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Abstract

In this paper, we present a head pose estimation method
for unconstrained images using feature-based manifold em-
bedding. The main challenge of manifold embedding meth-
ods is to learn a similarity kernel that is reflective of vari-
ations only due to head pose and ignore other sources
of variation. To address this challenge, we have used
the feature correspondences of identity-invariant Geomet-
ric Blur features to learn a similarity kernel. To speed
up the computation of the similarity kernel, we have used
spatial pyramidal matching to approximate feature corre-
spondences and random subsampling of training samples
to approximate graph neighborhood. In addition to these
approximations, we have used the Nyström approximation
to embed out-of-sample test images in an efficient man-
ner. Using these approximations, an approximate view
manifold was learned for 14000 images in the Annotated
Facial Landmarks in the Wild (AFLW) dataset. With the
learned manifold, head pose estimation was performed on
four in-the-wild face datasets - AFLW (remaining 7000 im-
ages), AFW, McGill and YouTube Faces. The Approxi-
mate View Manifold training achieves a 7X speedup com-
pared to the non-approximated Learning-manifold-in-the-
wild approach [15]. Further, pose estimation using the pro-
posed approach shows significant improvement in accuracy
and reduced Mean Angular Error(MAE) compared to other
methods [36, 1, 29] on the challenging AFLW (7041 im-
ages), McGill (6833 images) and YouTube Faces (22534
images) datasets.

1. Introduction
Face processing algorithms constitute a significant por-

tion of visual understanding in social media and deals with
abundant unconstrained face images. Head pose estimation,
being a fundamental face processing algorithm, is no excep-
tion and needs to generalize well for unconstrained scenar-
ios. Head pose is considered an important social clue since
it indicates a target object or location of interest. Head pose

is used in various behavioral analytics like identifying social
interactions [13, 31, 8, 22], focus of attention [2, 26, 10, 27],
identifying social groups [20, 7] and identifying target of in-
terest [21, 24, 4]. Automatic head pose estimation is also
used for several other applications in biometrics, human
computer interaction and robotics. Head pose estimation
methods characterize head pose using three degrees of free-
dom - yaw, pitch and roll. Most automatic head pose es-
timation methods attempt to determine yaw, since it varies
the most (-79.8◦to 75.3◦) [11] and frequently occurs in nor-
mal social scenarios.

Various approaches have been proposed in the literature
for automatic head pose estimation [23]. One approach that
has sustained research interest is the manifold embedding
technique. Manifold embedding methods [25, 16, 3] at-
tempt to project the high-dimensional face images onto a
low-dimensional manifold since there are inherently only
few dimensions in which head pose can vary. Manifold
embedding techniques use a holistic representation of faces
and are suitable for low-resolution images. One of the sig-
nificant challenges in manifold embedding methods is to
obtain a view manifold that models only changes due to
pose and ignores other sources of image variations such as
identity and lighting.

Manifold embedding techniques compute similarity of
face images in high dimensions using a distance metric and
attempt to preserve the distances in the low dimensional em-
bedding as well. The similarity between two images is typ-
ically defined by the Euclidean distance between vectorized
representations of aligned face images. For unconstrained
scenarios, image alignment is cumbersome thereby making
pose similarity estimation for faces-in-the-wild a challeng-
ing problem.

To address unconstrained scenarios in manifold embed-
ding, we propose incorporating keypoint feature correspon-
dences in manifold learning. It is imperative that the fea-
ture descriptors are identity invariant and robust to other
noise factors. In our experiments, we found that the Geo-
metric Blur feature descriptors [6] cater to these constraints
as compared to the more discriminative SIFT descriptors.
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Figure 1: Feature correspondences across various poses
using SIFT and Geometric Blur correspondences. Note
that Geometric Blur descriptors give meaningful correspon-
dences for similar poses but for different people.

The feature correspondences obtained with Geometric Blur
descriptors and SIFT descriptors across various poses is
shown in Figure 1. It can be observed that the Geomet-
ric Blur descriptors provide meaningful correspondences
across different poses and people.

Computing feature correspondences between all pairs of
training images would make the similarity kernel compu-
tationally expensive even for small training sets. To ad-
dress this limitation, we propose two approximations to
the similarity kernel computation. First, the feature cor-
respondences can be approximated using the Spatial pyra-
mid match kernel [19]. Second, we sparsify the similar-
ity kernel by using a small but different subset of randomly
chosen samples for comparison with every training sample.
While embedding a test sample, besides these two approxi-
mations, we use the Nyström approximation method to ob-
tain a low-dimensional embedding. It should be noted that
head pose estimation using the proposed method does not
require any image alignment or localization of specific fa-
cial landmarks.

Our contributions can be summarized as follows: 1) To
the best of our knowledge, this paper is the first to experi-
mentally demonstrate the use of spatial pyramidal matching
in manifold embedding framework, 2) We have shown that
Geometric Blur feature descriptors can be useful for learn-
ing identity invariant similarity kernels, 3) We have used
various approximation techniques to speed-up the similar-
ity kernel computation both during manifold learning and

during test sample embedding, 4) We have made the source
code publicly available for research purposes. The source
code for the method described in this paper can be found in
http: //www.cise.ufl.edu/∼kalaivan/manifold.html.

2. Previous work
Various non-linear manifold embedding techniques like

ISOMAP, LLE, Laplacian Eigenmaps or their linear equiv-
alents have been used to learn face view manifolds [3, 16,
25, 12, 17]. Further enhancements have been proposed to
make view manifolds person-independent and invariant to
illumination [16, 35, 32]. Such techniques involve model-
ing a submanifold for every person and then unifying those
submanifolds into a single global manifold that maximizes
variances due to pose but minimizes variances due to other
sources. However, this approach would not work for un-
constrained images since it is difficult to obtain images of
the same person under various pose and illumination con-
ditions. Balasubramaniam et al. in [3] proposed biasing
the kernel with the pose labels to learn a smooth mani-
fold. However, they had used the perfectly aligned FacePix
dataset images [3], taken under controlled settings, for their
experiments. Further, all these methods use vectorized rep-
resentations of images and hence are not suitable for uncon-
strained face imagery.

Few researchers have proposed using local keypoint fea-
ture correspondences to obtain similarity metrics for mani-
fold embedding of unconstrained images. These techniques
place emphasis on both the feature descriptor similarity and
the spatial arrangement of features. Torki et al. in [28, 29]
have proposed projecting keypoint features onto a feature
embedding space such that similar feature descriptors as
well as neighboring features in space are embedded closely
while dissimilar feature descriptors and non-neighbors in
space are embedded farther. Hausdorff distance between
these embedded point sets of two images is used to com-
pute the kernel matrix for Laplacian Eigenmaps to obtain
a final image embedding. To embed new images, a re-
gression function is learned based on the feature embed-
ding to avoid dual out-of-sample predictions for the feature
embedding space and the image embedding space. While
this method proposed a novel framework for handling un-
constrained imagery in manifold embedding, it is computa-
tionally intensive with dual embedding spaces and requires
feature comparisons between all pairs of training images
to obtain the kernel matrix. Hegde et al. in [15] pro-
posed the Learning-manifolds-in-the-wild approach by us-
ing Earth Mover’s distance with SIFT keypoint descrip-
tors as a similarity metric for computing the kernel ma-
trix. The Earth Mover’s distance computes the cost re-
quired to move a certain distribution of points to another.
Hence, the Learning-manifolds-in-the-wild approach con-
siders both spatial distribution of features and feature de-



Figure 2: Overview of head pose estimation using view
manifolds of unconstrained face images

scriptor similarity for manifold embedding. However, this
method also suffers from the main bottleneck of computing
feature correspondences for all pairs of images.

3. Proposed approach
An overview of the view manifold approach for uncon-

strained head pose estimation is shown in Figure 2.

3.1. Preprocessing

Face detection is performed on the training images and
the detected faces are all resized to a certain size. Keypoint
features are extracted from the resized images. Though any
keypoint feature can be used, we found that SIFT keypoints
with Geometric Blur descriptors were most effective in han-
dling variance due to identity and geometric distortions of
face images. Feature correspondences of these feature de-
scriptors are used to obtain a similarity kernel.

3.2. Similarity kernel computation

In order to obtain feature correspondences, we use the
Spatial Pyramid match kernel [19] which is an approximate
correspondence technique typically used in object recog-
nition. The Spatial pyramid match kernel takes both the
feature descriptor similarity and the spatial distribution of
features into account while computing feature correspon-
dences. This suits our approach since we do not want cor-
responding features in two similar poses (scaled to same
size) to be spaced far apart. The M cluster centers for the
technique are obtained by clustering a few randomly cho-
sen features from the training images using the K-means
algorithm. This clustering simplifies the conventional L2-
distance based feature correspondences to matching fea-
tures only if they belong to the same class.

To compute the spatial pyramid histogram, an image
is represented by a pyramid of 0, .., L levels with 2l bins

along each dimension at any level l. For each feature
class m, a histogram representing the number of features
that occupy each spatial pyramid bin is computed. The
(4L ∗M)−dimensional histogram of all feature classes is
then normalized by the total number of features detected
in an image to prevent biasing due to the number of fea-
tures. The histogram representation of features thus enables
the similarity measure computation to be independent of the
number of features detected in each image.

Given two spatial pyramid histogramsHXm
and HYm

of
feature class m for images X and Y , the number of feature
correspondences at level l is given by the histogram inter-
section function [14]:

I lm =

4l∑
i=1

min(H l
Xm

(i), H l
Ym

(i)) (1)

where, H l
Xm

(i) and H l
Xm

(i) indicate the number of fea-
tures that fall into the ith bin at level l for feature class m.
The spatial pyramid match kernel for all L levels across all
M feature classes is given by,

KL
M (X,Y ) =

M∑
m=1

[
ILm +

L−1∑
l=0

1

2L−l
(I lm − I l+1

m )

]
(2)

where, the second term indicates the number of new
matches obtained at subsequently coarser levels of the pyra-
mid. Matching features of the same classm that fall into the
same spatial bin are weighted based on the pyramidal level
at which they match. The weight corresponding to each
level is given by 1

2L−l , implying that matches at finer reso-
lutions are of better quality.

Now, the spatial pyramid histograms of every training
sample needs to be compared with those of every other
training sample to obtain the similarity kernel for manifold
learning. In order to speed up the kernel computation, we
randomly choose a different subset of samples for compar-
ison with every training sample. With a graph representa-
tion, this approach is equivalent to having every node con-
nected to a random subset of nodes as compared to having
a fully connected graph. The K nearest neighbors of each
sample is then computed using the sparse similarity matrix
which constitutes the first step for most manifold embed-
ding techniques.

3.3. Learning Face Manifolds

We use Laplacian Eigenmaps [5] to learn the face man-
ifold. Let X = {x1, x2, ..., xN} be N training samples
such that xi ∈ RD. Laplacian Eigenmaps attempt to
find a low-dimensional embedding, Y = {y1, y2, ..., yN},
yi ∈ Rd, d � D, that preserves the local distances ob-
served in higher dimensions. Each training sample is rep-
resented by a graph node and the graph adjacency matrix



is represented using the similarity kernel. The first step for
learning Laplacian Eigenmaps embedding involves build-
ing a graph where the K nearest neighbors of each node are
determined using the similarity kernel.

1. Let W be the weight matrix such that Wij represents a
similarity measure if xi and xj are neighbors and Wij

= 0 otherwise. W is computed using the technique
described in 3.2.

2. Let U represent the eigenvectors of a positive semidef-
inite matrix. Let D be a diagonal matrix such that
Dii =

∑
jWij. The graph Laplacian is given by

L = D −W . The objective function

φ(Y ) =
∑
i

(yi −
∑
j

Wijyj)
2 (3)

can be reformulated using graph Laplacian as

argmin
Y TDY=I

tr(Y TLY ) (4)

This objective function is solved using the generalized
eigenvalue problem Ly = λDy. The low-dimensional
embedding is given by eigenvectors corresponding to
the d lowest eigenvalues with the exception of the triv-
ial eigenvector corresponding to eigenvalue 0.

Y = UTd (5)

Once the low-dimensional embedding of all training
samples are obtained, a multivariate regression function
(MATLAB mvregress) is used to map the low-dimensional
embedding to corresponding pose labels.

3.4. Head pose estimation of test samples

When a new test sample needs to be embedded, the ker-
nel matrix of the test sample is computed with respect to the
training samples. In order to speed up the kernel computa-
tion, the test sample is compared only with a randomly cho-
sen subset of training samples. This approximation seems to
work fairly well in practice. The low-dimensional embed-
ding is then computed using Nyström out-of-sample exten-
sion [33]. Let Λ and U be the eigenvalues and eigenvectors
of the kernel matrix K computed with the training samples.
The Laplacian eigenmaps embedding associated with a new
point x is given by

Y (x) =
1

Λ
UTKx (6)

where, Kx = [K(x, x1), ...,K(x, xn)] and 1
Λ =

diag
(

1
λ1
, ..., 1

λn

)
. The head pose is then estimated

using the regression coefficients learned with the low-
dimensional embedding of training samples.

4. Results

The proposed approach was validated using four in-the-
wild face datasets - Annotated Facial Landmarks in the Wild
(AFLW) [18], Annotated Faces in the Wild (AFW) [36],
YouTube Faces dataset [34] and McGill dataset [9]. These
challenging datasets were chosen since they contained un-
constrained face images with poses ranging from -90◦to
+90◦. From the AFLW dataset, 14000 face images were
used to learn the manifold. For evaluating head pose es-
timation, we used the remaining 7041 face images from
AFLW, 478 face images from AFW, 22534 randomly cho-
sen face images from YouTube Faces dataset and 6833 im-
ages from McGill dataset. The AFLW and YouTube Faces
datasets contain a substantial proportion of low-resolution
and blurred images with the latter consisting of frames from
YouTube videos.

4.1. Preprocessing

Viola-Jones face detection [30] was executed for the
training images and the detected faces were resized to 128
× 128 pixels. All algorithms were compared using these
detected faces. Up to 200 SIFT keypoints and their cor-
responding Geometric Blur descriptors were computed for
each face image. The ground truth pose labels were ob-
tained from the respective datasets.

4.2. Manifold learning

To illustrate the drawbacks of using vectorized images
in unconstrained scenarios, we learned a manifold whose
similarity metric was represented by the Euclidean distance
of vectorized images. It can be observed from Figure 3(a)
that the manifold learned using vectorized images does not
represent a smoothly varying manifold where similar poses
will be embedded close by in the low-dimensional space.

4.2.1 Comparison with other feature-based manifold
learning approaches

We chose two in-the-wild feature-based manifold learn-
ing approaches for comparison - the Feature-embedding
approach [28, 29] and the Learning-manifolds-in-the-wild
approach [15]. For the Feature-embedding approach, we
trained the system using 1000 randomly chosen images
from the AFLW training images with 96 features per im-
age. The number of training images and features per image
were chosen similar to the experiments performed in [29].
The learned manifold using Feature-embedding approach is
shown in Figure 3(b). It can be observed that the feature em-
bedding corresponding to dissimilar poses are not spaced
far apart. The Hausdorff distance between two embedded
feature sets in this space might not always be representative
of the pose similarity. Further, scaling this method to larger
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Figure 3: 2D manifolds learned using vectorized images and feature-based approaches with 14000 images in the AFLW
dataset. Each dot represents a training sample and the different colors represent the ground truth pose labels ranging from -
90◦to +90◦. It can be observed from these manifolds that the feature correspondences based approaches, Learning-manifolds-
in-the-wild and Approximate View Manifolds, can better represent the pose similarity of unconstrained face images.

number of training samples seems computationally difficult
along with memory constraints.

In the Learning-manifolds-in-the-wild approach, SIFT
keypoints and decriptors are used in the computation of
a summation kernel for representing image similarity. In
our implementation of Learning-manifolds-in-the-wild ap-
proach, we used SIFT keypoints with Geometric Blur de-
scriptors with a match kernel that enforces spatial similarity
as well. Our implementation of the Learning-manifolds-in-
the-wild approach is equivalent to performing feature corre-
spondences without any approximations for similarity ker-
nel computation. As can be seen from Figure 3(c), the
Learning-manifolds-in-the-wild approach yields a smoothly
varying manifold representative of pose similarity albeit be-
ing computationally expensive. The kernel computation
for Learning-manifolds-in-the-wild approach using 14000
AFLW training images took about 2.44 hours on a 8x Intel
Core i7-3770 CPU running at 3.4GHz with 16GB RAM.

4.2.2 Approximate View Manifold learning

In our Approximate View Manifold learning, the feature
correspondences were approximated using the spatial pyra-
mid match kernel. A spatial pyramid was learnt with 200
clusters and 2 levels using randomly chosen feature descrip-
tors from the training images. The spatial pyramid his-
togram was computed for features in every training sam-
ple. The resulting 4000-dimensional spatial pyramid his-
togram was used to obtain image similarity using the his-
togram intersection function. The spatial pyramid match
kernel thus allows the use of feature sets of unequal cardi-
nality in a seamless manner for similarity kernel computa-
tion. Also, to further speed up the kernel computation, each
training sample was only compared with approximately 5%
of randomly chosen training samples. The kernel compu-
tation for the Approximate View Manifold learning using
the same training images took only about 20 minutes on the
same machine. Thus, it can be noted that the Approximate

View Manifold learning provides 7X speedup compared to
the Learning-manifold-in-the-wild approach.

As shown in Figure 3(d), Laplacian Eigenmaps manifold
was learned using the approximations described above. The
Laplacian Eigenmaps provides a smoothly varying mani-
fold with similar poses embedded close by. This shows
that the spatial pyramid match kernel approximation still
ensures that the feature correspondences are representative
of pose similarity. Further, one has to keep in mind that the
manifold learning was completely unsupervised with im-
age similarity computed only using the feature descriptors
and locations. This might cause the learned manifold to be
noisy. However, this technique shows promise since the un-
supervised manifold by itself is representative of pose simi-
larity and can be made smooth and less noisy by biasing the
similarity kernel with the pose labels.

4.3. Head pose estimation in the wild

The head pose estimation was evaluated using test im-
ages from the AFW (468 images), AFLW (remaining 7041
images), YouTube Faces (22534 images) and McGill Faces
(6833 images) datasets. The poses were estimated using the
Approximate View Manifold approach. We compared the
pose estimation with that of the Feature-embedding app-
proach and the Learning-manifolds-in-the-wild approach.
For benchmarking with other categories of unconstrained
head pose estimation techniques, we compare our approach
with the Mixture of trees deformable model proposed
in [36] and patch-based method proposed in [1]. Most
other facial landmark-based methods handle only faces in
pose range [-45,45] so that all facial landmarks are visible
and hence were unsuitable for comparing extreme poses.

4.3.1 Embedding test samples

To obtain the low-dimensional embedding of the test sam-
ples, the kernel matrix of the test sample was computed
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Figure 4: Two-dimensional Approximate View Manifold embedding of unconstrained test images from AFW, AFLW, McGill
and YouTube Faces datasets. Each dot represents a test sample and the different colors represent the ground truth pose labels
of test data ranging from -90 to + 90. It can be observed that the test images of all datasets are embedded similar to the
training images as shown in Figure 3(d).

with respect to the training samples as described in Sec-
tion 3.4. The low-dimensional embedding of test images
from the four datasets using the Approximate View Mani-
fold approach is shown in Figure 4. It can be observed that
the low-dimensional embedding of the test samples follow
those of the training images shown in Figure 3(d) with the
poses ranging from -90◦to +90◦embedded onto a roughly
V-shaped manifold.

4.3.2 Pose estimation accuracy

The pose estimation error was computed using the ground
truth pose labels and the poses estimated using the regres-
sion coefficients of the learned manifold. The pose error
was discretized in steps of 15◦to allow us to compare with
the Mixture of trees method which provides discrete pose
labels. The accuracy plot representing the percentage of
test images with pose estimation error within ± few de-
grees tolerance is shown in Figure 5. The pose estima-
tion error was computed for the Feature Embedding ap-
proach, Learning-manifolds-in-the-wild approach, the Ap-
proximate View Manifold, the Mixture of trees method and
the patch-based method of [1]. On the larger AFLW, McGill
and YouTube Faces dataset, it can be seen that AVM per-
forms better compared to the Mixture of trees method ,
patch-based method and the Feature-embedding approach
with lesser MAE. Further, on all four datasets, it can be
observed that the performance of both Learning-manifold-
in-the-wild and the Approximate View Manifold are simi-
lar. The accuracy of AVM method may be 2-3% lesser than
that of Learning-manifold-in-the-wild approach due to the
trade-offs caused by the approximations in AVM. This sug-
gests that the approximations due to the use of spatial pyra-
mid match kernel or approximate neighborhood estimation
does not hamper the pose estimation accuracy.

Table 1 shows the accuracy, i.e. percentage of images
within ±15◦error, and the Mean Angular Error (MAE) of
various methods on these four challenging datasets. It can

be observed from this table that both Learning-manifold-in-
the-wild approach and AVM approach perform better than
the other methods in terms of both accuracy and MAE con-
sistently across all four datasets. Further, the performance
of AVM is comparable to that of Learning-manifold-in-the-
wild approach with respect to both accuracy and MAE. This
suggests that the various approximations used in AVM does
not hamper performance. Also, learning and test sample
embedding using AVM is considerably faster than that of
Learning-manifold-in-the-wild approach. Pose estimation
of a test sample takes 105ms on an average using the AVM
approach.

Figure 6 shows the pose distribution of the training
AFLW images and the average pose estimation accuracy for
every pose category across all four datasets using AVM ap-
proach. The pose distribution of training images show that
≈ 75% of images are within±45◦. Pose labels were divided
into 9 categories from 0◦ to ±90◦ in steps of 15◦. The right
plot represents the percentage of images in each pose cate-
gory that were estimated within few degrees error. As it can
be observed from Figure 6, the pose estimation accuracy of
0◦ is highest and gradually drops till ±60◦. Beyond ±75◦,
the pose estimation accuracy drops drastically with almost
none of the images being estimated within±15◦ error. This
can be attributed to the poor representation of extreme pose
labels in the training images.

4.3.3 Effect of parameters on pose estimation accuracy

Three main parameters used by AVM are the number of
clusters and number of tree levels in spatial pyramid match-
ing and the number of randomly chosen samples for kernel
approximation. In order to study the effect of various AVM
parameters, we performed experiments by varying each of
these parameters while keeping the other two parameters
constant. Tables 2, 3 and 4 show the performance on AFLW
test set for varying number of clusters, tree levels and ran-
domly chosen samples respectively. These tables suggest
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Figure 5: The plots represent the pose estimation error for the Mixture of trees method [36], patch-based method [1], Feature-
embedding method [29], Learning-manifold-in-the-wild method [15] and the Approximate View Manifold (avm). The num-
bers within parentheses in the legend represents the % of test images whose pose estimation error is within ±15◦for each of
these methods. These plots show that the AVM approach performs as well as the Learning-manifold-in-the-wild approach
even after various approximations

Datasets AFW AFLW McGill YouTube
Methods Accuracy MAE Accuracy MAE Accuracy MAE Accuracy MAE
Mixture of trees [36] 26.07 40.17 15.72 46.54 42.43 28.33 22.98 40.25
Patch-based [1] 21.36 41.67 23.87 38.39 19.92 43.44 26.65 45.95
Feature-embedding [29] 40.38 28.15 32.82 33.01 50.26 22.71 53.45 19.39
Learning-manifold-in-the-wild [15] 58.33 18.26 63.13 16.31 63.48 16.31 61.80 15.46
AVM (Our method) 58.33 17.20 58.05 17.48 61.22 16.29 58.74 16.47

Table 1: Accuracy (% of images with±15◦ error) and Mean Angular Error (MAE) for different methods on four challenging
in-the-wild datasets

(a) Pose distribution of AFLW train-
ing images

(b) Pose error per pose category

Figure 6: The left plot shows the pose distribution of train-
ing images in AFLW dataset. ≈ 75% of images are within
±45◦. The right plot shows the pose estimation accuracy
for every pose category (0◦, ±15◦, ...) as % of images that
belong to a specific pose category. The pose estimation ac-
curacy seems to drop off slowly from 0◦ to ±60◦. From
pose category ±75◦ onwards, the pose estimation accuracy
drops drastically. This can be attributed to the poor repre-
sentation of these categories while learning the manifold.

that AVM is reasonably robust to changes in its parameters.
However, increasing the number of clusters or levels of the
spatial pyramid would result in an increase in the histogram
length and hence will increase computation time of the sim-

Num.clusters Accuracy(%) MAE(◦)
100 57.05 18.07
200 58.05 17.48
300 57.63 17.52
400 60.47 16.75

Table 2: Performance results for different numbers of clus-
ters and 2 levels in spatial pyramidal matching using AFLW
test set

Num.levels Accuracy(%) MAE(◦)
2 58.05 17.48
3 58.63 17.69

Table 3: Performance results for different numbers of levels
and 200 clusters in spatial pyramidal matching using AFLW
test set

ilarity kernel. Similarly, increasing the number of randomly
chosen samples would require comparison with more train-
ing samples thereby increasing computation time. From our
experiments, 200 clusters and 2 levels of spatial pyramid
works well along with 5% of training samples for similarity
kernel computation.



% of random samples Accuracy(%) MAE(◦)
5 58.05 17.48

10 57.93 17.44
20 57.62 17.38

Table 4: Performance results for different percentages of
random samples with 200 clusters and 2 levels in spatial
pyramidal matching using AFLW test set

5. Conclusion

In this paper, we have proposed an head pose estimation
method for unconstrained face images using manifold em-
bedding. To handle various nuisance factors in the uncon-
strained imagery, we have incorporated identity-invariant
keypoint correspondences in the manifold embedding pro-
cess. Our experiments revealed that the Geometric Blur de-
scriptors were reasonably identity invariant thereby mak-
ing the feature correspondences representative of the pose
similarity. To speed up the feature-correspondence based
manifold learning, we have used the spatial pyramid match
kernel to approximate feature correspondences. The kernel
computation was further approximated by comparing each
training sample with only a random subset of other train-
ing samples. With these approximations, we obtained 7X
speedup in manifold learning compared to the Learning-
manifolds-in-the-wild manifold approach. Further, head
pose estimation using the proposed method outperformed
the other methods with improved accuracy and lesser MAE.
Further, the performance of the AVM approach is at par
with the Learning-manifolds-in-the-wild approach in spite
of multiple approximations and is faster. Further, the perfor-
mance of AVM is robust to variations of algorithm param-
eters. This suggests that the Approximate View Manifold
approach shows great promise as a reliable and fast head
pose estimation method for unconstrained low-resolution
and blurred face images.
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