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Abstract

Inspired by the effectiveness of global priors for 2D
saliency analysis, this paper aims to explore those partic-
ular to RGB-D data. To this end, we propose two priors,
which are the normalized depth prior and the global-context
surface orientation prior, and formulate them in the form-
s simple for computation. A two-stage RGB-D salient ob-
ject detection framework is presented. It first integrates
the region contrast, together with the background, depth,
and orientation priors to achieve a saliency map. Then,
a saliency restoration scheme is proposed, which integrates
the PageRank algorithm for sampling high confident region-
s and recovers saliency for those ambiguous. The saliency
map is thus reconstructed and refined globally. We conduct
comparative experiments on two publicly available RGB-
D datasets. Experimental results show that our approach
consistently outperforms other state-of-the-art algorithms
on both datasets.

1. Introduction
Although saliency detection has been extensively stud-

ied for decades, most of the previous works focus on 2D
image analysis. Recently, researchers began to integrate
multi-modality imaging data to improve performance. For
instance, flash and no-flash image pairs [11], light field [19],
stereopsis [21], or RGB-D images [16, 8, 22, 6] are investi-
gated respectively. Among them, the use of RGB-D images
for salient object detection is attracting more and more in-
terest, partially due to the advent of robust ranging sensors
such as the Microsoft Kinect and Velodyne Lidars, but also
because of its importance on navigation and manipulative
tasks in robotics.

In both cognitive psychology [28, 9] and computer vi-
sion [12] communities, it is well known that 3D spatial in-
formation is an important cue for human visual attention.
Color images augmented with depth maps provide us with
scene layout, shape, surface orientation and other 3D cues,
making it possible to pop out salient objects even if fore-
ground and background are similar in appearance. Several

prior works [16, 8, 6, 22, 14] have tried to integrate depth
with color for enhancing saliency detection performance.
Most of these methods incorporate depth cues within the
center-surround contrast measurement framework. Global
priors induced by depth have not been well developed yet,
except the work in [16].

Contrarily, global priors have exhibited their high ef-
fectiveness in 2D saliency detection. For instance, center-
bias [27] is a prior that has been extensively used to boost
performance. Boundary prior [30, 32, 33] and semantic pri-
or [26] are also exploited in some recent approaches, by
which state-of-the-art results are obtained, demonstrating
the advantage of using the global knowledge. Inspired by
these achievements, this work aims to explore particular
priors that are introduced by the depth information, mean-
while investigating the effectiveness of 2D priors for RGB-
D saliency analysis.

The contribution of this paper lies in three aspects. First,
we propose two priors, which are normalized depth pri-
or and global-context surface orientation prior, for RGB-D
saliency detection. The former is formulated in a simple for-
m, based on an observation from saliency distributions, to
highlight near objects while degenerate saliency for objects
further away. The orientation prior is estimated with respect
to the principal axis, aiming to degrade saliency for severely
slanted surfaces such as the ground plane or ceilings. Com-
bining these two intuitive but highly complementary priors
with the traditional region contrast framework, we obtain
high detection performance. Second, we investigate the ef-
fectiveness of 2D background prior for RGB-D images and
find out that it is of a marginal contribution to boost the per-
formance. The main reason is that, with depth information,
objects are easier to be popped out no matter if they are con-
nected to boundaries or not. Last but not least, we propose a
saliency restoration scheme to refine saliency detection re-
sults. It integrates the PageRank algorithm [4] to sample
high confident regions and reconstruct saliency for the am-
biguous regions via globally optimizing a Markov Random
Field. The effectiveness of our approach has been validated
on two publicly available RGB-D datasets.



2. Related Work
2D Saliency: 2D saliency detection is originally predict-

ing eye fixations on images, and later is extended to identify
salient object regions. Over the past decades, a great num-
ber of methods have been developed, from either biological
or top-down and bottom-up computational standpoints. The
top-down computational models are driven by some specif-
ic tasks while the bottom-up models, which is the focus of
most recent researches, rely on input images [3].

Many existing bottom-up approaches exploit contrast
priors [30] for saliency detection. The center-surround con-
trast of image elements, either pixels or superpixels, is com-
puted with respect to local neighborhoods [15, 10, 31] or
the entire image [1, 5]. Diverse features such as color d-
ifference and edge orientations [15], and features at mul-
tiple scales [31] or in frequency domain [18] are investi-
gated for contrast measurement. With an estimated salien-
cy map, some recent work further applies a Grabcut-like
scheme [25], a Markov Random Field model [31, 6], or
other optimization framework [33] to globally optimize the
final result, boosting the performance in salient object de-
tection tasks.

Besides the commonly used center-surround contrast,
other priors are also incorporated in recent approaches. For
example, center bias [27], which refers to the tendency for
humans to look towards the image center, is often used
at the final step for saliency detection. Wei et al. [30]
propose a background prior to eliminate salient regions
on image boundaries, which demonstrates high effective-
ness [30, 32, 33]. Moreover, semantic prior [26], assuming
that people pay more attention to certain semantic object-
s like faces, is also exploited. The incorporation of these
complementary priors improves the saliency detection per-
formance further. However, even if many methods have
achieved high performance on different datasets, they are
prone to fail when foreground and background are similar
in appearance, due to the lack of 3D information.

3D Saliency: Existing 3D saliency detection research-
es are conducted on different data modalities, including
3D point clouds [23], stereopsis [21, 14], and RGB-D im-
ages [16, 8, 22, 6]. Analogous to 2D saliency analysis, lo-
cal center-surround operators are applied to detect salien-
t 3D meshes [17] and points [23], based on mean curva-
tures, surface height, relative surface orientation and other
3D cues. Niu et al. [21] employ a global disparity con-
trast to leverage stereopsis for saliency detection. Ju et
al. [14] use anisotropic center-surround difference to mea-
sure saliency on depth images. For RGB-D images, one
research line treats the depth map independently to gener-
ate a depth-induced saliency map and then combine it with
a color-produced saliency map via some heuristic or ma-
chine learning approaches [8]. The other line combines 3D
cues derived from the depth map with color information at

Figure 1: An overview of the proposed framework. (The
dash line along the background prior (BP) means that the
framework can choose to either incorporate BP or not.)

each step of saliency detection [22]. When examining depth
information, an observed prior is that objects closest to hu-
mans always attract the most attention [29], while attention
attenuates greatly for further objects. Such depth prior is
learnt via Gaussian mixture models in [16] to predict eye
fixation on RGB-D images. Other priors, such as the com-
fort zone bias [21] which is specific to the stereopsis do-
main, are also exploited to improve the performance. How-
ever, in contrast to 2D saliency analysis, the priors induced
by 3D information have not been well exploited in the ex-
isting works. Moreover, even the effectiveness of the 2D
priors, background prior for example, has not been evaluat-
ed when applied to 3D saliency detection.

3. Proposed Method

This paper presents a two-stage scheme for RGB-D
saliency detection. The first stage generates a saliency map
based on the combination of region contrast with global pri-
ors. Specifically, when an RGB image and an aligned depth
map are given, we first convert the RGB image to the CIE
LAB color space and oversegment it into superpixels us-
ing Mean Shift [7], SLIC [2] or other methods. The con-
trast of each superpixel is evaluated with respect to all other
superpixels. Three global priors that are, respectively, the
background, depth, and surface orientation priors, are ex-
ploited and incorporated together with the region contrast to



produce a saliency map. At the second stage, a PageRank-
based sampling scheme and a MRF-based saliency restora-
tion method is applied to refine the final result globally. Fig-
ure 1 illustrates the overall framework.

3.1. Prior Integrated Region Contrast

3.1.1 Region Contrast

Our region contrast is designed in a form similar to other-
s [5], but incorporating the depth value at the same time.
For each superpixel, or we say a region ri, its saliency val-
ue is measured with respect to its color and depth contrast
to all other superpixels

Src(ri) =
∑
j 6=i

A(rj)C(ri, rj), (1)

where i, j ∈ {1, ..., n} are the indexes of regions and n is
the total number, A(rj) indicates the area of region rj , and

C(ri, rj) = exp

(
−||xi − xj ||22

2σ2
x

)
||fi − fj ||2, (2)

in which f = [l, a, b, d] stands for the color vector augment-
ed with depth, taking the average value within a superpixel
and x denotes the superpixel’s centroid. σx is the standard
deviation of the distance between two centroids.

3.1.2 Background Prior

Background prior has been exploited in recent 2D [30, 13,
32, 33] and 3D [22] saliency detection approaches. It re-
lies on two observations. One assumes that boundary re-
gions are mostly background, because photographers sel-
dom crop objects of interest along the view frame. The oth-
er is that background regions are more of high connectivi-
ty. Therefore, Wei et al. [30] proposed a geodesic saliency
to measure background regions of shorter paths. Jiang et
al. [13] designed a backgroundness descriptor to determine
the background degree of a region via a supervised learning
approach. Yang et al. [32] used appearance connectivity to
boundaries for saliency evaluation. Peng et al. [22] simply
chose four image corners as pseudo-background. These ap-
proaches have demonstrated their effectiveness. However,
they are mostly heuristic and fragile when objects touch the
boundary even slightly.

In this work, we adopt boundary connectivity [33] to
generate the background prior map, which is defined as

Sbp(ri) = 1− exp

(
− L(ri)

2

2σ2
bA(ri)

)
, (3)

in which L(ri) refers to the length along the boundary for
region ri and σb is a weighting factor for boundary con-
nectivity. This background measure is robust to the slightly

touched cases. As shown in Figure 2d, the approach elimi-
nates most boundary regions effectively. However, in many
cases, it still keeps a large portion of an image as saliency.
Moreover, it inevitably fails when an object heavily con-
nects to the image boundary, as the last example shown in
Figure 2d.

3.1.3 Depth Prior

A depth prior commonly observed in both vision perception
and cognitive psychology is that closest objects attract the
most attention. In addition, Lang et al. [16] pointed out
that the relation between depth and saliency is non-linear.
They thereby employed a Gaussian Mixture Model to learn
the depth prior, which characterizes saliency versus depth
within different depth of fields (DOF).

Considering that salient objects may occur at quite dif-
ferent positions when the scenes have different DOFs, we
therefore rescale the absolute depth values within each im-
age into the range [0, 1] to get rid of the influence of DOFs.
Figure 3a and Figure 3b illustrate the depth distribution of
salient objects and the distribution for all scenes, respective-
ly, corresponding to the probabilities P (D|S) and P (D).
Given a depth value D, we maximize the posterior proba-
bility P (S|D) that is

P (S|D) ∝ P (D|S)
P (D)

. (4)

Figure 3c demonstrates the distribution of P (D|S)
P (D) . Based

on that, we simply use the following form to estimate the
depth prior map

Sdp(ri) =
√
1− d(ri), (5)

where d(ri) is the mean depth value of region ri. This for-
mulation roughly fits the posterior distribution, while plac-
ing a small bias on closer distance.

(a) (b) (c)

Figure 3: The depth distributions obtained in the RGB-D
dataset [22].

Figure 2e presents some depth prior maps produced ac-
cording to Eq.(5), in which closer objects are popped out
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Figure 2: Typical examples of saliency detection results generated at each step.

from further backgrounds notably. However, when an ob-
ject is placed on a support plane such as the ground, the
closer portion of the plane is highlighted as well.

3.1.4 Surface Orientation Prior

Although surface orientation is considered to be an im-
portant 3D cue in several RGB-D approaches, most of
them [22, 6, 23] measure the relative orientation between
each two superpixels for region contrast evaluation. In this
work, we propose a global-context orientation prior. It is
based on an intuitive observation that photographers like to
choose a viewpoint fronto-parallel to objects of interest, or
we say that the direction perpendicular to the principal axis
receives the most attention. Denoting the principal axis by
z, we estimate the orientation prior by

Sop(ri) = 〈z,n(ri)〉 , (6)

where n(ri) is the unit surface normal of region ri and 〈·, ·〉
denotes the inner product.

Figure 2f demonstrates four produced orientation pri-
or maps. It shows that the saliency on the ground plane,
ceiling, or sidewalls is greatly degenerated. We also ob-
serve that surface orientation prior and depth prior are high-

ly complementary to each other, implying a better result if
they are combined together.

3.1.5 Prior Integrated Region Contrast

Once we obtain the region contrast map, as well as the back-
ground, depth, and orientation prior maps, we first integrate
the region contrast with the background prior following the
way in [33]:

S′rc(ri) =
∑
j 6=i

Sbp(rj)A(rj)C(ri, rj), (7)

and then simply mulitply it with the depth and orientation
prior maps together to generate the saliency map:

Sirc = S′rc · Sdp · Sop. (8)

3.2. Global Optimization

The saliency map generated in the previous stage does
not take spatial consistency into consideration. General-
ly speaking, neighboring superpixels are prone to have the
same degree of saliency if they are of similar features. To
integrate such spatial constraints, a Markov Random Field
(MRF) model is employed. Moreover, based on the MRF
model, we propose a guided saliency restoration scheme to



(a) Integrated Saliency (b) PageRank (c) PageRank+MRF (d) MRF (e) Ground Truth

Figure 4: A typical example for illustrating the global saliency optimization result. (a) is the saliency map produced at
Stage 1. (b) is the reweighted saliency map via the PageRank algorithm. (c) is the result produced by the proposed saliency
restoration scheme. (d) is the result generated by directly applying a MRF model to (a) without sampling and restoration,
that is, no the sampling matrix M in the MRF optimization model defined in Eq.(10). (e) is the ground truth.

refine the saliency map globally. More specifically, we as-
sume that the superpixels with high or low saliency values
are, respectively, to be salient objects or the background,
while the remaining may be ambiguous. We thus sample
the high confident superpixels as seeds, while leaving the
others as unknown. The saliency of unknown superpixles is
restored through the optimization of the constructed MRF
model. More details are illustrated below.

3.2.1 PageRank-based Seed Sampling

The importance of sampling representative superpixels has
been realized in various works, and thus different selection
schemes are proposed for optimal ranking [24, 32], saliency
diffusion [20], and salient region growing [22]. In order to
choose high confident superpixels, we adopt the PageRank
algorithm [4, 24] to rank the salient superpixels and then
sample the most top and the most bottom ones as seeds.

The PageRank algorithm reweighs the saliency of each
superpixel via considering the impact from its neighbor-
hood, by which the saliency map is updated as follows:

Spr(ri) =
∑

j∈N (i)

w(ri, rj)Sirc(rj)∑
k∈N (j) w(rk, rj)

. (9)

Here, the weight w(ri, rj) = 〈n(ri),n(rj)〉 considers the
relative surface orientation of each two superpixels. This
reweighting scheme implies that the saliency of a superpixel
is enhanced if its neighbors are of high saliency and similar
orientations, and vice versa.

3.2.2 MRF-based Saliency Restoration

A common idea shared among saliency diffusion [20],
salient region growing [22], and our saliency restoration
scheme is to propagate saliency from high confident ele-
ments to the unknowns. In contrast to the former two ap-
proaches, we formulate this problem within the Markov
random field framework, borrowing the idea from image
restoration tasks.

Our MRF model is constructed over superpixels. Let
us stack the saliency of all regions as a vector S =
[S1, · · · , Sn] and denote the sampled set by Y = MS.
M ∈ Rm×n is the sampling matrix that selects m samples
from the entire region set according to the seed sampling
scheme. The initial S = Spr, which implies Y = MSpr.
The task of saliency restoration aims to reconstruct the
saliency map via solving

S? = argmin
S
||MS−Y||22 + α

∑
i,j∈N (i)

ωij ||Si − Sj ||22.

(10)
In this model, the data fidelity term enforces the consis-
tency between the reconstructed saliency and the previous-
measured value for the seeds. The pairwise smoothness
term constrains the consistency between neighbors, while
weighted by ωij = exp(−||fi − fj ||22/σ2

f ) that incorporates
color and depth information as guidance. α is a scaling fac-
tor to balance these two terms.

An example illustrated in Figure 4 shows how our global
optimization performs. Compared to the MRF model with-
out sampling matrix M, which is shown in Figure 4d, the
proposed restoration model improves the final saliency map
not only on removing false salient regions but also on re-
taining salient regions better.

4. Experiments
4.1. Experimental Setup

To validate our proposed approach, we have conducted
experiments on two publicly available datasets: the NLPR
RGBD salient object detection dataset 1 [22] and the NJU-
DS400 dataset 2 [14]. The former has 1,000 natural images
captured by Microsoft Kinect in diverse indoor and outdoor
environments, together with labeled ground truth. The lat-
ter contains 400 stereo images, whose corresponding depth
maps are generated using an optical flow method. Ground
truth is also provided.

1https://sites.google.com/site/rgbdsaliency/dataset
2http://svalianju.wix.com/home#!salient-object-detection/cin4
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(d) Global optimization (e) Comparision with other methods

Figure 5: Comparative evaluation on the NLPR RGBD dataset [22]. The PR curves in (a) illustrate the performance for the
combinations of different priors. (b) and (d) show the performance of the proposed global optimization scheme, compared
to the one without optimization (denoted as ’Local’) and the one directly applying a MRF model (denoted as ’MRF’). In (c)
and (e), the performance of our methods is compared with other approaches.

During the experiments, we compare our algorithm with
four state-of-the-art saliency detection methods, among
which two are developed for RGB-D images and two for
traditional 2D image analysis. One RGBD method [22]
performs saliency detection on Low-level, Mid-level, and
High-level stages and therefore is referred to as LMH
here. The other RGBD method [14] is based on anisotrop-
ic center-surround difference and therefore is denoted by
ACSD here. The two 2D methods are, respectively, Cheng’s
Region Contrast method [5] that is denoted as CRC and the
approach from Robust BackGround detection [33] that is
denoted as RBG. For performance evaluation, we use stan-
dard precision recall curves (PR curves) and average Pre-
cision, Recall and F-measure. Throughout all the experi-
ments, the parameters involved in our algorithm are empir-
ically assigned as follows: σx = 0.3, σb = 1, α = 1, and
σf = 10. The superpixels sampling rate at Stage 2 is set to
be 50%. Moreover, we use Mean Shift for oversegmenta-
tion.

4.2. Experiments on NLPR RGBD Dataset

In this experiment, we first evaluate the effectiveness of
each prior. By denoting region contrast as RC, background
prior as BP, depth prior as DP, and orientation prior as OP,
we compare the performance for all kinds of combinations.
The corresponding PR curves are illustrated in Figure 5a.
This comparison shows that orientation prior outperforms
depth prior. The combination of these two complimentary
priors improves the performance further. In addition, it turn-

s out that the background prior does little to improvement.
The main reason is that, in most cases, depth information
helps to pop out the objects no matter if they are connected
to the boundary or not.

Then, we evaluate the performance of our global opti-
mization scheme. Figure 5b and Figure 5d demonstrate
the PR curves and the average precision, recall and F-
measure. Although no much difference is discerned from
the PR curves, Figure 5d shows that the proposed optimiza-
tion scheme improves the average precision and F-measure
when compared to the traditional MRF model.

The comparison with other approaches is presented in
Figure 5c and Figure 5e. Besides the comparison to CR-
C [5], RBG [33], ACSD [14], and LMH [22], for the two
2D saliency approaches, we also multiple their results with
our depth and orientation prior maps, which are respective-
ly denoted as CRC DO and RBG DO to investigate the ef-
fectiveness. The experiments show that both approaches
are highly improved when incorporated with the two pri-
ors. Overall, our approach performs best, followed by LMH
and RBG DO. CRC and ACSD exhibit weak performance.
Some typical examples are demonstrated in Figure 6.

4.3. Experiments on NJU-DS400 Dataset

To further validate our approach, we also conduct a set
of comparative experiments on the NJU-DS400 dataset. In
this dataset, the depth maps are produced by stereo match-
ing and normalized to the range of [0, 1]. Therefore, it is not
able to apply the orientation prior. Moreover, due to the lim-
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Figure 6: Comparative results on the NLPR RGBD dataset [22].

it of stereo matching algorithms, the obtained depth values
on texture-free surface are prone to be the same. Although
with these problems, our approach consistently outperforms
all the other methods as shown in Figure 7. ASCD, CRC D,
and RBG D have similar performance, better than LMH, R-
BG, and CRC.

5. Conclusion

In this paper, we have proposed two highly complemen-
tary global priors, which are intuitive and simple for compu-
tation, to detect RGB-D salient objects. A saliency restora-
tion scheme is also presented for refining the results global-
ly. The proposed approach consistently outperforms other
state-of-the-art algorithms on two publicly available RGB-
D datasets. Moreover, the 2D background prior has also
been investigated, showing that it is less effective on RGB-
D data than on traditional 2D images, which is reasonable.

Acknowledgement
This work was supported by State High-Tech Develop-

ment Plan (863 Program) of China (No. 2014AA09A510)
and Key Program of Zhejiang Provincial Natural Science
Foundation of China (No. LZ14F020003).

References
[1] R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk.

Frequency-tuned Salient Region Detection. In CVPR, 2009.
[2] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Ssstrunk. SLIC Superpixels Compared to State-of-the-
art Superpixel Methods. IEEE Trans. Pattern Anal. Mach.
Intell., 34(11):2274–2282, 2012.

[3] A. Borji and L. Itti. State-of-the-Art in Visual Atten-
tion Modeling. IEEE Trans. Pattern Anal. Mach. Intell.,
35(1):185–207, 2013.

[4] S. Brin and L. Page. The Anatomy of a Large-scale Hyper-
textual Web Search Engine. In WWW, pages 107–117, 1998.

[5] M. Cheng, N. J. Mitra, X. Huang, P. H. S. Torr, and S. Hu.
Salient Object Detection and Segmentation. IEEE Trans.
Pattern Anal. Mach. Intell., Preprint, 2015.



(a) Comparision with other methods (b) Comparision with other methods

Figure 7: Comparative evaluation on the NJU-DS400 dataset [14]. It needs to be mentioned that the results of all other
methods are produced by running the codes downloaded from the authors’ website. Moreover, all the results are applied with
a center-bias prior to make the final comparison.

[6] A. Ciptadi, T. Hermans, and J. M. Rehg. An In Depth View
of Saliency. In BMVC, 2013.

[7] D. Comaniciu and P. Meer. Mean Shift: A Robust Approach
Toward Feature Space Analysis. IEEE Trans. Pattern Anal.
Mach. Intell., 24(5):603–619, 2002.

[8] K. Desingh, K. M. Krishna, D. Rajan, and C. V. Jawahar.
Depth Really Matters: Improving Visual Salient Region De-
tection with Depth. In BMVC, 2013.

[9] J. T. Enns and R. A. Rensink. Influence of Scene-Based
Properties on Visual Search. Science, 247(4943):721–723,
1990.

[10] D. Gao, V. Mahadevan, and N. Vasconcelos. The Discrim-
inant Center-Surround Hypothesis for Bottom-up Saliency.
In NIPS, 2007.

[11] S. He and R. Lau. Saliency Detection with Flash and No-
flash Image Pairs. In ECCV, 2014.

[12] D. Hoiem, A. A. Efros, and M. Hebert. Putting Objects in
Perspective. In CVPR, 2006.

[13] H. Jiang, J. Wang, Z. Yuan, Y. Wu, N. Zheng, and S. Li.
Salient Object Detection: A Discriminative Regional Feature
Integration Approach. In CVPR, 2013.

[14] R. Ju, L. Ge, W. Geng, T. Ren, and G. Wu. Depth Saliency
Based on Anisotropic Center-surround Difference. In ICIP,
2014.

[15] C. K. L. Itti and E. Niebur. A Model of Saliency-Based Visu-
al Attention for Rapid Scene Analysis. IEEE Trans. Pattern
Anal. Mach. Intell., 20(11):1254–1259, 1998.

[16] C. Lang, T. V. Nguyen, H. Katti, K. Yadati, M. Kankanhal-
li, and S. Yan. Depth Matters: Influence of Depth Cues on
Visual Saliency. In ECCV, 2012.

[17] C. H. Lee, A. Varshney, and D. W. Jacobs. Mesh Saliency.
In SIGGRAPH, 2005.

[18] J. Li, M. D. Levine, X. An, X. Xu, and H. He. Visual Salien-
cy Based on Scale-Space Analysis in the Frequency Domain.
IEEE Trans. Pattern Anal. Mach. Intell., 35(4):996–1010,
2013.

[19] N. Li, J. Ye, Y. Ji, H. Ling, and J. Yu. Saliency Detection on
Light Field. In CVPR, 2014.

[20] R. Liu, J. Cao, Z. Lin, and S. Shan. Adaptive Partial Differ-
ential Equation Learning for Visual Saliency Detection. In
CVPR, 2014.

[21] Y. Niu, Y. Geng, X. Li, and F. Liu. Leveraging Stereopsis for
Saliency Analysis. In CVPR, 2012.

[22] H. Peng, B. Li, W. Xiong, W. Hu, and R. Ji. RGBD Salient
Object Detection: A Benchmark and Algorithms. In ECCV,
2014.

[23] E. Potapova, M. Zillich, and M. Vincze. Calculation of At-
tention Points Using 3D Cues. In OEAGM, 2011.

[24] Z. Ren, Y. Hu, L.-T. Chia, and D. Rajan. Improved Salien-
cy Detection Based on Superpixel Clustering and Saliency
Propagation. In ACM MM, 2010.

[25] C. Rother, V. Kolmogorov, and A. Blake. GrabCut - Interac-
tive Foreground Extraction Using Iterated Graph Cuts. ACM
TOG, 23(3):309–314, 2004.

[26] X. Shen and Y. Wu. A Unified Approach to Salient Object
Detection via Low Rank Matrix Recovery. In CVPR, 2012.

[27] B. W. Tatler. The Central Fixation Bias in Scene View-
ing: Selecting an Optimal Viewing Position Independently
of Motor Bases and Image Feature Distributions. J. Vision,
14(1):1–17, 2007.

[28] J. Theeuwes, P. Atchley, and A. F. Kramer. Attentional Con-
trol Within 3-D Space. J. Exp. Psychol., 24(5):1476–1485,
1998.

[29] J. Wang, P. L. Callet, S. Tourancheau, V. Ricordel, and
M. P. D. Silva. Study of Depth Bias of Observers in Free
Viewing of Still Stereoscopic Synthetic Stimuli. J. Eye
Movement Res., 5(5):1–11, 2012.

[30] Y. Wei, F. Wen, W. Zhu, and J. Sun. Geodesic Saliency Using
Background Priors. In ECCV, 2012.

[31] Q. Yan, L. Xu, J. Shi, and J. Jia. Hierarchical Saliency De-
tection. In CVPR, 2013.

[32] C. Yang, H. Lu, X. Ruan, and M. Yang. Saliency Detection
via Graph-Based Manifold Ranking. In CVPR, 2013.

[33] W. Zhu, S. Liang, Y. Wei, and J. Sun. Saliency Optimization
from Robust Background Detection. In CVPR, 2014.


