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Abstract

In this paper, we propose a novel kernel function for rec-
ognizing objects in RGB-D egocentric videos. In order to
effectively exploit the varied object appearance in a video,
we take a set-based recognition approach and represent the
target object using the set of frames contained in the video.
Our kernel function measures the similarity of two sets by
the minimum distance between the sparse affine hulls of
the two sets. Our kernel function also allows convenient
integration of heterogeneous data modalities beyond RGB
and depth. We extensively evaluate the proposed method
on three benchmark datasets, including two RGB-D object
datasets and one thermal/visible face dataset. All the re-
sults clearly show that the proposed method outperforms
state-of-the-art methods.

1. Introduction

Object recognition is a challenging problem with many
real-life applications. Traditional object recognition has
mainly focused on scenarios where the class of the object
is predicted using only a single image [12, 22, 33]. On the
other hand, due to the widespread use of wearable cameras,
an increasing amount of research interest has been directed
recognizing objects in egocentric videos [10, 11, 28].

In this paper, we consider the problem of recognizing ob-
jects in egocentric videos where both RGB and depth data
is available. To this end, we introduce a new dataset com-
posed of RGB-D egocentric videos capturing daily objects
while they are being manipulated during human activities.
See Figure 1 for examples from our dataset.

In contrast to previous datasets which consist of images
or videos of static objects [8, 9, 24], the appearance of the
objects in our dataset may change significantly due to varied
pose, illumination, and hand occlusion. The objects may
also undergo state changes during egocentric activities. For
example, an apple can be cut into two halves in the “cutting
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an apple” activity.

Although object recognition in egocentric videos has
been previously addressed [ |, 28, 29], they all learned ob-
ject models from individual frames, and little effort was
made towards exploiting the appearance variations as dis-
played in the videos.

The major contribution of this work is a novel ker-
nel function for object recognition in RGB-D egocentric
videos. Instead of considering each frame independently,
we model an object using the set of frames contained in the
video. By measuring the distance between two sets as the
minimum distance between their affine hulls under the spar-
sity constraint, our kernel function is less affected by object
variations and significantly improves performance of object
recognition in egocentric videos.

The proposed kernel function allows convenient inte-
gration of heterogeneous data modalities (RGB, depth, in-
frared, etc.) under the Multiple Kernel Learning (MKL)
[13] framework. In particular, our algorithm is capable of
learning object models that are highly adapted to object pat-
terns such as texture, shape, and thermal radition by assign-
ing appropriate weight to each modality. This proves to fur-
ther improve the recognition performance.

As an important preprocessing step, we show that com-
bining RGB and depth data is extremely useful for segment-
ing target objects in egocentric videos. Our object segmen-
tation algorithm consists of foreground segmentation fol-
lowed by skin removal. Compared to previous segmenta-
tion algorithms that rely on optical flow information [28],
our algorithm is both accurate and efficient.

The rest of this paper is structured as follows. Section 2
briefly reviews related work on video-based object recog-
nition. Section 3 presents our RGB-D egocentric object
dataset. In Section 4, we describe in detail the object seg-
mentation process and the feature representation. We give
details on our object recognition algorithm in Section 5.
Various experimental results are presented in Section 6, fol-
lowed by the conclusion in Section 7.
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Figure 1. We mount the Creative Senz3D camera on the subject’s head to record RGB-D egocentric videos of objects. Our dataset contains
40 object classes each of which has 16~20 instances. The target object in each video sequence is automatically segmented based on RGB

cut a bell pepper

and depth cues.

2. Related Work

Recognizing objects of daily use can provide rich in-
formation about a user’s daily activities. Several authors
[27, 38] had been relatively successful in using RFID tags
for detecting handled objects.

The problem of object recognition in egocentric videos
is driven by the the emergence of wearable cameras. Mayol
and Murray [23] first studied the detection of handled ob-
jects using a wearable camera by color histogram match-
ing. Merler et. al. [24] addressed the problem of recogniz-
ing objects in videos collected in natural environment (in
situ) with training images extracted from the web (in vitro).
Ren and Gu [28] showed that figure-ground segmentation
improved handled object recognition in egocentric video.

The recent advancement in sensing technologies, espe-
cially the introduction of Kinect-style depth sensors, has
greatly facilitated the collection of depth data at relatively
low cost. Several works [20, 21] demonstrated improved
performance in handheld object recognition when combin-
ing RGB and depth cues.

Representing varied object appearance in a video using a
set of frames has demonstrated superior recognition perfor-
mance in unconstrained settings [17]. These methods can
be broadly classified into two categories, parametric and
non-parametric. Parametric methods seek to represent a
set of frames by some parameterized distributions, e.g. sin-
gle Gaussian [30] or Gaussian Mixture Model (GMM) [2],
and then measure the similarity between two distributions
in terms of the Kullback-Leibler Divergence (KLD).

Instead of assuming a parameterized distribution of a
frame set, non-parametric methods usually represent a
frame set using subspace/manifold. Convenient distance
definitions between subspaces/manifolds (e.g., principal an-
gles) largely facilitate the application of off-the-shelf clas-
sifiers such as kNN, SVM [17, 35, 36].

set an alarm clock

cut an apple

peel a banana
- _ drink from a beer bottle

read a book bounce a ball

use a calculator

cut a bell pepper

play billiards wash a bowl

use a cellphone use a camera open a cereal box

move a chair pet a cat cut a cucumber
use a flashlight play chess use a ladle
use 2 hammer swipe a credit card use a mug

use a hand sanitizer throw darts pour water from a pitcher

use a highlighter play flute use a soap

speak to 2 microphone ~ sWing a ping pong racket ¢ 4 soda can

use a pair of pliers play with a Rubik’s cube use a TV remote control

use a stapler drink from a water bottle  5qicczc a toothpaste

use a whiteboard cleaner  lift weight use a towel

Figure 2. A complete list of the object classes in our dataset. The
objects are organized into three groups based on the corresponding
activities.

Recently, [7] proposed to represent a frame set using the
affine hull of the set. Since affine hull typically gives a
rather loose approximation to the actual data distribution,
several regularization schemes have been proposed to con-
strain the affine hull of a set [14, 25, 39].

To the best of our knowledge, this paper represents
the first attempt to apply set-based classification to ob-
ject recognition in egocentric videos. We propose a novel
sparsity-regularized affine hull (SAH) kernel, where the dis-
tance between two sets can be efficiently solved by convex
optimization. Compared to previous regularized affine hull
methods [14, 25, 39], our formulation is more concise, re-
quires less tuning, and admits a global optimum.
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Figure 3. The depth value histogram of a depth frame (left) and the pipeline for segmenting the target object (right).

3. RGB-D Egocentric Object Dataset

We used the Creative Senz3d camera to collect our RGB-
D egocentric object dataset. Creative Senz3d is a compact-
sized camera that records synchronized RGB and depth
video sequence at up to 30fps. The RGB video sequence
has a resolution of 640 x 480, and the depth video sequence
has a resolution of 320 x 240 with an effective range of 0.15
m to 0.99 m. We mount the camera on the subject’s head
such that it covers the area in front of the subject’s eyes.

To collect realistic videos of daily objects, we put to-
gether a list of human activities each of which involves an
unique object class. A total number of 40 object classes are
considered, see Figure 2. There are 16~20 instances for
each object class. Using the camera, we record the subjects
interacting with the objects without giving them detailed in-
structions. The objects’ pose, appearance, and state may
constantly change during the activity, thus giving rise to a
challenging dataset for object recognition.

Depending on the complexity of the activity, the length
of each video sequence varies between 150 and 500 frames,
with an average of around 200 frames. Both the RGB and
depth frames are calibrated using a set of checkerboard im-
ages in conjunction with the calibration tool of Burrus [6].
This also provides the homography between the two cam-
eras, allowing us to obtain precise spatial alignment be-
tween the RGB and depth frames.

Following alignment with the RGB frames, the depth
frames still contain numerous artifacts. Most notable of
these is a depth “shadow” on the left edges of objects. These
regions are visible from the depth camera, but not reached
by the infrared projector pattern. Consequently their depth
cannot be estimated, leaving shadow in the depth frame. A
similar issue arises with specular and low albedo surfaces.
The internal depth estimation algorithm also produces nu-
merous fleeting noise artifacts, particularly near edges. Be-
fore extracting features for recognition, we filtered each
depth frame using the cross-bilateral filter of Paris and Du-
rand [26] to remove these artifacts.

4. Object Features

In this section, we first present an effective object seg-
mentation algorithm (Section 4.1). Then we describe the
object features that will be used for egocentric object recog-
nition (Section 4.2).

4.1. Object Segmentation

In order to extract features that are truly representative
of objects, it is necessary to accurately segment the object
in each video frame. Our segmentation pipeline consists of
two steps, depth-based foreground segmentation and RGB-
based skin removal, see Figure 3.

Foreground Segmentation In egocentric videos where
the target object is manipulated by the subject, the fore-
ground which consists of the hand(s) and target object is
at a closer distance to the camera than to the background.
This suggests that a thresholding operation on the depth
frame can help segment each frame into foreground and
background.

Figure 3 (left) shows the histogram of a depth frame from
“lifting weight”. Note the gap in the histogram that sepa-
rates the frame into foreground and background. An exten-
sive analysis of the egocentric videos in our dataset shows
that the exact position of the separation gap may vary from
video to video and there can be “deceptive” gaps due to the
artifacts in depth frames.

In order to account for the varied statistics of depth
frames, we first convert the histogram of each depth frame
into a non-parametric probability density distribution using
a Gaussian kernel. This helps smooth the histogram and
remove deceptive gaps. To identify the ideal threshold for
segmenting the frame, we then seek the leftmost minimum
of the histogram curve. Finally, a foreground mask is ob-
tained by thresholding the depth frame using the previously
selected threshold. Empirically we find that a histogram of
k = 1000 bins smoothed by a Gaussian kernel of variance
0? = b gives good segmentation results.

Skin Removal To further obtain the mask of the tar-
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get object, we use a skin detector to detect and remove
hand pixels from the foreground region. Our skin detec-
tor combines color and texture analysis. In color analysis,
a bi-threshold classifier is used to label each pixel as skin
given its RGB value. That is, pixels which are above the
high threshold are classified as skin. Then, pixels which
are above the low threshold are also classified as skin if
they are spatial neighbors to a pixel above the high thresh-
old (these thresholds are determined by cross-validation
on groundtruth segmentation). The skin likelihood of a
pixel given its RGB value is determined from a pre-trained
lookup table [16].

Simply applying color analysis gives good skin detec-
tion results for many videos in the dataset, but is still prob-
lematic when the object has skin-like color (e.g., banana).
Therefore, we also perform texture analysis to improve the
skin detection accuracy. In particular, we apply a Gabor fea-
ture based texture classifier on the output of color analysis
in order to distinguish between genuine and fake skin pixels
[19].

Combining color and texture analysis provides high-
quality skin detection, and given the detected skin, all the
remaining pixels in the foreground are classified as belong-
ing to the object.

4.2. Object Features

The appearance of an object may vary from frame to
frame in a video. We extract HOG feature within the rectan-
gular region containing the segmented object to characterize
object appearance of a particular frame. The rectangular re-
gion is first divided in 8 X8 non-overlapping cells. For each
cell, we accumulate a histogram of oriented gradients with
9 orientation bins. Finally, the histogram of each cell is
normalized with respect to the gradient energy in a neigh-
borhood around it. Instead of simply concatenating HOG
features from RGB and depth frame, we treat them as two
heterogeneous data channels. In the following section, we
describe in detail how to learn a robust object model by in-
tegrating the object appearance from different frames and
channels.

5. Modeling Objects in RGB-D Egocentric
Videos

Given a collection of videos { X}, let X} denote the k™
channel of video X’ (RGB, depth, infrared, etc.). Assum-
ing some appropriate kernel function x(X}, X7) for mea-
suring the similarity of the two videos in the £ channel, a
multi-channel SVM classifier for recognizing a novel video
X can be written as

N
F(X) =sign(}_ aigikK(X', X) +b) ()

i=1

where y; € {—1,1} is the label for X*, K(X*, X) =
Zszl wi - £(X 1, Xy) is a compound kernel constructed
from a weighted sum of x (X7}, X}), pu is the weight for
the k™ channel. Note that Eq. 1 only defines a binary clas-
sifier and can be extended to multi-class classification using
the one-vs-all approach.

5.1. A Novel Kernel Function

While previous methods commonly use a single frame
to represent an object, we propose to use the whole set of
frames of a video to cover complex variations of an object.
In particular, we write X} = [z1, @2, -,y € RIXP,
where x,,, € Rd, 1 < m < p, is the feature vector from the
m" frame of X }C Given two sets of features X ZC € R¥xp
and X i € R%%4_ we define our kernel function based on
the notion of affine hull.

Mathematically, the affine hull of a set S is the set of
all affine combinations of elements of S, i.e. aff(S) =
{>_; Bisilsi € S,>_,;Bi = 1}. It provides a unified ex-
pression for “unseen” elements of S. Cevikalp er al. [7]
proposed to define the distance between two sets as the min-
imum distance between their affine hulls, i.e.,

D(X, X]) = Jnin, || X35 X8l

k> Mk

P q
st. Y Bim=1and Y Bl =1 (2b)
m=1 n=1

where ﬁ,i € RP and ,Bi € R? are the affine coefficients for
X and X ,z, respectively. However, the affine hull may turn
out to be an overestimate of extent of a set, especially when
it comes to visual recognition problems[|5].

Motivated by the recent success of sparse representation
techniques [37], we introduce sparsity regularization terms
on affine coefficients, i.e.,

{8, B} + arg min | X}8; — Xi8] |3+
Bi, B,
ABil + A\ BLI (3a)

P q
st. Y Bin=1and > gl =1 (3b)
m=1 n=1

where |-|; denotes the [-norm of a vector and is known for
its sparsity-inducing properties. Under /;-norm regulariza-
tion, the unseen feature is restricted to be a weighted sum
of just a few existing features; this sparse representation is
supported by the fact that the varied appearance of an ob-
ject lies in a low-dimensional subspace [3]. Compared to
previous regularized affine hull models (e.g., [7, 14]), our
model is more concise, requires less tuning, and is jointly
convex with respect to 3; and B;.. The global solution can
be efficiently solved by the Alternating Direction Method
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of Multipliers (ADMM) algorithm [5]. See the appendix
for details.

Given the minimum distance between sparse affine hulls,
the kernel function is defined as

o 1 o
(X, X3) = exp (— ;D(X;i,X';l)) )

where D(X}, X}) = || X} 8L~ X} 31|13, and 7 is the mean
value of D(X},, X}) in the training examples.

5.2. Integration of Heterogeneous Data Modalities

While it is possible to determine appropriate weights 15
for different data modalities via cross-validation, this ap-
proach quickly becomes infeasible as the number of object
classes increases. Inspired by the idea of Multiple Kernel
Learning (MKL) [13], we thus propose to jointly learn
and other SVM classifier parameters by solving

K N
1 )
Mggﬂiﬂ(; puillwr2)* + c;@ (52)
K .
st yi(d_ mwi o(X}) +b) > 1-& (5b)
k=1
K
Zuk =1 and pg >0, Vk (5¢)
k=1
& >0, Vi (5d)

where ¢(X!) is the mapping function satisfying
K(XE,XE) = ¢(X)Te(XE). The algorithm from
[31] is used to optimize the parameters. To perform
multi-class classification, we learn class-specific param-
eters {p$, wg, &5, b} for each object class ¢ using the
one-versus-all approach.

6. Experiment

In this section, we first verify the accuracy of the ob-
ject segmentation algorithm. We then evaluate the proposed
egocentric object recognition algorithm on three benchmark
datasets.

6.1. Object Segmentation

Object segmentation serves an important role in extract-
ing features only from target object. In this section, we
evaluate the accuracy and efficiency of the proposed ob-
ject segmentation algorithm. To this end, we randomly se-
lect a set of RGB-D frames from our dataset (10 RGB-D
frames for each object class, 400 RGB-D frames in total)
as our validation set. Groundtruth hand and object masks
are obtained by means of manual annotation. We per-
form three experiments: 1) FG: foreground segmentation;
2) H/O-1: hand/object segmentation given the groundtruth

| FG H/O-1 H/O-2
precision 0955 0927 0919
recall 0981 0.959 0.942
F1 score 0.968 0943  0.930
time (sec/frame) || 0.028 0.272  0.281

Table 1. The performance of foreground segmentation and
hand/object segmentation. FG: threshold based foreground seg-
mentation. H/O-1: skin-detection based hand/object segmentation
given the groundtruth foreground. H/O-2: skin-detection based
hand/object segmentation given the foreground produced by FG.

foreground; 3) H/O-2: hand/object segmentation given the
foreground produced by FG. All experiments are run on a
standard PC with 3.40 GHz Intel Core 17 processors and 8
GB RAM.

Table 1 gives the results. For foreground segmentation,
FG gives an F1 score of as high as 96.8% while being
extremely efficient (0.028 sec/frame, or 35.7 frame/sec).
As for hand/object segmentation, H/O-2 performs approx-
imately the same as H/O-1, indicating that skin detection
is not affected much by the errors introduced in automatic
foreground segmentation. A close look at the hand/object
segmentation results reveals that illumination affects skin
detection more than any other factor. For example, our skin
detector tends to give a low recall in environments such as a
dark stairway. As part of future work, we expect to improve
skin detection by explicitly modeling illumination changes.

6.2. Evaluating the Object Recognition Algorithm

In this section, we present various experimental results
of object recognition. We compare the proposed algorithm
to two single-frame based classification algorithms (1 and
2), and four set-based classification algorithms (3 ~ 6):

1. Locality-constrained Linear Coding (LLC) [34];
Hierarchical Matching Pursuit (HMP) [4];
Discriminant Canonical Correlation (DCC) [17];
Manifold Discriminant Analysis (MDA) [35];

Affine Hull based Image Set Distance (AHISD) [7];
Sparse Approximated Nearest Points (SANP) [14];
Sparse Affine Hull Kernel (SAH).

N kWD

The implementation of all these algorithms are available
in the authors’ website. For LLC, we followed the setup in
[34], that is, we trained a codebooks with 4096 bases, and
used 4x4, 2x2 and 1x1 sub-regions for SPM. For HMP,
we follow the parameter settings as specified in [4]. Specif-
ically, two-layer hierarchical matching purpuit is used. We
set the number of the filters to be 3 times the filter size in the
first layer and to be 1000 in the second layer. We use batch
orthogonal matching pursuit to compute sparse codes. We
set the sparsity level K in the two layers to be 5 and 10,
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Table 2. The object recognition accuracy on the REO dataset. set size denotes the number of frames sampled from each video sequence.
SAH-equal and SAH-learned denotes using equal weights and learned weights to integrate the RGB and depth data channels, respectively.

setsize | LLC  HMP DCC MDA AHISD SANP | SAH -equal SAH - learned
50 0.632 0.639 0.707 0.752 0.742 0.763 | 0.798 0.811
100 0.663 0.648 0.734 0.772 0.758 0.782 | 0.813 0.846
all 0.699 0.689 0.773 0.814 0.769 0.794 | 0.821 0.859
! "I E=1reE Channel channel, and SAH-learned, which uses learned weights for
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Figure 4. The RGB and depth channel weights learned for differ-
ent object classes.

respectively. For DCC, the embedding dimension and sub-
space dimension is set to 100 and 10, respectively. 10 max-
imum canonical correlations are used to calculate set simi-
larity. For MDA, the parameters are tuned for each dataset
as specified in [35]. For AHISD, linear kernels are used and
the subspace dimension is set by retaining enough leading
eigenvectors to account for 98% data variance as in [7]. For
SANP, the reconstruction weight parameter \; is fixed as
0.1, and the sparsity weight parameters Ao and A3 is adap-
tively determined. For SAH, the sparsity penalty parameter
Ais set to 10.

For algorithms 1 ~ 6, we concatenate the features from
the RGB and depth channel to represent object appearance.
For single-frame based classification algorithms 1 and 2, the
accuracy is calculated as the proportion of correctly classi-
fied frames in the whole testing set.

We test the above algorithms on two RGB-D object
datasets, our RGB-D Egocentric Objects (REO) dataset and
the University of Washington RGB-D Objects (UWRO)
dataset [18]. We also perform experiments on a ther-
mal/visible face dataset, that is, the IRIS Thermal/Visible
Face (ITVF) dataset [1].

6.2.1 Results on the REO Dataset

We perform our experiments using 10-fold cross-validation.
Since the performance of set-based recognition depends
critically on the set size, we thus vary the set size by ran-
domly sampling frames from each video sequence and see
how recognition accuracy changes (3 different set sizes are
used, i.e., 50, 100, all). As for single-frame based recogni-
tion, the set size determines how many frames are extracted
from each video for training/testing. To verify the impor-
tance of proper integration of heterogeneous data modali-
ties, we test two versions of the proposed algorithm, SAH-
equal, which uses equal weights for the RGB and depth

the RGB and depth channel. Table 2 lists the results.

As can be seen, set-based recognition algorithms out-
perform single-frame based recognition algorithms, and all
algorithms have improved performance with increased set
size. This is expected because the more frames used for
modeling the object appearance, the more robust the classi-
fier is to the object appearance variations.

Both SAH-equal and SAH-learned achieves higher
recognition accuracy than other algorithms. It is also worth
noting that with a set size of just 100 frames, SAH-learned
is capable of achieving higher accuracy than all other algo-
rithms with a set size of all. This can be attributed to the
benefit of learning proper weights for heterogeneous data
integration. Figure 4 plots the learned weights of the RGB
and depth channel for a subset of object classes. As ex-
pected, for objects with rich textures (e.g., cereal box and
Rubik’s cube), the RGB channel plays a more important
role, whereas textureless objects (e.g., bowl and mug) rely
more on the depth channel.

6.2.2 Results on the UWRO Dataset

UWRO contains 300 daily objects organized into 51 cate-
gories. For each object, it is placed on a turntable which
revolves at a constant speed. Then, RGB-D videos are
recorded at 20 fps with three cameras mounted at three dif-
ferent angles relative to the turntable (30°, 45°, 60°). Each
video contains around 250 frames, giving a total number of
250,000 RGB-D frames in the dataset. Compared to objects
in REO, objects in UWRO have consistent illumination and
are not occluded or modified by hands.

Following the experimental settings in [18], we per-
form object recognition at two levels, category-level and
instance-level. Category-level recognition is to determine
the category of objects (e.g., mug v.s. apple). Instance-
level recognition is to recognize whether an object is phys-
ically the same object that has previously been seen (e.g.,
Alice’s mug v.s. Bob’s mug). For category-level recog-
nition, we randomly leave one object instance out from
each category for testing, and train models on the remaining
300 — 51 = 249 objects. We report the accuracy averaged
over 10 random train/test splits. For instance-level recogni-
tion, we train models on videos captured from 30° and 60°
angle, and test them on the videos of 45° angle.



Table 3. The object recognition accuracy on the UWRO dataset. set size denotes the number of frames sampled from each video sequence.
cate. denotes category-level recognition, and inst. denotes instance-level recognition.

set LLC HMP DCC MDA AHISD SANP SAH - learned
size || cate. inst. cate. inst. cate. inst. cate. inst. cate. inst. cate. inst. cate. inst.

50 0.632 0.668 | 0.812 0.738 | 0.827 0.774 | 0.852 0.769 | 0.842 0.749 | 0.821 0.804 | 0.901 0.847
100 || 0.663 0.607 | 0.829 0.768 | 0.844 0.792 | 0.872 0.807 | 0.856 0.793 | 0.839 0.826 | 0.913 0.882
all 0.678 0.634 | 0.849 0.792 | 0.873 0.852 | 0.914 0.843 | 0.883 0.834 | 0.842 0.841 | 0.924 0.908

Table 4. The face recognition accuracy on the ITVF dataset. SAH-equal and SAH-learned denotes using equal weights and learned weights

to integrate the RGB and depth data channel, respectively.

LLC HMP DCC MDA AHISD

SANP | SAH - equal SAH - learned

0939 0949 0973 0914 0.969

0.842 | 0.962 0.989

The results are given in Table 3. As can be seen, the
proposed algorithm, SAH-learned, outperforms all other al-
gorithms in both category and instance recognition. Exam-
ination of the learned weights shows that RGB channel is
more effective than depth channel for both category and
instance recognition. However, depth channel is relatively
more effective in category recognition, while RGB channel
is relatively more effective in instance recognition. This is
expected, since a particular object instance has fairly consis-
tent texture across views, while objects in the same category
can have different texture. On the other hand, shape tends
to be stable across many instances of a category.

6.2.3 Results on the ITVF Dataset

ITVF is a dataset of face images acquired with thermal and
visible light sensors. There are 31 subjects in this dataset.
For each subject, 8 sets of face images are captured corre-
sponding to 3 facial expressions (surprise, anger, and laugh-
ing) and 5 lighting conditions (left light on, right light on,
both lights on, both lights off, dark room). In each set, ther-
mal and visible face images are captured at 11 poses.

In our experiment, we randomly leave one set out from
each subject for testing, and train models on the remaining
31x(8-1) = 217 sets. For each set, the set size is all, i.e.,
all 11 thermal & visible frames are used. We report the ac-
curacy averaged over 10 random train/test splits. Faces in
the thermal images are localized using the bi-modal thresh-
olding algorithm in [32]. Faces in the visible images are lo-
calized using the Viola-Jones face detector [33]. We extract
HOG features from the rectangular face region to represent
face appearance in the thermal and visible images. For al-
gorithms 1~6, thermal and visible HOG features are con-
catenated to form a single feature. For SAH-equal, thermal
and visible features are integrated by equal weights. For
SAH-learned, thermal and visible features are integrated by
the MKL framework.

The results are given in Table 4. As can be seen, SAH-
learned gives the highest recognition accuracy. The visible

channel has an average weight of 0.736 across the 31 sub-
jects, which is much higher than that of the thermal infrared
channel (0.264). Nonetheless, the complementary effects
of thermal infrared channel are quite important — when only
using the visible channel, our recognition algorithm tends to
fail at test cases from the dark room setting, and the overall
recognition accuracy would drop to 0.941.

7. Conclusion

This paper focuses on the problem of recognizing objects
in RGB-D egocentric videos. Our recognition method con-
sists of two stages: 1) The target object is first segmented
by exploiting the RGB and depth cues; 2) Then a novel ker-
nel function is used to classify a set of features correspond-
ing to the varied object appearance in the video. Using our
kernel function, the similarity between two sets of features
is measured by the minimum distance between their sparse
affine hulls. Our kernel function also allows convenient in-
tegration of heterogeneous data modalities. We compare the
proposed classification method to single-frame based meth-
ods and other set-based methods on three datasets, includ-
ing two RGB-D object datasets and one thermal/visible face
dataset. All experimental results clearly show that the pro-
posed method outperforms state-of-the-art methods.

A. Solving Eq. 3

Let us denote A = [X},—X}] € R>W+td) 3 =
i 1 c
ﬂ’;eRPﬂ,e: e R, C = | €
IBk 1 Co

p q
R2X(+d) ¢ = 1,1,---,1,0,0,--- ,0] € R1%(p+a),
q p
co = [0,0,---,0,1,1,--- ,1] € R>*(P+9)_ Eq. 3 can thus




be rewritten as

B mgmin | 4B+ AB: (60)

st. CB=ce (6b)

Since Eq. 6 is a convex problem, the joint convexity of
Eq. 3 w.rt. 3) and 3], is proved, and the global solution
can be solved by iterative optimization procedures such as
ADMM [5].
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