus producing a low perspective. The

low perspective ensures the bottoms of objects will be in

deep shadow and/or partially buried in the environment. To

facilitate detecting object boundaries we augment the SLIC

algorithm to include information from beyond the visual

spectrum.

The near infrared (NIR) spectrum is a likely candidate

for gathering additional information for oversegmentation

for four reasons. First, NIR images preserve object bound-

aries (e.g., the shape of objects) similar to RGB images.

Second, NIR images show consistent pixel values across a

single material and are not affected by color patterns. Thus,

changes in intensity are not affected by minor color or light-

ing variations in the object. Third, in the near infrared spec-

trum different materials have different intensities due to the

different absorption and reflectance properties of the mate-

rial [11]. For example, chlorophyll [10] and metal strongly

reflect near-IR light while concrete does not reflect nearly as

strongly. Fourth, NIR sensors are becoming more prevalent,

and are easily carried by small autonomous robots. Our ap-

proach ISLIC (Intensity-SLIC) combines information from

the near-IR spectrum with RGB information to improve su-

perpixel boundaries. In particular, we modify the distance

calculation within SLIC to combine NIR information with

RGB information.

2. Related Work

The use of superpixels in both computer vision and

robotics algorithms is quite common. One approach to

finding superpixels is an approach known as normalized

cuts [18]. Normalized cuts operates by building an affinity

matrix, then segmenting along the boundaries where there is

the least amount of affinity. While this produces a segmen-

tation that is highly spatially coherent, it is an expensive and

time consuming operation.

Levinshtein et al. [7] proposed turbo pixels as a more

efficient way to produce plausible, uniformly sized super-

pixels. The algorithm operates by placing initial seeds uni-

formly around the image, then growing these regions over

time. Although it is efficient, is difficult to extend the ge-

ometric constraints to consider additional information such

as intensity and distance information.

The SLIC superpixel algorithm also addresses the speed

of superpixel computation, but with a simple approach that

produces good results and is easy to extend [1]. The basic

approach is to cluster local pixels according to their color

but SLIC does not enforce cluster compactness or uniform

pixel size. It excels in terms of both speed and performance

on testing sets.

Many have proposed to extend superpixels with depth

information. This was used in the context of scene under-

standing by Ren et al. [15]. Weikersdorfer et al. [22] pro-

posed depth adaptive superpixels, which computes super-

pixels in a manner similar to SLIC, but depth is used in

addition to color.

There has been minimal work extending superpixel al-

gorithms to non-visual data. A recent exception is Mas-

soudifar et al. who extended the UCM superpixel algorithm

to hyperspectral images [9]. They use principal component

analysis to combine all the hyperspectral channels of a sin-

gle pixel before performing feature extraction and super-

pixel construction. Thompson et al. [20, 21] used a graph-

based approach to cluster pixels of similar values in hyper-

spectral images.

Turning to the use of NIR data in object identification

and classification, several authors have previously explored

the use of lidar (using the laser as a NIR illumination

source) to classify different types of domains. Sullivan et

al. classified different types of terrain using an RGB-D ap-

proach combining color image segmentation with classifi-

cation from a Hokuyo [19]. Similarly, Wurm et al. devel-

oped a classifier for distinguishing between grass and con-

crete using laser intensity [23]. Kirchner et al. used laser

intensity to classify materials in an industrial setting [8].

Using passive NIR images, Salamati et al. [11, 17, 16]

have examined combined NIR and RGB images for material



classification and semantic segmentation by extracting vari-

ous features (e.g., SIFT) and applying a classifier to identify

either material or the semantic label. Our work differs by

relying on the intrinsic nature of the oversegmentation al-

gorithm rather than computing additional features from the

images before classification. We feel that our approach is

more applicable to the real-time constraints imposed by au-

tonomous robotics.

3. Method

Our superpixel method is an extension of the SLIC su-

perpixel algorithm developed Achanta et al. [1]. SLIC

adapts a localized k-means clustering with a weighted dis-

tance metric. Clusters are initialized by sampling along a

grid (cell size S =
√

N/k where N is the number of pixels

in the image) at roughly equally spaced intervals. During

clustering, pixels that are within a 2S × 2S region centered

around each cluster center are examined, rather than com-

paring with all cluster centers a la traditional k-means clus-

tering. Once each pixel is associated with a cluster center,

the cluster centers are updated to the mean of all pixels be-

longing to that cluster. SLIC repeats these steps until either

the residual error falls below a threshold, or for a fixed num-

ber of iterations.

SLIC depends on a special distance metric D that com-

putes the distance between the cluster center and a given

pixel. The distance metric combines color distance dc and

spatial proximity distance ds which presents a problem.

Since SLIC operates in the CIELAB color space (where

nearby colors are visually similar), possible values for a

pixel’s color [lab]T are bounded while a pixel’s position

[xy]T depends on the size of the image. Thus simply clus-

tering on the five-dimensional vector labxy will cause in-

consistencies in the superpixels. For example, in large su-

perpixels, spatial proximity will dominate color, resulting in

superpixels which do not adhere to image boundaries. The

converse is true for smaller superpixels. Thus, the individ-

ual distances are normalized before combining them into a

single measure D using the normalization constants Nc and

Ns:

dc =
√

(lj − li)2 + (aj − ai)2 + (bj − bi)2 (1)

ds =
√

(xj − xi)2 + (yj − yi)2 (2)

D =

√

(

dc
Nc

)2

+

(

ds
Ns

)2

. (3)

The maximum spatial distance corresponds to the maxi-

mum sampling interval Ns = S =
√

N/K. Normalizing

color is tricky since color distances change from image to

image. Thus, the SLIC authors replace Nc by a constant

m. Varying m and S allows the user to control the trade-

off between color similarity and spatial similarity. The final

distance equation becomes

D =

√

(

dc
m

)2

+

(

ds
S

)2

. (4)

ISLIC modifies Equation 4 to include NIR intensity in-

formation and (possibly) distance information. We include

intensity information by including an additional term in the

distance calculation di, assuming that materials with a sim-

ilar intensity are actually similar. Like above, we include

a normalization constant to balance the effect of intensity

distance with color and spatial distances.

di =
√

(intensityi − intensityj)2 (5)

D′ =

√

(

dc
m

)2

+

(

ds
S

)2

+

(

di
Ni

)2

. (6)

If distance information is available (e.g., from a laser or

Kinect), then we include it to help distinguish object bound-

aries, especially in deep shadow or where the object’s color

matches the background. For example, across the edge of an

object we expect a significant jump in distance as we tran-

sition from the object to the background. We do not include

the distance information zi with the spatial distance term

since we assume the distance is measured in some physical

unit (e.g., meters) rather than pixels. Again, we normalize

the distance by Nz to balance the effects of distance with

color, spatial proximity, and intensity. Thus ISLIC’s final

distance function is:

dz =
√

(zi − zj)2 (7)

D′′ =

√

(

dc
m

)2

+

(

ds
S

)2

+

(

dz
Nz

)2

+

(

di
Ni

)2

. (8)

4. Experiments

We conducted two sets of experiments to show how

adding NIR information into the SLIC distance calculation

can improve boundary accuracy. In the first experiment we

used a scanning lidar as a NIR illumination source to detect

10 objects in various indoor and outdoor environments with

the goal of accurately detecting the object contours. In the

second set of experiments we shifted to detecting contours

at the scene level in an both indoor and outdoor scenes using

passively collected NIR images.



Figure 3. Objects used in our experiments: (left to right, top to bot-

tom) orange box, hard hat, black box, small munition, backpack,

sweatshirt, tool box, video camera case, medium munition, large

munition.

Figure 4. Four environments used in our experiments: (left to right,

top to bottom) grass, upland forest, rainforest, and painted con-

crete.

4.1. Object Segmentation

The first set of experiments sought to quantify the ben-

efit of including lidar information when computing super-

pixels for object segmentation. Figure 3 shows the 10 dif-

ferent objects we placed in four different environments (see

Figure 4). We chose these four environments due to their

significant clutter and shadows which challenge traditional

superpixel algorithms.

4.1.1 Methodology

For this set of experiments we included intensity and dis-

tance information collected from a 3D point cloud.1 Since

1We use a Hokuyo UTM-30 laser scanner, but any laser scanner that

returns intensity information would work.
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Figure 5. Average spectral intensity values for different outdoor

materials. Each curve is the average of 1,000,000 – 3,000,000 data

points collected over a variety of incidence angles.

our laser point clouds are sparse (∼25000 points) compared

to the camera image, we first project the point cloud into

the coordinate frame of the image, and then apply a me-

dian filter (with radius β) to fill-in non-zero values. With

this denser laser cloud, we now compute our two new terms

for Equation 4. The first term, dz , uses the distance to the

superpixel as determined by the point cloud.

The second term, di, is the spectral intensity value of

the superpixel. Most modern laser scanners return intensity

values in addition to range and bearing, and we exploit that

different materials have different spectral reflectance values

which are range dependent. Figure 5 shows the average in-

tensity values for several common outdoor terrains. For ex-

ample, metal and chlorophyll have higher reflectance values

than sand and concrete.

Since the laser terms are highly dependent on the point

cloud, we compute the normalization constants Ni and Nz

based on the input data. For both constants we determine

the maximum intensity and distance values, and then scale

Ni and Nz by 0 < α ≤ 1.

4.1.2 Results

In our first experiment we placed the objects in each of the

four environments (one indoor, three outdoor). For each

object and environment we hand-labeled the actual object

contours, and error is measured using the average distance

from each of the superpixels to the object contour. Note that

this inherently favors superpixels that are compact and that

naturally align themselves to the contours of the object.

We evaluated the performance of SLIC, SLIC + depth

component, and ISLIC. The results are shown in Figure 6.

These results were established using parameters that were

determined experimentally and vary depending on the envi-

ronment.





Figure 8. Example images from the RGB-NIR Database. The top row is the RGB image, the middle row is the corresponding NIR image,

and the bottom row is the output from ISLIC. The first two columns are from the indoor category while the second two columns are from

the urban category.

“noisy” the superpixel boundaries are: cleaner superpixels

result in a lower length value, which translates to sharper

object boundaries (i.e., Occam’s razor). Cleaner superpixels

help with later image processing algorithms such as object

identification.

For these experiments we did not use distance informa-

tion, so we ignored that term in Equation 4. The normaliza-

tion constants, m and Ni, were chosen experimentally for a

given value of S. In the first experiment, we fixed m = 10
and Ni = 10, and computed the average boundary accuracy

and length metrics for both the indoor and urban categories.

Figure 9 shows the results. Interestingly, while NIR by it-

self performs poorly, adding NIR information decreases the

length metric without affecting boundary accuracy. This is

especially true for small number of superpixels. In other

words, adding NIR information results in accurate, clean

superpixels.

Figure 10 shows an illustration of how including NIR in-

formation results in cleaner superpixels for both the indoor

and urban categories. The first column shows the original

image, the second column shows the results from SLIC, and

the third column shows the results from ISLIC. For both the

indoor and outdoor scenes, the boundary accuracy stayed

approximately the same (less than 1% difference) but the

length metric changed significantly when including NIR in-

formation: for indoor it dropped from 195807 to 175092,

and for the outdoor image it dropped from 95994 to 86932.

5. Conclusions

We presented an extension of the SLIC superpixel algo-

rithm that incorporates near infrared information into the

distance calculation. By including non-visual information,

our approach better detects object boundaries, especially in

deep shadow and when the object and background are sim-

ilar in color. Our approach performs well with both active

and passive NIR images.

ISLIC inherits SLIC’s speed due to it searching in small

2S × 2S boxes around each pixel rather than exhaustively

querying all superpixels. During our experiments, we no-

ticed that ISLIC’s distance computation did not signifi-

cantly increase runtime. Thus, ISLIC is applicable to real-

time use on autonomous robots, especially those equipped

with GPUs since ISLIC is clearly parallelizable.

ISLIC is a attractive first step in an image processing

pipeline for robotics since it can reduce the computational

overhead of subsequent algorithms. For example, instead of

applying Chamfer matching to the entire image, we could

apply Chamfer matching to just those superpixel edges

where the superpixel has certain properties (color, laser re-

flectance, etc.)

However, ISLIC is sensitive to parameter selection, par-

ticularly the normalization constants. We are currently re-

searching methods to automatically set these parameters

based on incoming sensor information. Additionally, we

are researching methods to optimize the normalization con-

stants (e.g., hill-climbing, stochastic search), and investi-
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Figure 9. Result for indoor (left) and urban (right) categories. The top row is length and the bottom row is boundary accuracy.

gating how well these optimized constants transfer between

environments.

Our generalization of SLIC to the non-visual spectrum

opens several avenues for future work. One option is incor-

porating hyperspectral and/or thermal information. These

non-visual imagery techniques could allow SLIC to be used

in visually challenging environments such as nighttime and

firefighting. Another avenue for future work in incorporat-

ing auditory information. High-frequency sonar has been

used for vegetation identification [3] and could increase the

environments where SLIC is applicable.
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