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Abstract

The color appearance of an object can vary widely as a

function of camera sensitivity and ambient illumination. In

this paper, we discuss a methodology for seamless interfac-

ing across imaging sensors and under varying illumination

conditions for two very relevant problems in aerial imag-

ing, namely, change detection and mosaicing. The proposed

approach works by estimating surface reflectance which is

an intrinsic property of the scene and is invariant to both

camera and illumination. We advocate SIFT-based fea-

ture detection and matching in the reflectance domain fol-

lowed by registration. We demonstrate that mosaicing and

change detection when performed in the high-dimensional

reflectance space yields better results as compared to oper-

ating in the 3-dimensional color space.

1. Introduction

With wide availability of imaging sensors, it has become

common place to acquire images of a scene from different

cameras and in different illumination conditions. This sit-

uation is, in fact, frequently encountered in aerial imaging

wherein the reference and target images are typically cap-

tured at different times and not necessarily with the same

camera. This can be either for surveillance purpose with

unmanned aerial vehicles or for autonomous navigation and

exploration. Algorithms that assume color change to arise

from illumination alone will typically lead to erroneous re-

sults as they neglect the role of the camera in the entire pro-

cess. In the literature, different methods have been devel-

oped for handling illumination variations including inten-

sity normalization [1], albedo extraction [14], radiometric

correction [12], white-balancing [4] to a canonical illumi-

nation and color correction [18].

A major drawback of these methods is the basic assump-

tion of an infinitely narrow band spectral sensitivity which

commercial cameras seldom satisfy. Also, these techniques

assume that the images are acquired from the same camera

which is a rather strong constraint. In [16] color change

due to cameras is handled by finding a linear mapping be-

tween cameras or by finding two functions, one global and

the other illumination-specific. These functions are learned

for a pair of cameras; a RAW image of a scene can then be

mapped from one camera to another. A drawback of this

method is that each time a camera is changed, these func-

tions need to be re-learned. Moreover, a linear mapping be-

tween cameras is valid provided (a) Luther’s condition [17]

is satisfied i.e. the camera sensitivity is a linear combination

of human color responses, and (b) the reflectance lies in a

lower-dimensional space. However, these assumptions hold

only in limited cases.

Our goal in this work is to overcome the unwanted vari-

abilities introduced by camera and illumination changes in

change detection and mosaicing scenarios. Existing meth-

ods limit themselves to the same camera and mostly to the

same illumination too. Variations, if any, unless accounted

for, will show up as a false change or produce a visually un-

pleasant output. We allow for both camera and illumination

changes by working in the reflectance domain. The color of

an object we observe is the collective effect of our eyes’ re-

sponse, the object’s surface spectral reflectance, and source

illumination. By decomposing these components from the

observed image, one can derive an illumination and cam-

era invariant intrinsic property of the object; namely, the

surface reflectance. Both change detection and mosaicing

typically involve view-point changes too. For flat scenes,

the observed images can be related by a homography. This,

in turn, necessitates feature matching which clearly cannot

be done in the RGB domain. We propose to perform reg-

istration using feature points detected and matched in the

reflectance domain as it is invariant to both camera and il-

lumination. We demonstrate that SIFT features [10] can be

extracted and matched in the reflectance domain to com-

pute the homography that relates the images. While change

detection is carried out in the high-dimensional spectral

domain by thresholding the reflectance difference (post-

registration) at all spatial locations, mosaicing is performed

at each wavelength and is then resynthesised specific to a

given camera and illumination condition.



Figure 1. Image formation model.

The organization of this paper is as follows. Section 2 in-

troduces the spectral image formation model. Section 3 dis-

cusses techniques to solve for the components in the image

formation model. In Section 4, we propose registration in

the spectral domain followed by methodologies for change

detection and mosaicing. Section 5 contains experimental

results while conclusions are given in Section 6.

2. Spectral image formation model

When light strikes an object, it is either absorbed or re-

flected depending on the material composition of the object.

The reflected light is the color signal which is basically a

product of the illumination spectrum and surface reflectance

of the material. This color signal is filtered by the camera re-

sponse function into three bands, typically Red, Green and

Blue. Hence, the intensity value observed at a pixel position

x is the cumulative effect of the camera, object spectral re-

flectance and illumination spectrum, and can be expressed

as [16],

Ic(x) =

∫

λ∈V

R(x, λ)L(λ)Sc(λ)dλ (1)

where c ∈ {R,G,B}, V is the visible spectral range 400-

700nm, L(λ) is the illumination spectrum, Sc(λ) is the

camera spectral sensitivity, and R(x, λ) is the surface spec-

tral reflectance at position x. A pictorial representation de-

picting this relationship is shown in Fig. 1. Equation (1) is

a special case of the dichromatic model proposed in [9].

The spectral reflectance R(x, λ) can be interpreted as

albedo image measured at a specific wavelength. This quan-

tity is independent of the camera as well as scene illumina-

tion. The illumination spectrum L(λ) depends on the tem-

perature of the light source. It can be of different types with

each type dominated by a particular wavelength or a wave-

length interval. In this work, we discretize the visible spec-

trum (400-700nm) at intervals of 10nm as in [13]. Thus the

spectrum of a light source is a 31-dimensional vector that

spans the visible spectrum. In general, it is not possible

to linearly relate two light sources having different illumi-

(a) (b)

Figure 2. Color changes due to difference in camera sensitivity. (a)

Image taken with Canon D600 under tungsten lamp illumination.

(b) Image taken with Nikon D5100 under the same illumination.

nation spectra, L1 and L2. Since only those wavelengths

present in the light source that are not absorbed by the im-

aged object get reflected, different areas of the scene can get

darkened or brightened differently depending upon the lo-

cal reflectance. Hence, it is not possible, in general, to find a

scalar α such that L1 = αL2. The camera sensitivity Sc(λ)
is a set of three functions of wavelength specific to a camera

that relates the color signal with the recorded RGB values.

The effect of camera sensitivity on the acquired RGB im-

age can be quite significant. Even under the same illumina-

tion, the images of a scene need not appear the same when

viewed from different cameras as shown in Fig. 2. These

images were taken with a Canon D600 and Nikon D5100

under tungsten lamp illumination with all other camera pa-

rameters (exposure time, aperture, ISO) fixed. The color

change in Fig. 2 is caused by difference in the camera sen-

sitivity alone.

3. S/L/R Estimation

The acquired RGB color image is the cumulative ef-

fect of camera, illumination and scene reflectance. To es-

timate each of these components independently given only

the RGB data is quite an ill-posed problem.

Camera sensitivity is usually measured with a

monochromator and spectrophotometer [11], which

can be time-consuming. In [8], camera sensitivity is

estimated from a single image by assuming that it is

spatially-invariant and non-negative. The authors deter-

mine a low-dimensional statistical model for the whole

space of camera sensitivity and learn the basis functions for

this space such that any camera sensitivity can be estimated

for known and unknown illumination conditions from a

single image. They have provided a database containing

the sensitivity of 28 different cameras in 1. We too used

this spectral sensitivity data in our experiments.

The illumination spectrum mainly depends on the tem-

perature of the light source. There are works [2] that es-

timate illumination using color from correlation. They es-

timate the likelihood of each possible illuminant from the

observed data. Other techniques for illumination estimation

1http://www.cis.rit.edu/jwgu/research/camspec/db.php
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include grey world algorithms which assume the average

surface reflectance to be stable and any difference from the

stable point is attributed to illumination variation.

Surface reflectance is the intrinsic property of a scene

and provides a camera and illuminant-independent domain

to work with. Although the spectral information can be

captured directly by using hyperspectral cameras, this is

prohibitively expensive. Many works have discussed re-

trieving spectral data from commercial cameras [6], [7].

PCA-based methods for spectral reflectance estimation [6]

assume reflectance to be from a lower-dimensional space

and learn the basis functions of this space. Other techniques

are based on multiple images acquired with specialized fil-

ters or a Digital Light Processing (DLP) projector [5] etc.

But these require additional hardware.

We discuss here a method [13] that jointly solves for both

illumination (L) and reflectance (R), given the color image.

I = S.diag(L).Rl (2)

Rl(k×MN) is the vectorized form of R whose row repre-

sents the albedo image estimated at a particular wavelength.

Assuming the knowledge of the camera sensitivity (S3×k)

discretized by sampling the interval from 400-700 nm and

given the RGB value (IM×N ) at each pixel position in the

image, solving the above equation for illumination spec-

trum (L1×k) and reflectance spectrum (RM×N×k) is quite

challenging. There are basically 3MN knowns from which

we need to solve for k(MN+1) unknowns where k = 31.

In the training phase of [13] , a set of hyperspectral data is

collected wherein the scene contains a white tile. The illu-

minant spectrum is separated from the imaged white tile by

averaging the spectral response of white tile pixels over the

captured range of spectrum. Once the illuminant is found

out, the reflectance is calculated from the hyperspectral data

by dividing it with the illuminant spectrum. With the RGB

images and ground truth reflectance in hand, training is

done to learn a mapping from the 3-dimensional RGB value

to the high-dimensional reflectance value using radial basis

functions (RBF). Along with this mapping, a PCA-based

basis function for illumination is also learnt. Once train-

ing is over, a reflectance and illumination model specific to

the camera is generated. Any RGB image taken with this

specific camera can now be decomposed into its reflectance

and illuminant spectra using the model thus learned. Note

that since the mapping function is nonlinear, a linear vari-

ation in the RGB domain will not be reflected as a linear

change in the reflectance domain. Also, since illumination

and reflectance spectra are estimated together, error in one

can propagate into the other.

4. Change Detection and Mosaicing

As discussed in the beginning, the goal of this paper is

to enable change detection and mosaicing, irrespective of

camera and illumination considerations.

Change detection involves estimating the change map

between two images I(1) and I(2) of a scene taken with dif-

ferent cameras and illumination along with view-changes

(if any). Let R(x, λ), L(1)(λ) and S(1)(λ) be the scene

reflectance, illumination spectrum and camera sensitivity,

respectively. Then, image I(1) can be expressed as

I
(1)
c (x) =

∫

R(x, λ)L(1)(λ)S
(1)
c (λ)dλ

Let I(2) be the second image taken at a different time and

with a different camera. It is given by

I(2)c (x′) =

{

∫

R(τ(x), λ)L(2)(λ)S
(2)
c (λ)dλ, if x′ * C

∫

Ro(x
′, λ)L(2)(λ)S

(2)
c (λ)dλ, if x′ ⊆ C

(3)

where τ represents geometric warping due to view-change,

C is the set of occluding pixel positions in the image, and Ro

is the spectral reflectance of the occluding object. Note that

the reflectance from I(2) could be either from the occlud-

ing object’s reflectance or from the geometrically warped

reflectance of the original image. The geometric changes in

the original image are directly mapped onto the reflectance

domain. The problem of change detection thus boils down

to finding the occluder (when present).

As a first step, the reference and target images need to

be registered. SIFT [10] is a popular feature detector that

has been widely used in monochromatic images. Since

the acquired RGB image depends on the camera and il-

lumination, the extracted SIFT features are not consistent.

Hence, we propose feature matching and registration in the

reflectance domain. The SIFT features can be reliably de-

tected since reflectance is an intrinsic property. The fea-

tures are then matched across the two reflectance images.

Once the correspondences are found, Random sample con-

sensus (RANSAC) [3] is used to estimate the homography

matrix relating the geometric variation between the two im-

ages. To address the issue of choice of the best band, we

considered wavelengths corresponding to the maximum of

Commission Internationale de L’Eclairage (CIE) standard

observer color matching functions (i.e. 450, 550 and 600

nm approximately) and convert this to a grayscale image

for SIFT feature calculation. Fig. 3 shows feature matches

across two reflectance images, where the second image is a

translated and occluded version of the first. Only the first

few correspondences are shown in the figure.

Using the estimated homography, the reflectance images

at all wavelengths are registered. Then, a reflectance im-

age stack is formed where each pixel location in the spa-

tial domain is associated with a 31×1 spectral data along

the wavelength axis. Since the reflectance data is material-

specific and changes with the material composition of the

object, it gives more information about the acquired image



Figure 3. Matched features in reflectance images.

Figure 4. Variation of reflectance spectra. (a) Image 1. (b) Image

2 with occlusion. (c) The reflectance spectra at a non-occluding

pixel position. (d) Reflectance spectra corresponding to an oc-

cluding pixel.

at each spatial location as compared to using the RGB im-

age which is a filtered and dimensionality reduced version

of this high-dimensional spectral data.

As shown next, the spectral information can be effec-

tively used for performing change detection. Figs. 4(a)

and 4(b) represent two images of the same scene taken with

Canon 60D under fluorescent lighting. Subplot (c) shows

the surface reflectance at a non-occluding pixel position

whereas (d) shows the reflectance corresponding to an oc-

cluding pixel position. Note that the introduction of a new

object into the scene changes the surface reflectance infor-

mation at those pixel positions. By thresholding the Eu-

clidean distance between the surface reflectance data at each

spatial location in the reference and target images, one can

arrive at the change map.

The goal in image stitching is to produce a panorama cor-

responding to any single camera and arbitrary illumination.

Let there be a total of n images (I(i); i = 1, 2..., n) cap-

tured under n different light conditions (L(i), i = 1, 2.., n)

and cameras with sensitivities (S(i), i = 1, 2, .., n) i.e.

I(i)c (x′) =

{

∫

R(τij(x), λ)L
(i)(λ)S

(i)
c (λ)dλ, if x′ ⊆ Mij

∫

Ri(x
′, λ)L(i)(λ)S

(i)
c (λ)dλ, if x′ * Mij ,

(4)

where Mij is the set of overlapping pixel positions in I(i)

and I(j) (i 6= j) and Ri is the reflectance of the non-

overlapping new information captured in scene I(i). In the

overlapping regions, I(i) is related to I(j) by a warping τij ,

and camera, and illumination changes. The reflectance im-

ages are warped versions of each other and are independent

of camera or illumination. The non-overlapping regions in

I(i) bring in new information. The reflectance images are

registered using a similar approach as discussed earlier un-

der change detection. Mosaicing is carried out in the re-

flectance domain to overcome undesirable artifacts caused

by color changes. Let Rs represent the stitched reflectance

image. Then the mosaiced RGB image (M (i)) as seen from

the ith camera can be synthesized as

M (i)
c (x) =

∫

Rs(x, λ)L(λ)S
(i)
c (λ)dλ (5)

The stitched reflectance image can also be relighted with a

specific illumination (L(i)) as

M (i)
c (x) =

∫

Rs(x, λ)L
(i)(λ)Sc(λ)dλ (6)

5. Experimental results

For evaluating the performance of the proposed

framework, we test on both synthetic and real examples.

Along with qualitative and quantitative assessment, we

also provide comparisons. In order to acquire images

from different cameras and illumination, we used the

hyperspectral dataset given in [13]. RGB images are

synthesized by multiplying the spectral data with each

camera’s sensitivity provided in the database of [8]. For

the synthetic experiments, we considered four cameras:

Canon 600D, Canon 1D Mark III, Nikon D40 and Olympus

E PL2. Real examples were captured with Canon 60D,

Nikon D5100 and Fujifilm S4800 cameras, for which the

sensitivities are available in the database. The light sources

used for illumination are sunlight and metal halide lamp at

different temperatures: 2500K, 3000K, 4500K and 6500K.

Once the RGB images are synthesized, the reflectance

is estimated using the learned camera-specific RBF [13]

discussed in Section 3. All our results are displayed in color.

Change detection:

There are different ways in which two images can be

compared. We discuss relevant situations below and com-

pare our output with each one of these.

1. Variant 1: Image registration, pixel-wise subtraction

and thresholding, all in the RGB domain, without any

photometric corrections.

2. Variant 2: Accommodating for color changes by using

color-transfer algorithms and transferring color of tar-

get image to source image. This is followed by regis-

tration, pixel-wise subtraction and thresholding of the

color-corrected images.



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5. Synthetic experiment on change detection. (a) Input image 1. (b) Input image 2 with occlusion and view-change. (c) Color of

image 2 transferred to that of image 1. (d, e) Reflectance images estimated from image 1 and image 2. (f) Ground truth change map. (g)

Change map using RGB image (PCC = .8089, JC = .1154, YC = .1066). (h) Change map obtained from white-balanced image (PCC =

.9617, JC = .3803, YC = .4798). (i) Change map using color-transferred image (PCC = .9476, JC = .2946, YC = .3574). (j) Our result

(PCC = .9997 , JC = .9923, YC = .9985).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6. Synthetic example on change detection. (a, b) Synthesized source and target images. (c) Color transferred image. (d, e)

Reflectance images derived from image 1 and image 2 at wavelengths (450,550 and 600 nm). (f) Ground truth occlusion. (g) Output of

change detection directly in RGB domain (PCC = .5818, JC = .0264, YC = .0260). (h) White-balanced change detection (PCC = .8260, JC

= .0611, YC = .0610). (i) Color-transferred change detection (PCC = .9987, JC = .8950, YC = .9192). (j) Change map using our method

(PCC = .9986, JC = .8699, YC = .9933).

3. Variant 3: White-balancing the images and then

performing registration, pixel-wise differencing and

thresholding of the white-balanced images.

The first image in Fig. 5 is synthesized from the hyperspec-

tral data in [13] as seen from a Canon 1D Mark III camera

under daylight illumination. The second image is simulated

with view-change, occlusion and as observed from Olym-

pus E PL2 camera but under same illumination. The re-

flectance and illumination spectra are estimated from both

the input images. From the reflectance images, the wave-

lengths corresponding to maxima in CIE are chosen to form

a color image which is converted to gray format for feature

detection. We used vlfeat toolbox [19] for detecting and

matching SIFT features. In the second synthetic example

(Fig. 6), the first image is synthesized with Canon 1D Mark

III camera under Metal halide lamp 6500K whereas the sec-

ond image is synthesized with occlusion and view-change

as seen from Canon 600D under Metal halide 2500K.

The results corresponding to our method as well com-

parisons with variants 1, 2 and 3 are given in Figs. 5 and

6. Note that the RGB input images in the synthetic exper-

iments shown in Figs. 5(a) and (b) and Figs. 6(a) and (b),

synthesized with different cameras and illumination, show

significant color variations which leads to error in the esti-

mated change map in Figs. 5(g) and 6(g). The color trans-

ferred images in Figs. 5(c) and 6(c) were produced by using

the code provided by the authors of [15]. The errors caused

by improper color transfer show up as false changes in the

final output (Figs. 5(i) and 6(i)). The error in Fig. 6(i) is

somewhat less with small grains in the color transferred out-



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. Change detection on a real dataset. (a, b) Reference and

target images captured with Fujifilm and Canon 60D, respectively.

(c, d) Reflectance images estimated from the inputs at wavelengths

450, 550 and 600 nm. (e) Color of reference image mapped to

target image. (f) Changes detected directly from the captured RGB

images. (g) Change detected post color transfer. (h) Output of the

proposed method.

put showing up as change. Figs. 5(h) and 6(h) are change

maps obtained after white-balancing the input RGB images.

Though white-balancing removes illumination variations to

some extent, the variations caused by camera sensitivity are

not corrected which show up as error in the change map. In

contrast, the result of our method given in Figs. 5(j) and

6(j) produces a change map that is visually closest to to the

ground truth.

We also performed quantitative evaluation based on the

following well-known metrics for change detection.

1. Percentage of correct classification PCC =
TP+TN

TP+TN+FP+FN
.

2. Jaccard coefficient JC = TP
TP+FP+FN

3. Yule coefficient YC = | TP
TP+FP

+ TN
TN+FN

− 1|

Here TP represents the number of changed pixels cor-

rectly detected, FP represents number of no change pix-

els marked as changed, TN is the number of no change

pixels correctly detected, and FN is number of change pix-

els incorrectly labeled as no change. PCC alone can give

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8. Real experiment on change detection with both camera

and illumination changes. (a) Image taken with Canon 60D cam-

era. (b) Image taken with Nikon D5100. (c) and (d) are the es-

timated reflectance images. (e) Color-transferred image from (b)

to (a). (f) Changes detected in the RGB domain. (g) Changes de-

tected after color-transfer. (h) Changes detected using our method.

misleading results when the size of the occluder is small

compared to the overall image. JC and YC overcome this

issue by minimizing the effect of the expected large vol-

ume of TN . These coefficients should be close to 1 for an

ideal case. However, in practice, a value greater than 0.5

is considered quite good for JC and YC. Values of PCC,

JC and YC are given in the captions of Figs. 5 and 6 for

each method. From these values, it is clear that even though

other methods show comparable PCC values, they fail to

yield good numbers for YC and JC. In contrast, our method

consistently delivers good values for all the coefficients.

Results on change detection for real images are given

in Figs. 7 and 8. The first image in Fig. 7 is taken using

a Fujifilm S4800 camera whereas the second image is

taken with Canon 60D. Both these images are taken under

same daylight illumination. The color difference caused

by camera change is clearly visible in these images. In

Fig. 8, the first and second image are taken with Canon

60D and Nikon D5100, respectively, and at different times.

Note the change in illumination in the two images. From

the outputs shown in Figs. 7(f)-(h) and 8(f)-(h), it is clear

that our algorithm outperforms competing methods even

in challenging real scenarios. Although there are artifacts

in our output, these are very few as compared to other



(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 9. (a-c) are input images for stitching. (d) Ground truth

panorama. (e) Resynthesized stitched image using our method

and as seen with Canon 1D Mark III camera under Metal Halide

3000K (RMSE = 0.0431, SSIM = 0.9595). (f) Stitched image in

RGB domain (RMSE = 0.1325, SSIM = 0.7890). (g) Error map

between (d) and (e). (h) Error map between (d) and (f).

methods.

Image Mosaicing:

For synthetic experiments, we divided the hyperspectral

data [13] of a scene (across all wavelengths), into three spa-

tially overlapping regions. The RGB images correspond-

ing to these three regions are synthesized as observed from

Canon 1D Mark III, Nikon D40 and Canon 600D cameras

and under Metal Halide 3000K, Metal Halide 2500K and

daylight illumination, respectively. Thus, we obtained the

three input images shown in Figs. 9(a)-(c). The images

together cover a wider field of view. We estimated the re-

flectance and illumination spectra from these input images.

We also account for translation motion in this example. The

homography matrices relating these reflectance images are

estimated using SIFT features and the reflectance images

are stitched in all the wavelengths. The stitched reflectance

image is transformed into an RGB image as seen from

Canon 1D Mark III under Metal Halide 3000K as shown

in Fig. 9(e). The result of stitching directly in the RGB

domain is given in Fig. 9(f). The ground truth image of

this scene (Fig. 9(d)) is produced by directly combining the

spectral reflectance data provided in the dataset [13] with

(a) (d)

(b) (e)

(c) (f)

Figure 10. Real experiment for an indoor scene. (a) and (c) are

input images taken with Nikon D5100. (b) Input image taken with

Fujifilm (all the images were taken under fluorescent lighting). (d)

and (e) Mosaiced output of our method as viewed under Nikon

D5100 and Fujifilm. (f) Image stitched directly in the RGB do-

main.

the specified illumination and camera sensitivity. The er-

ror maps with respect to the ground truth image are given

in Figs. 9(g) and (h). Quantitative analysis with respect to

ground truth image is given in terms of RMSE and SSIM in

the caption of Fig. 9.

Finally, we give results on real mosaicing examples.

Figs. 10(a)-(c) show input images taken with Nikon D5100

and Fujifilm S4800 in indoor settings with fluorescent illu-

mination. The stitched image in the reflectance domain is

then resynthesized as seen from these cameras. Figs. 11(a)-

(c) represent input images of an outdoor scene taken with

Canon 60D and Fujifilm S4800 and under daylight illumi-

nation. From the stitched output images in Figs. 10(d)-(f)

and Figs. 11(d)-(f), we can observe that the results of the

our proposed method look visually pleasing.

6. Conclusions

In this paper, we discussed an important effort aimed at

achieving inconspicuous change detection and mosaicing

across different cameras and illumination variations. We

showed that color variations caused by changes in camera

and illumination can be robustly handled to a good extent by

working in the reflectance domain. We also demonstrated

that feature extraction and registration can be done effi-

ciently in the reflectance domain due to its invariant char-

acteristics. Synthetic as well as real examples on change

detection and mosaicing were given to validate the proposed

framework.



(a) (b) (c)

(d) (e) (f)

Figure 11. Mosaicing of an outdoor scene. (a) and (c) are images taken with Canon 60D. (b) Image taken with Fujifilm. (d) Stitched

image in the reflectance domain and resynthesized as seen from Canon 60D camera using our method. (e) Stitched image in the reflectance

domain and resynthesized as seen from the Fujifilm camera using our method. (f) Image stitched directly in the RGB domain.
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