
 

Abstract 
 

This paper proposes a solution to the 2-D phase 

unwrapping problem, inherent to time-of-flight range 

sensing technology due to the cyclic nature of phase. Our 

method uses a single frequency capture period to improve 

frame rate and decrease the presence of motion artifacts 

encountered in multiple frequency solutions. We present an 

illumination model that considers intensity image and 

estimates of the surface normal in addition to the phase 

image. Considering the number of phase wrap as the 

‘label’, the likelihood of each label is estimated at each 

pixel, and support for the labeling is shared between pixels 

throughout the image by Non-Local Cost Aggregation. 

Comparative experimental results confirm the effectiveness 

of the proposed approach. 

 

1. Introduction 

Range imaging is becoming an essential component in 

applications such as automotive, augmented reality, natural 

user interface, biometric, computational photography, and 

more. There are currently three main methods for range 

imaging: stereo or multi-camera triangulation; triangulation 

from projected patterns (structured light); and time of flight 

(ToF) measurements. This contribution focuses on ToF 

technology, which has already been implemented in 

multiple products such as Microsoft Kinect 2, PMD, Intel 

Real Sense. 

 ToF cameras are comprised of an illuminator producing 

modulated infrared light, and an imaging sensor that is 

synchronized with the illuminator. The imaging sensor 

computes the phase difference (or shift)  between the 

transmitted and received wavefronts, along with the 

intensity (magnitude) B of the received light (irradiance)[1]. 

Light reflected by a surface at distance D has a phase shift 

equal to 

  = (4𝜋𝑓𝑚𝐷 𝑐⁄ ) mod 2𝜋 (1) 

where fm is the modulation frequency of the illuminator, and 

c is the speed of light. The distance (range) to the surface 

can thus be recovered from , but only up to a multiple of 

the wrapping distance Dw = c/2fm or unambiguous range. 

This is the well known phase unwrapping problem of ToF 

sensing. To deal with this problem, most commercial 

cameras use the so-called dual-frequency approach: two 

images are taken of the same scene, where the illuminator 

is modulated at different frequencies fm in the two images. 

By analyzing the two phase shift images, the distance D to 

each visible surface element can be uniquely recovered. 

 Dual-frequency phase unwrapping assumes that the 

scene has not changed between the two images. If this is not 

the case (e.g., if the camera is moving), the result is not 

accurate. In fact, it has been shown that dual-frequency is 

not necessary for phase unwrapping. A number of 

techniques have been demonstrated that leverage 

knowledge of the measured intensity B to recover the 

“unwrapped” distance D from a single image. These 

techniques rely on the observation that the intensity B of 

light reflected by a Lambertian (opaque) surface is 

inversely proportional to the square of the surface distance 

D – suggesting that some information about D could be 

inferred from B. Unfortunately, the intensity B is also 

affected by the (unknown) albedo  and slant angle  of the 

surface. To reduce the uncertainty of inference, it is thus 

necessary to impose additional constraints, such as spatial 

smoothness priors, typically expressed in the form of a 

Markov Random Field (MRF). While this approach has 

produced impressive results [2], it requires use of 

techniques such as Belief Propagation or graph cuts, which 

are computational demanding and preclude frame-rate 

processing. 

 In this paper, we report progress toward the development 

of a computational single-frequency ToF camera that solves 

the phase unwrapping problem with accuracy comparable 

to or exceeding the state of the art, and speed that, at 0.5 

seconds per frame, is orders of magnitude faster than 

previous approaches. Specifically, this work presents two 

main contributions. First, we show that the surface slant 

angle  can be computed to a good approximation even 

before unwrapping the phase shift. Knowledge of  reduce 

the uncertainty in the determination of D. Second, we 

impose a smoothness prior using the fast Non-Local Cost 

Aggregation algorithm, which was recently proposed for 

stereo matching. This non-iterative algorithm is extremely 

efficient, requiring only a few operations per pixel per wrap 

number. 

 This article is organized as follows: Section 2 provides 

an overview of related work and current solutions; in 3 we 

formally define the problem, present our contributions, and 

describe the method; Section 4 provides our results in 
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comparison to similar methods and includes an analysis of 

the components of our method and the variations within. 

2. Related Work 

In time-of-flight imaging, each observation O =
 {Φ, I} is initially composed of four distinct intensity images 

{I0, Iπ/2, Iπ, I3π/2} captured at specific time intervals with 

respect to the illumination modulation cycle ,each staggered 

by π/2 with respect to the modulation phase. As described 

in more complete detail in [2],we take the difference of 

image pairs offset by π, X=Iπ-I0, and Y= I3π/2- Iπ/2, and with 

simple computation can recover the phase offset from the 

illumination modulation Φ = arctan (− Y 𝑋⁄ ), and the 

active scene illumination I = √𝑋2 + 𝑌2/2. 

The classic phase unwrapping solutions [3] use path 

integration to recover the unwrapped phase. These rely 

solely on the notion of spatial coherence, that we expect 

local areas to be smooth. These solutions often have 

inconsistencies called residues, and may only be known up 

to a constant. These and other methods are discussed 

comprehensively in [3].  In the solution proposed in this 

paper, the wrap number at each pixel is estimated absolutely 

and directly, and the possibility of residues is eliminated. 

As the limited unambiguous range is ultimately the 

problem that necessitates phase unwrapping, then the 

problem could be circumvented by simply increasing the 

unambiguous range. This could be accomplished by 

decreasing the modulation frequency, though at the cost of 

precision, as the measurement uncertainty increases 

proportionally with the unambiguous range [4].  The use of 

multiple frequencies in the signal modulation, as adapted 

from INSAR technology  [5], is a clever way increase the 

unambiguous range. For time-of-flight technologies it is 

currently regarded as the de facto solution [6][7][8]. The 

principle is that if two or more frequencies are used in 

successive frames of a static scene, then the set of 

differently wrapped phases can be used to calculate a larger 

unambiguous range. The different frequencies act together 

as a single, lower effective frequency. Of course, capturing 

multiple successive signals requires more time and power 

for each single frame. Depending on the particular task, 

especially those involving rapidly moving objects (say, 

gesture recognition), this may be especially troublesome.  

Other single frequency solutions, such as the one 

proposed in this paper, incorporate additional information 

to the wrapped phase.  Beder et al.  [9] combine ToF data 

with a traditional stereo camera pair to optimize local 

“patchlets” of the surface. Similarly, Gudmundsson et al.  

[10] bootstrap a stereo pair with ToF data. Choi and Lee  

[11] skip the traditional cameras and directly pair ToF 

cameras.  Using a Markov random field, several others 

[2][12][13][14] fuse the data under a probabilistic 

framework.  

In techniques more closely related to that presented 

here, the intensity image intrinsic to ToF cameras is 

exploited, along with the phase data. The shape from 

shading approach inspired Böhme et al. to smooth noisy 

ToF depth images  [15], however an already correctly 

unwrapped phase is assumed. McClure et al. [16] use depth 

edges to initially segment  the scene before analyzing each 

segment to determine whether it falls into the unambiguous 

range based on average intensity, using a manually set 

threshold.  Choi et al. [17], using a corrected intensity 

image [18], apply an EM optimization to classify each pixel 

as being within or outside the unambiguous range, which 

feeds the data term for a Markov random field optimization 

by graph cuts.  

3. Method 

 As mentioned in the Introduction, the sensor measures 

the “wrapped” phase shift p at each pixel, where the 

subscript indicates the pixel index. Our goal is to recover 

p, the actual (“unwrapped”) phase difference, from which 

the distance to the surface Dp is obtained as by 𝐷𝑝 =

𝑐 ∙ Θ𝑝 4𝜋𝑓𝑚⁄ . p and p are related as by Θ𝑝 = Φ𝑝 +

2𝐾𝑝𝜋, where Kp is the (unobservable) “wrap number”. Our 

goal is to compute the wrap number Kp at each pixel, using 

the observed data: wrapped phase shift  and intensity B. 

3.1. Intensity Model 

     Light that reaches the imaging sensor can be attributed 

to at least four sources: light from the illuminator reflected 

directly from the observed surface (direct reflection); light 

from ambient sources reflected off of the surface (ambient); 

light from the illuminator reflected indirectly from 

intermediate surfaces in the area (multipath reflection); and 

light from surfaces other than that directly observed, caused 

by lens defects or other unintended sources (stray light). In 

this paper we only consider the direct reflection, which 

gives the greatest contribution to the measured intensity. 

(Note that ambient light, which is usually approximately 

constant in time, is filtered out for the most part during 

phase shift computation.)  

We assume that the visible surfaces are Lambertian 

(which also means that we expect incorrect results in areas 

with high specular reflection). The illuminator is mounted 

on the camera itself, as close to the lens as possible. It is 

modeled as a point light source, located at the camera’s 

optical center. If the illuminator were an ideal isotropic 

point source, then the irradiance Ip at a pixel would be 

related to the (constant) radiant intensity L from the point 

source as by 𝐵𝑝 = 𝐿 ∙ 𝜌𝑝 ∙ cos 𝛽𝑝 𝐷𝑝
2⁄ , where p is the 

albedo of the surface element imaged by pixel p, and p is 

its slant angle (the angle between the surface normal and 

the line of sight). In practice, the radiant intensity (that is, 

the light power emitted per solid angle) is not uniform, nor 



is the pixel sensitivity to light arriving from multiple 

directions (due to multiple reasons, including the effect of 

optical elements). This non-uniformity can be calibrated a 

priori, resulting in a distribution Lp of equivalent radiant 

intensity (or light profile, shown in Figure 1).  This allows 

us to specify the general model of observed intensity Bp at 

pixel p as  

 
𝐵𝑝 =

𝐿𝑝 ∙ 𝜌𝑝 ∙ cos 𝛽𝑝

𝐷𝑝
2

 
(2) 

This expression for the measured intensity was used in [2] 

to derive the conditional likelihood of Bp given the distance 

Dp under the assumption that the albedo and the surface 

orientation are uniformly distributed random variables. In 

fact, we observe that the surface normal could, to some 

approximation, be computed from the wrapped data . 

More specifically, suppose one reconstructs a surface patch 

from distances computed from the measured wrapped phase 

, assuming a constant wrap number K. A generic 3-D 

surface point 𝑃𝑝
(𝐾)

 in this surface has distance 

𝐷𝑝
(𝐾)

=𝑐 ∙ (Φ𝑝 + 2𝐾𝜋) 4𝜋𝑓𝑚⁄ . The normal 𝑁𝑝
(𝐾)

 to the so 

computed surface patch at 𝑃𝑝
(𝐾)

 can, in first approximation, 

be considered constant with K (note that this approximation 

is only exact if p is the principal point, that is, the pixel 

along the optical axis). Hence, we can approximate the slant 

angle p of the actual surface patch imaged by p by the slant 

angle of the reconstructed patch for a fixed K (e.g., K=0). 

Note that this approximation fails catastrophically if the 

actual surface patch is at a distance that is a multiple of 

𝑐 𝑓𝑚⁄ , that is, exactly where the phase shift undergoes a 

wrap. An example of reconstructed surface orientation is 

shown in Figure 1. 

 Based on our estimation of the slant angle p, and 

neglecting sensor noise, we can use (2) to compute the 

conditional likelihood 𝑃(𝐵𝑝|𝐷𝑝 , 𝛽𝑝) with a proper prior 

distribution of the albedo p. We can then use Bayes’ 

formula to compute the conditional posterior probability of 

the distance Dp given Bp and p:  

 𝑃(𝐷𝑝|𝐵𝑝, 𝛽𝑝) ∝ 𝑃(𝐵𝑝|𝐷𝑝 , 𝛽𝑝) ∙ 𝑃(𝐷𝑝|𝛽𝑝)

∝ 𝑃(𝐵𝑝|𝐷𝑝 , 𝛽𝑝)  

(3) 

where the last identity derives from the fact that the surface 

orientation is statistically independent of its distance, 

combined with a uniform prior distribution of surface 

distances. Note that this expression for the posterior 

distribution of Dp does not take into account the measured 

phase shift p. In fact, we can combine the two to obtain a 

(marginal) posterior probability distribution of the wrap 

number Kp as by: 

 𝑃(𝐾𝑝|Φ𝑝, 𝐵𝑝 , 𝛽𝑝) = 𝑃(𝐷𝑝|, 𝐵𝑝, 𝛽𝑝) (4) 

with 𝐷𝑝 = 𝑐 ∙ (Φ𝑝 + 2𝐾𝑝𝜋) 4𝜋𝑓𝑚⁄ . 

 
1 Please note that our notation is slightly different from the one in [20] 

 If the slant angle p is assumed known, and assuming a 

prior uniform distribution for the unknown albedo p, it is 

easy to see that 𝑃(𝐵𝑝|𝐷𝑝 , 𝛽𝑝) is also uniformly distributed 

between 0 and 𝐿𝑝 ∙ cos 𝛽𝑝 𝐷𝑝
2⁄ . However, we noted that the 

estimation of p is often inaccurate, in part because, as 

mentioned earlier, the actual surface normal depends on the 

(unknown) wrap number Kp, in part because surface normal 

estimation is notoriously noisy. Hence, rather than 

assuming a fixed value for p, we model the slant angle by 

means of a normal distribution centered at the estimated 

value �̂�. The resulting form for 𝑃(𝐵𝑝|𝐷𝑝 , 𝛽𝑝) becomes 

more complex and does not lend itself to a closed form 

expression. It can, however, be pre-computed and stored in 

a reasonably sized 2-D look-up table. 

3.2. Enforcing Spatial Coherence 

 In the previous section, we derived an expression for the 

marginal probability of the wrap number Kp at each pixel. 

We now discuss how this knowledge can be used in a 

framework that also leverages spatial coherence priors. 

Spatial coherence is traditionally modeled by means of 

the Markov Random Field (MRF) formalism. MRF and 

related techniques attempt to find an image labeling that 

maximizes the joint posterior probability of label 

assignment given the observables. In practice, this 

translates to defining a cost function that is the sum of data 

cost, that penalizes label assignment inconsistent with the 

observation, and discontinuity cost, that penalizes changes 

of label assignment across nearby pixels. Unfortunately, 

closed form expressions for these cost functions are 

available only for simple 1-D cases, whereas cost 

minimization for generic 2-D images requires 

computationally expensive operations such as simulated 

annealing, belief propagation, or graph cut [19].  

 In this contribution, we define a different cost function, 

one that, while enforcing spatial coherence, can be 

minimized very efficiently. Our approach is inspired by the 

Non-Local Cost Aggregation (NLCA) algorithm, originally 

proposed by Yang for stereo matching [20]. In order to 

make this contribution self-contained, we begin by 

providing a short introduction to NLCA; we then show how 

NLCA can be applied to our problem.  

  

3.2.1 The NLCA Algorithm 

 Let us first introduce our notation1. 𝑂𝑝 represents the 

observation at pixel p. (In our case, Op comprises p, Bp, 

and p.)  𝐶𝑝(𝐾) is the marginal data cost of assigning label 

K to pixel p based on the observation 𝑂𝑝. For example, in 

Yang’s paper, the marginal data cost is defined by 𝐶𝑝(𝐾) =

|𝐼𝑝
𝑙 − 𝐼𝑝−𝐾

𝑟 |; it represents the “matching cost” between the 



left and the right image (𝐼𝑙 , 𝐼𝑟) if the disparity value K is 

assigned to pixel p in the left image.  

The aggregated cost 𝐶𝑝
𝐴(𝐾) is defined as follows:  

 𝐶𝑝
𝐴(𝐾) = ∑ 𝐶𝑞(𝐾)𝑆𝑝,𝑞

𝑞
 

(5) 

where the similarity function 𝑆𝑝,𝑞 represents our belief, 

based on the observations, that pixels p and q should be 

assigned the same label. A small value of 𝐶𝑝
𝐴(𝑘) (the 

aggregated cost at p for a certain label K) signifies that the 

set of supporting pixels (pixels that are similar to p) “agree” 

on this label. The NLCA algorithm simply assigns to each 

pixel the minimizer of its associated aggregated cost. 

 Similarity functions have been used extensively in 

computer vision. For example, the bilateral filter [21] uses 

a similarity function to define adaptive filter kernels, where 

two pixels are “similar” if they are at close distance and 

their colors are close in color space. Specifically, the 

bilateral filter defines the following:  

 𝑆𝑝,𝑞 = exp (− 𝑑(𝑂𝑝, 𝑂𝑞)
2

𝜎𝑂
2⁄ )

∙ exp(- ‖𝑝 − 𝑞‖2 𝜎𝐷
2⁄ )  

(6) 

where 𝑑(𝑂𝑝, 𝑂𝑞) is a suitable distance between 

observables, and 𝜎𝑂  , 𝜎𝐷  are balancing constants2. The 

 
2 Note that the similarity function 𝑆𝑝,𝑞(𝐾) must be normalized for use 

as a kernel in the bilateral filter. Normalization is not necessary for NLCA. 

normalized cut algorithm [22] defines a similar metric for 

the edges of the graph to be clustered.  

 The NLCA algorithm defines the similarity function 𝑆𝑝,𝑞 

in a way that preserves the character of (6), while allowing 

for very fast computation. The algorithm first defines a 

planar (4- or 8-connected) graph on the image pixel grid, 

with edge cost between two neighboring pixels (r, s) equal 

to 𝑑(𝑂𝑟 , 𝑂𝑠). Then, the minimum spanning tree of this 

graph is computed. The spanning tree, coupled with the 

edge costs, defines a tree metric on the image pixels, 

induced by the distance in the tree between the nodes 

representing any two pixels (where the tree distance is equal 

to the sum of the edge costs in the unique path between the 

two nodes). Let us define the tree distance between p and q 

as 𝑑𝑇(𝑝, 𝑞). One easily sees that two pixels have a small 

tree distance only if they have similar appearance and they 

are close in the tree (and thus close in the image grid). The 

NLCA algorithm defines the similarity function  𝑆𝑝,𝑞 in (5) 

simply as:  

 𝑆𝑝,𝑞 = exp(− 𝑑𝑇(𝑝, 𝑞) 𝜎⁄ ) (7) 

A very useful characteristic of this similarity function is 

that, if pixel r is in the path in the tree between p and q, then  

           

Figure 1: Visualization of the intensity model. Gold labels represent the observations: the wrapped phase and the intensity image. Green 

is measured a priori: the illumination profile is calibrated by making measurements of intensity against a surface with known albedo at 

known distances; embedded are electronic system artifacts (visible as stripes). White are rendered images: the surface normal is estimated 

from the wrapped phase, and this is done for each wrap value. Rendered here is the cos(β), the slant with respect to the camera. The 

rendered intensity is the image that would be predicted by our model. The simplifying assumption of uniform albedo is a chief cause in 

the differences between the predicted intensity image and the observed image: note the missing texture form the bed and carpet, and how 

the dark wooden dresser appears light. Orange is the final phase predicted by the algorithm. 

Rendered Intensity 

Orientation Map (x3) 

0                              2π                              4π  
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 𝑆𝑝,𝑞 = 𝑆𝑝,𝑟 ∙ 𝑆𝑟,𝑞 (8) 

 Yang uses this property to cleverly derive an extremely 

efficient algorithm for minimization of the aggregated cost 

𝐶𝑝
𝐴(𝐾) at each pixel. The computational cost of producing 

a labeling (in addition to the computation of the minimum 

spanning tree) is of 2 additions/subtractions and 3 

multiplications for each label K in the set of labels. The 

maximum number of wraps in a given scene is a function 

of the maximum range of that scene and the modulation 

frequency of the illumination source. Though in practice, 

the ability to measure phase shift from the returning signal 

is dependent on a strong enough signal, so the illumination 

power should be chosen to sufficiently light the desired 

range.  In our experiments, we use a maximum wrap value 

of 3, that is, 4 times the unambiguous range. 

3.2.2 Phase Unwrapping Via NLCA 

 The NLCA algorithm is a generic labeling technique that 

can be easily extended to our wrap number estimation 

problem. Specifically, we define the marginal data cost as 

follows:  

 𝐶𝑝(𝐾) = −𝑃(𝐾𝑝|Φ𝑝, 𝐵𝑝 , 𝛽𝑝) (9) 

The cost is used to populate a cost volume, with each slice 

representing the wrap label. The volume is reweighted by 

the aggregated cost from (5), efficiently computed as 

described in [20].To encourage spatial coherence only 

between coherent areas, we choose a distance function that 

can reflect similarity of pixels beyond having merely 

similar phase measurements. The natural extensions 

involve using our other observable features: intensity B and 

surface normal N.  We define distance functions for each 

feature type as: 𝑑𝜙(𝑂𝑝, 𝑂𝑞) = |𝑝 − 𝑞|/2𝜋, 

𝑑𝐵(𝑂𝑝, 𝑂𝑞) = |𝐵𝑝 − 𝐵𝑞|/max (𝐵), and 𝑑𝑁(𝑂𝑝, 𝑂𝑞) = 1 −

dot(𝑁𝑝, 𝑁𝑞), where max(B) is the maximum intensity value 

over the image, and dot(∙,∙) is the dot product of normalized 

vectors. The functions can be assembled into multi-feature 

distance functions, as described in 4.4.  

4. Experiments 

A set of 45 indoor scenes (consisting of wrapped phase 

Φ, intensity B, and surface normal offset angle β) were used 

to test the proposed algorithm. Surface normal were 

estimated using the Point Cloud Library [23].  Data was 

collected from 3 different locations: a home, an office 

setting, and a computer lab.  Only indoor scenes—the 

primary setting for ToF sensors—were chosen to be 

included as a known issue for active illumination sensors is 

excessive ambient light. We attempted to capture scenes 

with a variety depths, so to include a range of difficulties 

for which to test the algorithm. Data was captured using a 

prototype ToF camera with a resolution of 320x200 pixels, 

on loan from a commercial vendor.   

Figure 2: Visualization of the support for one pixel. The 

top image shows the intensity image of a bedroom scene.  

The middle image shows the support provided to a single 

pixel using the absolute difference of intensity as the 

distance metric. The bottom shows the support using the 1-

cos(β), the angle between the estimated surface normal. 



Each static scene was captured at two frequencies, 

51.4MHz and 68.6MHz, which determined unambiguous 

ranges of 2.2m and 2.9m respectively. Ground truth was 

determined by combining these pairs of captures using the 

approach of [2], which uses both frequencies to obtain an 

unambiguous phase measurement.  We ran our phase 

unwrapping algorithm on both frequencies individually. 

Our tests were run under the assumption that the 

maximum range of the scene is known ahead of time, thus 

limiting the number of phase wraps the algorithm can 

expect to encounter.  The difficulty of the problem is 

compounded by a larger number of wraps, and we therefor 

classified our test scenes by difficulty in the maximum 

value of wrap label K, either 1 (14 cases), 2 (45 cases), or 3 

(31 cases).  

4.1. Comparison to Previous Methods 

 We tested the full proposed solution, intensity model 

complete with surface normal estimation, and spatial 

coherence enforced by nonlocal cost aggregation, using a 

distance metric utilizing the phase Φ and surface normal N 

(see 4.4 for details).   We compared the results of our 

algorithm to that of Choi [17] and Crabb [2]. Over the entire 

data set, we observed an average of 94.1% pixels labeled 

correctly from our method, compared to 84.3% for Choi 

and 89.7% for Crabb.  However, we noted that the 

performance was very much dependent on the difficulty. In 

the easiest cases of a single phase wrap, Crabb’s MRF 

method slightly outperforms our proposed method 99.4% 

to 99.1%, in the harder cases we see that the proposed 

method more than makes up for it, achieving rates of up to 

92.3% of pixels labeled correctly, more than 9 percentage 

points above the previous method. 

 
Figure 3: Comparison of the proposed method against prior 

methods of Choi and Crabb.  Broken down into easy, 

medium, and hard cases, we can see that in the easy cases, 

all method perform nearly perfectly, but the advantages of 

the proposed method stand out in harder cases. 

60.0%

70.0%

80.0%

90.0%

100.0%

Easy Medium Hard

Choi (MRF) Crabb (MRF) Proposed Method

 
                    (a)                                        (b)                                     (c)                                   (d)                                 (e) 

Figure 4: Selected scenes demonstrating our algorithms’ performance. Column (a) shows the intensity image from the active 

illumination.  Column (b) is the ground truth number of phase wraps, from 0 to 2 wraps with darker greys being more wraps. 

Columns (d) and (e) show phase, increasing from hot white to cool purple, while (c) shows the measured phase (wrapped at 2π). 

Column (d) is representation of the unwrapped phase or depth, as measured by a multifrequency ToF camera.  The final column 

shows the reconstructed phase from our method. The top two rows taken from the easy group and the bottom two from the medium, 

chosen to highlight some specific difficulties.  In the 3rd row, column (b) contains a thin railing challenging the spatial coherence 

assumption. While the very low albedo of the TV screen in the 4th row may lead the brightness model to assume it is distant. 

 



4.2.  Intensity Model Comparison 

 The first set of tests looked exclusively at the intensity 

models’ ability to estimate the correct wrapping label.  

Simply, the likelihood of each wrapping label was 

computed as in eq. (4) or eq. (7)  from [2], and the mostly 

likely option is selected.  Surprisingly, the inclusion of an 

estimate of the surface normal had only a small impact on 

the ability to choose a wrap label from intensity alone. 

 The normal is estimated using the Point Cloud Library 

[23]. We found choice of window size effects the labeling 

accuracy by up to nearly 3%, when using intensity model 

alone. Choosing a neighborhood of 49 points showed good 

results, and our reported results use that parameter setting. 

 Compiling all scenes, we found a labeling accuracy of 

81.4% for the intensity model without normal, and 82.7% 

with.  Breaking the data up by difficulty we found a similar 

spread of just over 1%, as shown in table 1. 

4.3. Comparison of Spatial Coherence Methods 

 We can compare the spatial coherence methods directly 

by using the same values from the ‘data term’ of the MRF 

to populate the cost volume described in 3.2.2.  To make 

this comparison as similar as possible, we define the 

distance function as 𝑑(𝑂𝑝, 𝑂𝑞) = |𝑝 − 𝑞|. 

Looking at the tests as a whole, we find a small but 

significant advantage to the NLCA approach, with 91.8% 

of pixels labeled correctly, over 89.7%.  However, when we 

separate the cases by difficulty we find the advantage is not 

so clear cut.  In the easiest cases, involving only 1 phase 

wrap, the MRF approach performs excellently, mislableling 

only 0.6% of the pixels, while NLCA misses almost 4%.  

However, as the difficulty increases, we find NLCA 

demonstrates an advantage, seen in table 1. 

4.4. Exploring the Distance Function of Minimum 

Spanning Trees 

A distinct advantage of the NLCA approach over MRF 

is that here we have more freedom in defining our similarity 

function beyond solely the measured phase. Examples of 

the difference in pixel support are visualized in Figure 2. 

Notice that when using the intensity, the support stays 

mostly limited to pixels on the carpet, as they are of a 

similar intensity.  However, using the normal estimate N, 

support is spread over the floor, as it all shares the same 

orientation.  

We experimented with these different distance 

functions by themselves, and combined with each other in 

a number of ways, such as the maximum, l1- and l2-norms:  

max (𝛼𝐵𝑑𝐵 , 𝛼𝑑, 𝛼𝑁𝑑𝑁), ‖𝛼𝐵𝑑𝐵 , 𝛼𝑑, 𝛼𝑁𝑑𝑁‖1, and 
‖𝛼𝐵𝑑𝐵 , 𝛼𝑑, 𝛼𝑁𝑑𝑁‖2, with weighting coefficients 𝛼 

where ∑ 𝛼𝑖𝑖 = 1 (and we have dropped the observations 𝑂𝑝 

simply to shorten the notation). 

In our tests with the model excluding the surface 

normal estimate, we found that using the intensity alone as 

s distance metric produced quite poor results.  This makes 

sense as it is important the support for labels is not shared 

across phase wrap borders, in which the difference in  will 

be quite high.  However, using B jointly with  produces 

superior results, as seen in columns 6, 7 of table 1. Including 

the normal estimation, we show a handful of distance 

metrics composed of combinations of observed phase , 

intensity B, and estimated normal N. We found the best 

performance with the distance function defined as 

𝑑,𝑁(𝑂𝑝, 𝑂𝑞) = 𝛼|𝑝 − 𝑞| 2𝜋⁄ + 𝛼𝑁|1 − dot(𝑁𝑝, 𝑁𝑞)| 

with 𝛼 = .7, 𝛼𝑁 = .3. 

4.5. Algorithm efficiency 

 It is difficult to make a direct comparison of running 

times to the previous method using MRF, as that approach 

was implemented only in Matlab using a less than optimal 

message passing schedule (simultaneous message passing 

rather than sequential (e.g. left, right, up, down), while we 

have implemented our proposed in C++ with an aim to 

optimize for speed.  However, we can report that the 

observed running time (about 0.35-.75 seconds per frame, 

depending on maximum wrap on an Intel i7 2.7Ghz core) is 

more than 2 orders of magnitude faster than the time 

reported in [2] (about 175 seconds per frame).  We can 

break down this time into the various steps of the algorithm: 

Table 1. This table presents a summary of performance from a handful of the experiments we ran, in which we analyzed the many 

components and variations of our proposed method. The first two columns (green) compare the best estimate using the intensity model by 

itself, without enforcement of spatial coherence. Columns 3-4 intensity (red) show the performance using the Markov random field approach 

of [2], the first uses an intensity model by Choi [17] and the next uses an intensity model without normal estimation and discontinuity cost 

considering only . Columns 5-7 (orange) enforce spatial coherence by NLCA, shown with selected variations in distance metric.  Using 

 only is the most direct comparison to the approach of column 1.  The final columns 8-10 (blue) show the full proposed method: using an 

intensity model with normal estimates with spatial coherence enforced by NLCA, with a selection of distance metrics.  Distance metric 

with both the phase measurement  with surface normal estimate N produces overall superior results. 



surface normal estimation (.2s per wrap label), cost volume 

construction (.005s using look-up table as a replacement for 

numerical integration on the fly), MST construction .02 s), 

NLCA support computation (.004 s). 
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