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Abstract

Feature and metric researchings are two vital aspects
in person re-identification. Metric learning seems to have
gained extra advantages over feature in recent evaluations.
In this paper, we explore the neglected potentials of feature
designing for re-identification. We propose a novel and
efficient person descriptor, which is motivated by traditional
spatiogram and covariance descriptors. The spatiogram
feature accumulates multiple spatial histograms of different
image regions from several color channels and then
extracts three descriptive sub-features. The covariance
feature exploits several colorspaces and intensity gradients
as pixel features and then extracts multiple statistical
feature vectors from a pyramid of covariance matrices.
Moreover, we also propose an effective and efficient
multi-shot re-id metric without learning, which fuses
the residual and coding coefficients after collaboratively
coding samples on all person classes. The proposed
descriptor and metric are evaluated with current methods
on benchmark datasets. Our methods not only achieve
state-of-the-art results but also are straightforward and
computationally efficient, facilitating real-time surveillance
applications such as pedestrian tracking and robotic
perception in various dynamic scenes.

1. Introduction

Person re-identification (re-id) aims to identify an indi-
vidual in different time, locations or different views, con-
sidering a large set of candidate targets recognized before.
It has attracted much attention recently for its vital impor-
tance, especially in video surveillance for tasks such as per-
son retrieval, long-term pedestrian tracking [8], and robotic
perception. For example, an interesting android APP called
Insight has been developed on the famous Google Glass to
recognize and re-identify certain persons in market or air-
port [22]. Person re-id is a non-trivial problem due to many

uncontrollable variations in illumination, viewpoint or oc-
clusion, which usually make intra-personal variations even
larger than inter-personal variations.

Existing re-id solutions focus either on designing proper
features [6, 7, 11, 15, 16] or on learning distance metrics
from training samples [17, 19, 20, 36]. On the whole, lean-
ing based methods (i.e. metric learning or feature learning,
supervised or unsupervised learning) have gained increas-
ing advantages over pure feature based methods in recent
re-id evaluations [19, 20, 32]. However, their results may be
more biased by parameter selection, thus making them less
generic or flexible to different scenarios. In real-time on-
line applications, the extra big-data labeling, the expensive
training complexity of time or storage, and the unavoidable
over-fitting or retraining are often not favored. On the con-
trary, the feature based methods suffer no such troubling
issues. Though more practical and generic, feature based
methods seem to be underestimated and attract much less at-
tention in very recent years. The reason behind is that their
results haven’t got significantly improved since the earlier
famous SDALF feature in 2010 [7] and the results can’t out-
perform or even compete with recent learning based meth-
ods.

Learning models undoubtedly deserve more research for
their greater potentials but the feature designing should not
be ignored in the meantime. It’s not just an important re-
id approach, but also an indispensable step or precondition
for later distance computing. With more excellent features,
metric learning methods may be expected to achieve bet-
ter than just adopting ordinary features. However, many
feature based methods choose to combine with SDALF for
better results, but SDALF’s feature extracting and matching
actually cost massive computing time. The adopted heavy
preprocessing measures (e.g. foreground extraction) make
SDALF and related methods inefficient and unpractical.

In this paper1, we attempt to explore the neglected
potentials for feature designing strategy and try to

1Code is released at https://github.com/Myles-ZMY/HSCD
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win one round back ambitiously even against learning
methods. Specifically, we present a novel efficient
person re-id descriptor named HSCD , which is short
for Hybrid Spatiogram and Covariance Descriptor. As
the name suggests, HSCD is fused with a spatiogram
feature and a covariance feature. Motivated by the excellent
representation ability of spatiogram in tracking [5], a spatial
histogram based feature named MCSH (Multi-Channel
Spatio-Histogram) is constructed. The spatiograms are
firstly calculated and accumulated on several different
image layers/regions within multiple color channels. Then
the histogram and two distinctive spatial statistical vectors
are creatively decomposed from these spatiograms and are
further combined. Then motivated by the Sigma Points
[10] from covariance matrix, a covariance based feature
named MSPC (Multi-Statistics on Pyramid of Covariance)
is proposed. Multiple color and gradient components are
used as pixel features to compute the pyramid of region
covariance matrices. Then four vectorized statistic features
are extracted from each covariance for people description,
which depict all pixel features’ mean, deviation, correlation
and Sigma vector.

Besides, to deal with the multi-shot case where multiple
images for each person are available, we further investigate
the collaborative representation scheme which utilizes cod-
ing samples of all person classes. Still, without using learn-
ing strategy, both the coding residual and coefficients are
proposed to combine for an efficient multi-shot metric.

The contributions of our paper are two-folds. Firstly, the
proposed HSCD descriptor is straightforward and efficient.
It possesses good intra-class invariance and does not
require complicated preprocessing, outperforming all other
feature based methods and most of learning based methods
on the VIPeR [7] and iLIDS [6] datasets. Secondly, the
multi-shot method with HSCD descriptor and multi-shot
metric also achieves significant result on the Caviar4reid
dataset [6] with rather small computational cost. Above
all, the performance of our methods can get significantly
improved without learning models, which demonstrates the
great potentials of feature designing and other strategies.

The rest of the paper is organized as follows. Sec. 2 gives
a taxonomy of the present re-id literature. Sec. 3 details our
HSCD descriptor. Then multi-shot metric is introduced in
Sec. 4. Experiments on three public datasets are reported in
Sec. 5. Finally, conclusions are drawn in Sec. 6.

2. Related Work
Feature extracting and distance computing are two suc-

cessive steps of person re-identification. According to dif-
ferent emphasis, existing re-id work can be roughly separat-
ed into feature based and distance based approaches. Fea-
ture based methods focus on designing or selecting excel-
lent features and may adopt some regular distances. Dis-

tance based methods focus on learning discriminative met-
rics from training samples with some ordinary features.

In feature based methods, several dividing criteria exist,
such as 1) global or patch-based features; 2) low-level,
mid-level or semantic features; and 3) feature designing
(or handcrafting), feature selection, or feature learning.
The commonly exploited features include color, texture
and keypoints. Different proper features can be fused and
preprocessing steps may also be employed. Farenzena et al.
[7] proposed the famous SDALF method which combined
weighted HSV histogram with stable color region and
salient texture. The later CPS [6] and SCEAF [11] methods
both tried to improve SDALF with detected human parts
or structural constraints. Ma et al. proposed novel LDFV
[15] and eBiCov [16] descriptors based on fisher vectors
and bio-inspired features. Bak et al. [2] extracted spatial
covariance matrices of body parts for features. Xu et al.
[28] represented the body as an articulated assembly of
compositional parts and matched the assembly by cluster
sampling. Gray et al. [9] used AdaBoost to select a
subset of features for matching persons. Bak et al. [1]
selected the most descriptive features by correlations in
a covariance metric space. Zhao et al. [32] learned an
unsupervised saliency model for patch matching and then
combined with SDALF to form the better eSDC method.
Recently Zheng et al. [35] proposed to evaluate feature
effectiveness in a query-adaptive manner and observe
consistent improvement by fusing multiple effective
features.

In distance based methods, metric learning is formulat-
ed to learn the optimal similarity between a pair of person
images. Zheng et al. [36] introduced a Relative Distance
Comparison (RDC) model to maximize the probability of a
pair of true matches having a smaller distance than a wrong
match pair. Mignon and Jurie [17] proposed a new PCCA
approach from sparse pairwise constraints. Kostinger et al.
[12] introduced a KISSME metric from equivalence con-
straints based on statistical inference. Tao et al. [20] fur-
ther presented regularized smoothing KISS (RS-KISS) by
integrating smoothing and regularization techniques. Peda-
gadi et al. [19] applied PCA to reduce dimension and used
Local Fisher discriminative analysis (LF) to match the visu-
al features in a low dimension. The high dimensional fea-
tures can thus be represented in an efficient way and achieve
high performance. Some works consider both feature and
metric learning. Zhao et al. [31] estimated patch salience
and matched it with a unified RankSVM model. Li et al.
[13] proposed a deep filter pairing neural network to jointly
learn feature, metric and photometric transformation direct-
ly from data.

Besides, multi-shot re-id is attracting researchers’ inter-
est because multiple images for each person are often avail-
able rather than just one image in the single-shot case. How



to exploit the sample set of each person for better result ap-
peals a new re-id approach. Bazzani et al. [4] introduced
Asymmetry Histogram Plus Epitome (AHPE) feature to in-
corporate global and local appearances of multiple images.
Bak et al. [3] combined information from multiple images
to obtain a signature named Mean Riemannian Covariance
Grid (MRCG). The recent LCSA and CRNP methods pro-
posed by Wu et al. [25, 26, 27] model the sample set of each
person as a affine hull. The geometric distance between two
hulls was computed by sparse or collaborative representa-
tion on all gallery samples.

3. The Proposed HSCD Descriptor
The proposed feature representation is constructed based

on the simple idea that only useful feature components and
descriptors should be exploited and properly fused for en-
hancement. Several color spaces, gradients, and patch ex-
traction based on human structure are considered to be use-
ful. Since spatiogram and covariance descriptors have been
acknowledged and widely used for their excellent represen-
tation abilities, they are adopted and adapted here according
to the challenges in the re-id domain.

3.1. MultiChannel SpatioHistogram

Accumulation of Spatiogram. Spatiogram is an excellen-
t image descriptor which has been well applied in object
tracking [5]. It is a generalization of the histogram but cap-
tures richer target appearance information. It includes high
order spatial moments, which can be expressed as below for
an image region R with B quantization bins

SR(b) =< n̂b,µb,Σb >, b = 1, 2, · · · , B

nb =
∑N

k=1
δkb , n̂b = nb

/∑B

i=1
ni

µb =

(∑N

k=1
ckδkb

)/
nb

Σb =

[∑N

k=1
(ck − µb)(ck − µb)

T
δkb

]/
nb

(1)

where N is the total pixel number of region R, ck =
(xk, yk)

T is the k-th pixel’s coordinate in region R.
δkb = 1 if pixel k is within the b-th bin, or else δkb = 0. nb

is the count of pixels whose value belong to b-th bin in the
quantified color (or feature) space (i.e. b-th bin histogram).
For each bin b, SR(b) includes a normalised histogram n̂b,
a spatial mean vector µb and a spatial covariance matrix
Σb.

The spatiogram similarity metric ρ is usually based on
the Bhattacharyya distance of histogram and weighted by
the pixel’s spatial position information as in [5]

ρ(S,S′) =
∑B

b=1 φb

√
n̂bn̂′

b
(2)

Figure 1. The proposed layers and regions. From left to right:
original image, the chosen image centre and its four layers.

φb = η exp{−1
2 (µb − µ′

b)
T Σ̂−1

b (µb − µ′
b)} (3)

where the weight φb is the b-th bin’s spatial similarity be-
tween two spatiograms S and S′, (2) will become the Bhat-
tacharyya distance if all φb = 1, η is a Gaussian constant,
and Σ̂−1

b = Σ−1
b + (Σ′

b)
−1.

The spatiogram is often calculated on the whole image
region within a single colorspace, which lacks robustness.
Since re-id often assumes that people wear the same clothes,
several colorspaces are jointly considered and the adopted
spatiogram is enriched with more regions and color chan-
nels. The exploited channels are selected as Y, Cb, Cr, H,
S, nR, nG, nB, which are from the YCbCr, HSV, and nor-
malized RGB colorspaces (i.e. nR=R/(R+G+B), etc.). The
employed statistical regions of four layers are illustrated in
Figure 1, where the centre area is chosen as the top layer to
reduce some background affection and the four layers have
1, 2, 4, and 8 horizontal regions. The statistical bins on
each region from the top to the bottom layer are set as 32,
24, 16 and 8 for a hierarchical quantization. Though above
parameters may not be optimal but are proved quite good
approximate solutions in our supporting tests. By accumu-
lating spatiograms on all these regions among 8 channel-
s, the proposed spatiogram feature with total 1664 bins is
formed (i.e. 1664 = 8×(32×1+24×2+16×4+8×8)).
Decomposition of Spatiogram. Through preliminary ex-
periments, the spatiogram feature proposed above wasn’t
so efficient. Firstly, the traditional metric in (2) uses spa-
tial Gaussian model to enhance the histogram metric, which
involves complicated computation. Besides, the spatial in-
formation of the horizontal x axis and the vertical y axis
are actually not equally useful, which can be illustrated in
Figure 2. From two images of a same person, two patches of
the same coordinates are extracted, the brightest pixels (i.e.
the white stripe) are plotted and modeled as two ellipses.

As revealed in Figure 2, the spatial information of y axis
exhibits much better intra-class invariance than x axis due
to viewpoint or pose variations. In fact, we extract only hor-
izontal regions on each layer in Figure 1 with the same con-
sideration. And our preliminary tests supported that using
vertical regions usually achieved decreased results. There-
fore, we ignore the trivial x axis and decompose the spa-
tiogram into three vectorized parts, which include the his-
togram, the first and the second order spatial information
(i.e. the mean and the standard deviation vector) of y axis.
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Figure 2. Spatial distributions of two patches’ brightest pixels.

The traditional spatiogram in (1) can thus be simplified as

S(b) =< n̂b, µby, σby >, b = 1, 2, · · · , B
S = {h = {n̂b};µy = {µby};σy = {σby}, b = 1 ∼ B}

µby =
1

nb

∑N

k=1
ykδkb, σby =

√
1

nb

∑N

k=1
(yk − µby)

2
δkb

(4)
Above three vectors h, µy , and σy in (4) stand for three

different kinds of features which are rather complementary.
They constitute a simplified but more distinctive spatiogram
descriptor, which is denoted as Multi-Channel Spatial His-
togram (MCSH) in this paper.

3.2. MultiStatistics on Pyramid of Covariance

Pyramid of Region Covariance. Region covariance matrix
is a matrix of covariance of several image statistics calculat-
ed in an image region. By extracting d dimensional feature
vector zi from each pixel at (x, y) with a mapping function
U, region R can be represented by a covariance matrix CR,
where µ =

∑n
i=1 zi/n and n is the total pixel number.

CR =
1

n− 1

∑n

i=0
(zi − µ)(zi − µ)

T (5)

The performance of covariance depends on the employed
pixel features in the mapping function, the calculated re-
gions and the covariance distance. Similarly as MCSH, sev-
eral colorspaces (YCbCr, HSV, Lab, nRGB) are jointly used
to construct U together with spatial and gradient features.

U(x, y) = [y, Y, Cb, Cr,H, S, a, b, nR, nG, Yx, Yy, Yxx, Yyy]
T

(6)
where y axis is used for pixel spatial position regardless of
the useless x axis (as revealed in Figure 2). Y stands for the
intensity channel, so other intensity channels V and L are
not used again for a compact mapping function. Similarly,
one redundant channel nB is omitted in the covariance as
nRGB is a normalised colorspace. The last four channels
represent the first and the second order intensity gradients.

Since a global image region is not discriminative enough
to describe a person image, a four-layer pyramid of region
covariance matrices (only the y axis) within the image cen-
tre area is proposed. The pyramid is almost the same as in

Figure 1 except in the third layer where 4×2 patches are
extracted, forming total 19 image regions. We adopt similar
regions because both features can share part of computing
and avoid calculating repeated color channels or regions.
Combining Covariance Statistics. Unlike vector feature,
covariance matrix does not lie in the Euclidean space. The
distance proposed in [21] is often used to measure the dis-
similarity of two covariance matrices.

ρ(C1,C2) =

√∑d

i=1
ln2λi(C1,C2) (7)

where λi(C1,C2) are the generalized eigenvalues of two
matrices. Bak et al. [2] proposed to sum up all the co-
variance distances between respective regions in two im-
ages and then discarded 20% of the larger distances. How-
ever, this measure for covariance pyramid is not discrimi-
native enough because it is almost equivalent to the average
of several covariance distances. It’s also too expensive as it
involves complicated eigenvalue calculating.

Motivated by the Sigma Set or Sigma Points [10] that
are converted from covariance matrix and lie in Euclidean
space, we attempt to extract useful parts from covariance
and avoid the direct use of above strategy. Four vectorized
statistical features are proposed to form a simpler but more
descriptive representation, which are detailed below.

The first statistical feature for region descriptor is
called Sigma vector (i.e. vectorized Sigma points).
It’s a d(d+ 1)/2 dimensional vector constructed by
vectorizing the lower triangular matrix L after the
Cholesky decomposition of covariance matrix as in [10],
C = LLT. And d = 14 since we adopt the mapping
function in (6). The second one is the d dimensional mean
vector µ in (5), which captures the first-order information.
The third one is the d dimensional standard deviation
vector. It can be extracted from the diagonal entries of
the covariance, reflecting the varying extents of adopted
pixel features. The last one is the d(d− 1)/2 dimensional
vector constructed by vectorizing the lower triangular
matrix (excluding the diagonal entries) of the normalized
covariance matrix, i.e. the correlation matrix. It can
represent the correlation coefficients between employed
pixel features in (6).

By cascading on all the covariances of the pyramid
regions, four vectorized sub-features are thus formed to
jointly describe a person image. These four sub-features are
denoted as f1, f2, f3, f4 and are gathered to form the MSPC
descriptor F = {fi, i = 1, 2, 3, 4} (or Multi-Statistics
on Pyramid of Covariance) with 4256 dimensions (i.e.
4256 = [d(d + 1)/2 + d+ d+ d(d - 1)/2]× 19, d = 14).

3.3. The Fused HSCD Descriptor

Although MCSH and MSPC both exploit color and
structure information, they differ largely in the description



scheme. In MCSH, multiple color channels are used
for cascading and in every channel three spatiogram
components are extracted. While in MSPC, multiple
regions are used for cascading and in each region four
statistical vectors are extracted from region covariance.
Notice that the pixel color channels are fused with
covariance in a natural manner in MSPC, which is different
from the cascading way in MCSH. The description
difference provides potentials for complement and
improvement by feature fusing, which finally forms the
proposed HSCD descriptor.

A person descriptor can’t become a re-id method without
proper metrics. The two feature components in HSCD are
fused by weighted combination as below

d(I, I′) = w1d(S,S
′) + w2d(F,F

′) (8)

where I = {S,F} and I′ = {S′,F′} represent HSCD
descriptors of two images. Further, S = {h,µy,σy}
and S′ =

{
h′,µ′

y,σ
′
y

}
are respective MCSH features,

F = {fi, i = 1, 2, 3, 4} and F′ =
{
fi
′, i = 1, 2, 3, 4

}
are

respective MSPC features, their metrics can be written as

d (S,S′) = ws1d(h,h
′) + ws2d(µy,µ

′
y) + ws3d(σy,σ

′
y)

(9)

d(F,F′) =
∑4

i=1
wid(fi, f

′
i) (10)

The related weights can be set according to the compo-
nents’ relative importance with part of samples in experi-
ments as in SDALF method [7]. The estimated weights are
in fact rather stable in most datasets or scenarios for their
relative importance tends to be fixed or similar.

As a feature based method, we can use some simple dis-
tances as basic metrics to testify the superiority of our de-
scriptor. The l1 vector distance is adopted here for its sim-
pleness. As for the single-shot re-id case, distance between
two images equals to the distance between two persons. The
single-shot method with HSCD descriptor and l1 based vec-
tor distances in (9) and (10) is also called HSCD method
below. Other better metrics may be available but the feature
designing is our main concern. In fact, the simple l1 metric
is proven efficient in later experiments.

4. The Multi-shot Metric
4.1. Coding based Metric Model

In the multi-shot case, both the probe and the gallery sets
may have multiple images for each person, so the distance
between two image sets is needed. Earlier works [6, 7] often
adopt MPD strategy (Minimum Point-wise Distance) which
simply calculates the minimum of all the sample distances
between two persons. But MPD is sensitive to outliers as it
only depends on a single sample from each set. The APD
distance (Average Point-wise Distance) [25] performs more

robust by calculating the average of all pairwise distances,
but it still cannot get satisfactory result.

MPD and APD exploit only samples from two sets to get
their direct distance, while lots of samples from other sets
are not involved. Recently, sparse coding has been proven
promising in face recognition, especially the SRC [23] or
CRC [29] models. These models code a signal by samples
from all classes and assume it can be better re-expressed by
a linear combination of samples from its own class.

In this section, we will use the above coding strategy
to design a proper multi-shot metric in the re-id domain.
The probe set of a person is denoted as P and the gallery
set of all n persons (or person classes) is denoted as
G = {G1, · · · ,Gi, · · · ,Gn}, where Gi is the gallery set
for the i-th person. The distance metric between P and Gi

depends on the coding of all samples in P with SRC or
CRC, which is detailed here. For a probe image in P which
is represented by a vector feature z, it can be firstly coded
on the whole gallery dictionary G as

min
ρ

∥z−Gρ∥2 + λ∥ρ∥k (11)

where ρ is the coding vector to be optimized, ∥z −Gρ∥2
and ∥ρ∥k stand for coding residual and k norm of ρ, λ is a
trade-off parameter between these two parts.

SRC adopts l1 norm (i.e. k = 1) to constrain the s-
parse coding vector whereas CRC adopts l2 normalization
(k = 2). It’s because CRC verifies that the collaborative s-
trategy actually plays the key role rather than the sparseness
brought by the l1 norm [24, 29]. With CRC, a closed-form
coding solution can be efficiently computed via (12), where
I is the identity matrix and Q only needs to be computed
once for all probe images.

ρ = Qz,Q = (GTG+ λI)−1G (12)

Different from SRC which determines a probe sample’s
class label only by its coding residual, CRC also considers
the respective coding coefficients ρi in ρ on the i-th class
Gi. CRC fuses these two parts with the quotient form below

d(z,Gi) = ∥z −Giρi∥2/∥ρi∥2 (13)

4.2. The Proposed Multishot Method

Motivated by the success of SRC and CRC, we propose
to investigate a proper metric for multi-shot re-id task. We
adopt the CRC coding model as it is effective and efficient.
However, the metric (13) in CRC is mainly based on such
assumption that if z belongs to class Gi, the related residual
and coding coefficients should be more discriminant at the
same time, i.e. the residual is often smaller and the coeffi-
cients are often denser (or bigger) than those of other unre-
lated classes. It does make sense in face recognition as the
intra-class variation of facial images is usually not large. In



[23], either part in (13) can achieve above 90% true match-
es at the first matching rank, assuring the enhancement of
metric (13) with a rather high probability.

However, in the re-id domain, the intra-class variation
is so significant that even humans may make wrong judge-
ments. The first rank matching rate is often less than 30%
on the Caviar4reid dataset [6]. The premise in CRC does
not hold any more as the two metric parts are always not
discriminative enough at the same time, which results in the
unpredictability of metric (13). We even find in our tests
that each single part (residual or coding coefficients) may
perform better than (13), which implies the quotient form
in (13) degrades the re-id result. Considering that both parts
exhibit discriminative ability and may be well complement-
ed, we thus propose to fuse them in the subtraction form in
(14). In fact, it resembles an equivalent form of weighted
combination of these two recognition metrics.

d(z,Gi) = ∥z −Giρi∥2 − δ∥ρi∥2 (14)

where δ is a trade-off parameter which can be estimated by
experiment on specific datasets or occasions. The distance
between two persons can thus be averaged as below

d(P,Gi) =
1

m

m∑
j=1

d(Pj ,Gi) (15)

where m is the number of probe images in P and d(Pj ,Gi)
represents the distance between a probe image and a gallery
person Gi as in (14). The proposed metric is briefly denoted
CRC-S (CRC in Subtraction form) in this paper.

The proposed CRC-S metric can be applied on any vec-
tor feature. Therefore, we apply it on the proposed HSCD
descriptor and derive the proposed multi-shot metric below

D(P,Gi) =
∑7

f=1
wfdf (P,Gi) (16)

where the vector components are represented by subscript
f (7 sub-features), and the weights are determined in the
same way as in Sec 3.3. Our final multi-shot re-id method is
denoted as HSCD-CR (HSCD with CR metric), which can
achieve significant results benefiting from both its excellent
feature and multi-shot metric.

5. Experimental results
In this section, extensive experiments are conducted on

three public datasets to evaluate the proposed methods.

5.1. VIPeR Dataset Evaluation

The HSCD descriptor is evaluated on the single-shot
benchmark dataset VIPeR [8], which contains exactly two
images of 632 pedestrians. The same setting as in SDALF
is used for fair comparison, i.e. the same probe/gallery

Method
Feature

Extracting
Metric

Learning
Distance

Computing

MCSH 84s 0 40s
TSM 121s 0 8h

MSPC 114s 0 25s
TCM 114s 0 5min
HSCD 185s 0 56s

SDALF [7] 1.6h 0 1.4h
RDC [36] 131s 1.5h 50s

Table 1. Time comparison of different methods on VIPeR dataset.

protocol and 10 dataset splits with random 316 testing
pedestrians. The CMC curve is used as the validation
method which represents the expectation of finding the
correct match in the top n matches [8].
Component Analysis. A detailed analysis of HSCD com-
ponents is provided firstly. Figure 3(a) and 3(b) present the
CMC results of several sub-features in MCSH and MSPC
as well as two traditional methods. All the related weights
are estimated using the first 100 image pairs in VIPeR as
in SDALF [7]. Specifically, MCSH adopts 0.5, 0.35, and
0.15 for its components h, µy and σy. The method with
traditional spatiogram metric (denoted as TSM) as in [5]
is included. MSPC adopts 0.35, 0.25, 0.1 and 0.3 for its
four vectors fi, i = 1, 2, 3, 4. The method with traditional
covariance metric (denoted as TCM) as in [2] is compared.

Figure 3 indicates that the histogram, Sigma vector and
correlation vector perform better than other components.
More importantly, both MCSH and MSPC get substantially
promoted by fusing their components. Besides, traditional
TSM and TCM methods don’t get impressive results with
expensive Gaussian or covariance metrics. In Figure 3(c),
the fused HSCD method (both weights in (8) are set as 0.5)
achieves further enhancement, with rank-1 rate reaching
31% from 28%.

Time comparison is then presented in Table 1. All com-
pared methods are tested on the same Matlab platform. The
codes of SDALF and RDC [36] are downloaded and repro-
duced from their papers. The related time is recorded about
all testing images in one fold test. TSM costs 8 hours on
expensive Gaussian metric, while MCSH just takes 84 sec-
onds with the simple l1 based metric in (8). MSPC is almost
12 times faster than the TCM method. Moreover, the time
of extracting the HSCD features on the whole dataset (1264
images) is as short as 3 minutes while the time reaches about
1.6 hour for SDALF. The reason behind is that HSCD does-
n’t employ heavy preprocessing steps such as foreground
or parts segmentation as in SDALF. Also, unlike our unsu-
pervised HSCD method, RDC spends extra hours and con-
sumes massive memory resource for training its metric.
Comparison with Current Methods. We then evaluate
HSCD against other published methods, including SDALF
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Figure 3. CMC curves on VIPeR. (a) MCSH components analysis, (b) MSPC components analysis, (c) Current methods comparison.

[7], SCEAF [11], eBiCov [16], MCTCS [28], eSDC [32],
RS-KISS [20] and LF [19]. The CMC curves are shown
in Figure 3(c). Besides, as practical applications such as
pedestrian tracking just take several most promising targets
as potential candidates, we also propose using new ACI
(Application based CMC Index) to quantify the practical or
useful re-id performance. For all compared methods, three
indexes are firstly extracted: matching rates at rank 1 and
rank 10% (i.e. percentage of the gallery set, for VIPeR,
rank 10% of 316 testing people equals rank 32), and
nAUC-10% (i.e. normalized Area Under CMC between
rank 1 and rank 10%). Three indexes are normalized and
added to form ACI. Unlike PUR (Proportion of Uncertainty
Removed) index [19] in which a whole CMC curve is
needed, methods which just publish frontal partial curves
(no public CMC data file) are also available for comparison.
A clearer comparison with ACI is presented in Table 2.

From Figure 3(c) and Table 2, we can conclude that
HSCD outperforms other methods on such a challenging
dataset where 1% improvement may be deemed great due
to its numerous samples. HSCD achieves as high as 58%
rank-1 improvement (i.e. 31.2% vs. 19.8%) compared
with SDALF, which is the famous benchmark method that
combines three different color and texture features.

Among recent feature based methods, eBiCov, SCEAF,
eSDC and MCTCS focus on feature combination, feature
designing, salience learning and graph matching. But
their whole CMC curves perform poorer than MCSH or
MSPC. As for RS-KISS and LF, the recent two outstanding
metric learning methods, though performing better in the
latter CMC ranks, they can’t achieve better ACI index
than HSCD. Though not compared here, another two
recent learned metrics SSCDL [14] and LMF [33] still
can’t compete with HSCD in the first few ranks (25.6%
and 29.11% rank-1 rate respectively), which may indicate
metric learning optimizes the overall CMC curve but not
necessarily the useful front part. So we address that HSCD

Method R-1 R-10% nAUC-10% ACI

MCSH 28.3 85.9 70.0 96.3
MSPC 28.1 85.2 69.1 95.8
HSCD 31.2 86.5 73.2 98.8
SDALF 19.8 75.8 57.3 87.1
eBiCov 24.3 80.5 63.4 91.9
MCTCS 23.4 84.9 66.3 92.5
SCEAF 26.5 82.6 66.4 94.2
eSDC 26.7 84.5 68.0 95.1

RS-KISS 24.5 88.4 71.5 94.3
LF 24.2 89.5 72.2 94.5

Table 2. ACI comparison of different methods on VIPeR dataset.

outperforms all current feature based methods substantially
and can compete with most metric learning methods in
frontal CMC.

5.2. iLIDS Dataset Evaluation

The iLIDS dataset [6] contains 479 images of 119 pedes-
trians in an airport scenario. The images undergo quite large
illumination changes and subject to severe occlusions. It’s
used to evaluate HSCD method in both single shot case and
multi-shot case. The same setups as in [6, 7] are adopt-
ed. Specifically, in the single shot case, one image of each
person is randomly selected to build the gallery set while
the others form the probe set. For the multi-shot case, two
images are used to form both sets for each person. Simple
MPD strategy is used for HSCD (HSCD-CR is not tested
here due to the scarce samples per person). The CMC re-
sults in Figure 4 are averaged with 100 trials.

Figure 4 reveals that HSCD outperforms other methods
on both cases, achieving almost 40% and 60% matching
rate at rank 1. In the single shot case, AHPE [4] performs
worst. SDALF [7], CPS [6], and SCR [2] can’t compete
with HSCD. In the multi-shot case, the feature based AHPE,
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Figure 4. CMC curves of different methods on iLIDS dataset. (a)
Single shot evaluation, (b) Multi-shot evaluation.

Metric R-1(%) R-10(%) R-25(%) nAUC Time(s)

MPD 18.6 66.2 91.1 82.4 16.8
APD 23.1 75.9 94.7 87.1 19.2
SRC 30.0 77.4 93.0 87.4 158
CRC 25.2 72.2 92.8 85.8 33.5

CRC-R 30.6 78.8 94.8 88.5 32.4
CRC-C 32.2 80.2 95.4 89.4 33.2
CRC-S 35.2 84.2 97.6 91.1 34.1

Table 3. Multi-shot metrics comparison on Caviar4reid.

SDALF, CPS, and MRCG [3] fall much behind HSCD (with
MPD strategy). The learning based COSMATI [1] performs
poorer than HSCD in most of the CMC ranks.

5.3. Caviar4reid Dataset Evaluation

We continue to evaluate the proposed HSCD-CR on the
multi-shot dataset Caviar4reid [6]. In this dataset, 50 people
are captured by two different views and 10 samples from
each view are selected for each person. As in [6], the probe
and gallery sets are taken from different views and 5 sam-
ples are randomly chosen for each person in both sets.

To validate the proposed multi-shot metric, different
multi-shot metrics with the same MCSH feature are firstly
compared in Table 3. The CMC values of rank 1, 5, 10,
and 25 are listed, followed by the nAUC index and the
metric computing time. Parameters are well tuned for every
metric. For CRC-S, distances of residual and coefficients
are computed and normalized respectively and then
combined with weights 0.45 and 0.55 (to avoid estimating
δ in (14)). CRC-R and CRC-C denote two metrics that just
use residual or coefficients, which both perform better than
traditional CRC metric. CRC-S achieves the best result and
costs much less time than the sparse coding based SRC
metric.

At last, the proposed HSCD-CR method is evaluated a-
gainst other current multi-shot methods in Figure 5. For
HSCD-CR, the combination weights of HSCD’s MCSH and
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Figure 5. CMC curves of current methods on Caviar4reid dataset.

MSPC sub-features are set as 0.6 and 0.4. The compared
counterparts include CPS, LDC [30], LCSA [27] and CRNP
[25]. CPS and LDC focus on feature designing and metric
learning while LCSA and CRNP are coding based meth-
ods. Apart from the HSCD feature, we also apply CRC-
S on a similar histogram feature which is adopted in LDC
and denote it as HIST-CR (Histogram based CRC-S). Our
HSCD-CR outperforms other methods including the recent
CRNP greatly, achieving 38.2% and 85.2% recognition rate
at rank 1 and 10. Though without metric learning, HIST-CR
can still achieve comparable result with LDC. However, it is
much poorer than HSCD-CR for its feature is not as excel-
lent as HSCD, implying that HSCD-CR benefits from both
its well-designed feature and metric. Furthermore, HSCD-
CR is especially efficient for not involving time-consuming
training or l1 constrained optimization as LDC and LCSA.

6. Conclusions

In this paper, we take a deep exploration to the potentials
of feature designing strategy. Confronted with recent unfair
competition with learning based methods, we address non-
learning strategies instead and achieve the goal of winning
one round back against learning methods somehow. Specif-
ically, we propose a novel efficient HSCD descriptor and a
collaborative representation based multi-shot metric for the
re-id task. The proposed feature and metric are both well-
constructed based on the simple idea that only useful com-
ponents should be exploited and fused for enhancement.

Our proposed methods not only achieve state-of-the-art
results in the experiments, but also are straightforward and
computationally efficient. They don’t require complicated
training or any pre-processing, which will facilitate prac-
tical real-time surveillance applications. Further compre-
hensive comparisons will be considered on recent challeng-
ing datasets (e.g. [34]), including dimension reduction and
metric learning. Besides, fusion with more sensors (e.g. in-
frared or thermal) [18] and robotics deserve further study.
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nat. Learning to match appearances by correlations in a co-
variance metric space. In ECCV. 2012. 2, 8

[2] S. Bak, E. Corvee, F. Brémond, and M. Thonnat. Person
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