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Abstract

We present a fast and accurate 3D hand tracking method
which relies on RGB-D data. The method follows a model
based approach using a hierarchical particle filter variant
to track the model’s state. The filter estimates the prob-
ability density function of the state’s posterior. As such,
it has increased robustness to observation noise and com-
pares favourably to existing methods that can be trapped in
local minima resulting in track loses. The data likelihood
term is calculated by measuring the discrepancy between
the rendered 3D model and the observations. Extensive
experiments with real and simulated data show that hand
tracking is achieved at a frame rate of 90fps with less that
10mm average error using a GPU implementation, thus
comparing favourably to the state of the art in terms of both
speed and tracking accuracy.

1. Introduction
Tracking articulated objects in 3D is a challenging task

with many applications in various fields such as health care,
telepresence, surveillance, and entertainment. The problem
of 3D hand tracking poses additional challenges mainly due
to its high dimensionality and the frequent and often severe
self occlusions. Lately, this problem has received a lot of
attention and several works that took advantage of RGB-D
sensors advanced the state of the art in terms of tracking ac-
curacy and processing time. Both these factors are very im-
portant since the nature of most hand tracking applications
(e.g., human-computer interaction, tele-operation, sign lan-
guage understanding) require high precision that needs to
be achieved at interactive frame rates.

In this work we tackle the hand tracking problem with a
model based approach. The model is tracked using the Hi-
erarchical Model Fusion framework (HMF), first proposed
by Makris et al. [17], which is a particle filter (PF) variant
that decomposes the initial problem into smaller and sim-
pler problems and efficiently addresses the implications of
the high dimensionality. The filter relies on a likelihood
model that measures the discrepancy between a rendered

Figure 1. The proposed approach accepts markerless visual input
from an RGB-D camera to track the pose and full articulation
of a human hand performing unconstrained 3D motion. By es-
timating the probability density function of the hand’s state poste-
rior it has increased robustness to observation noise and compares
favourably to existing methods that can be trapped in local minima
resulting in track loses.

3D hand model and the observations provided by an RGB-D
camera, similarly in spirit to the state of the art approach of
Oikonomidis et al [19, 20]. Extensive experiments demon-
strate that the proposed method results in improved robust-
ness (i.e. fewer track losses) and smaller tracking errors that
are combined with a real time performance.

1.1. Related work

In the following, we attempt to provide a review of the
main approaches for 3D hand tracking by structuring the
relevant works with respect to a number of design choices.
Bottom up vs top down approaches: There are mainly
two families of methods that are used for hand tracking
i.e. model based (top-down) approaches and appearance
based (bottom-up) approaches. The appearance based ap-
proaches rely on image features and a classifier to find
the corresponding pose within a set of predefined hand
poses [4, 9, 13, 14, 18, 30, 31]. Model based approaches
on the other hand [19, 20, 23, 24, 28] define a parametric
model of the hand and search for the optimal solution in
the model’s continuous parameter space. The optimal so-
lution comes either by local optimization around the previ-
ous estimate or by filtering. Bottom-up approaches require
big training datasets to capture the large appearance varia-
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tion that arises due to the highly articulated structure of the
hand. To cope with this issue typically a coarse pose quan-
tization is performed. The advantage of these data-driven
approaches is that no hand initialization is required. Top-
down approaches on the other hand require initialization
and do not recover easily from a track failure but provide
a more accurate estimation of the hand’s pose.

Hybrid approaches: Hybrid methods that combine the
model based and appearance based approaches have also
been proposed. Hybrid methods typically use some sort of
appearance information to guide the model based optimiza-
tion. In [25, 26], a generative tracker based on color simi-
larity is combined with a part-based discriminative method.
The generative tracker uses a gradient descent scheme to
find the optimal pose. In each timestep, two initialization
poses are used, the previous estimation and the proposal
from the discriminative method. In [33], another hybrid
method is presented. Random forests are used to form the
initial pose proposals while a simple optimization scheme
searches for the local optimum around these proposals.
In [22], a fast and accurate hand-tracking method using
depth data is presented. The method combines stochastic
optimization with gradient descent to achieve fast conver-
gence. Finger detection is also used to propose candidate
poses for the optimization.

Holistic vs part based approaches: Model based methods
can be further classified in holistic and part based depending
on the type of model that they use. Part-based approaches
define the state as a set of sub-states that each corresponds
to a part of the articulated model. Then constraints in the
relative position of the parts are typically enforced. In [28],
a part-based approach that uses nonparametric belief prop-
agation to approximate the posterior is presented. In [12],
the authors propose a part-based method for tracking a hand
that interacts with an object. Each part has 6-DOF (posi-
tion and orientation) for a total of 96-DOF for the whole
hand. For each part, the objective function is defined locally
and uses depth information after a skin color based hand
segmentation. An explicit data driven occlusion modeling
is performed that ensures that areas that are significantly
closer to the sensor compared to the hypothesis do not con-
tribute to the objective function. Model based approaches
that perform local optimization around the previous esti-
mate have been recently proposed. In [5] an approach that
captures the motion of two hands interacting with an object
is proposed. An iterative optimization scheme that uses the
Levenberg-Marquard algorithm is employed. In [19, 20],
Particle Swarm Optimization (PSO) is applied for single
and two-hands tracking while a custom evolutionary opti-
mization method is proposed in [21] for these two problems.
The main drawback of the optimization based methods is
that since they perform local optimization are prone to be
trapped in local minima of the cost function.

Bayesian approaches. From the discussion so far it be-
comes evident that a model-based approach that does not
seek only for a single, optimal solution and thus, is less
likely to get trapped into local minima, would constitute an
attractive alternative for 3D hand tracking compared to local
optimization methods. One option in this direction would
be to adopt a Bayesian tracking framework that seeks to es-
timate the posterior distribution of the hand’s state. One
successful Bayesian approach, the Particle Filters (PF) is
now the norm for many tracking applications [3]. How-
ever, in the case of tracking articulated objects with many
degrees of freedom the standard particle filter fails due to
the high dimensionality of the problem. Still, several ap-
proaches that follow the Bayesian paradigm have been pro-
posed for articulated objects tracking.

A hierarchical grid-based Bayesian filter is proposed
in [27]. The levels of hierarchy follow a coarse to fine space
representation. The update algorithm follows the hierarchy
so that regions with low likelihood are identified and dis-
carded early in the process. Edge and color cues are used to
define the data likelihood. In [32], a PF based tracker per-
forms principal component analysis (PCA) to obtain a 7D
subspace that characterizes the hand motion. In that sub-
space the valid hand configurations lie on a manifold and a
dynamic model gnerates hypotheses on that manifold. The
method is tested for cases with small global motion and ro-
tation. The works in [7, 8], propose a combination of a PF
with Stochastic Meta-Descent (SMD), a gradient based lo-
cal optimization method. This achieves 26-DOF hand track-
ing using a depth sensor. The SMD method converges fast
to a local minimum which however is not guaranteed to be
the global minimum. Therefore, PF is used on top of the
SMD to increase the chances of finding it. The paper re-
ports successful hand tracking but the method is slow (30
seconds per frame).

Partitioned Sampling (PS) [15, 16] decomposes the ini-
tial state into partitions and uses visual cues that can inde-
pendently localize the sub-state of each partition. In [16], it
has been applied in tracking a 7-DOF hand (position, scale,
and 2D orientation of the palm and 3 joint angles). In [34],
the partitioned sampling is used to track the contour of a
hand in a 14D space (b-spline deformable template). Skin
color is used to calculate the observation likelihood.

The annealed particle filter (APF) [10] is another ap-
proach to tackle high-dimensional problems by using a se-
ries of smoothed likelihood functions and a broad-to-fine
searching approach. To do so, it drops the Bayesian frame-
work upon which the traditional PF is based and it only
tries to locate the global maximum instead of approximating
the posterior probability density function (PDF). The APF
based method in [24] estimates the diffusion noise added to
the particles between each layer in order to distinguish be-
tween the accuracy of the hypotheses distribution and the



discriminatory capacity of the likelihood function. In [6],
the presented articulation tracking method fuses the APF
with the PS in order to use the advantages from both strate-
gies. APF is better at finding the local maxima but the num-
ber of particles required is still large while PS is more effi-
cient but gets trapped in local maxima. That approach par-
titions the state and performs annealing steps within these
partitions. The method has been applied to full body track-
ing with satisfactory results but, to the best of our knowl-
edge, it hasn’t yet been tested for hand tracking. In [11], an-
other variant of PS that is designed for articulated models is
proposed. The method identifies conditionally independent
sub-parts of the state that can be updated simultaneously.
With a modified resampling strategy better particles are cre-
ated by swapping independent sub-parts between particles.
This method has yet to be tested on hand tracking.

1.2. Our contribution

In this work we adapt the Bayesian Hierarchical Model
Framework (HMF) first proposed in [17] to the hand track-
ing problem. Using that framework which is a PF variant
we build a tracker that uses six auxiliary models that lie in
lower dimensional spaces as proposals for the 26-DOF main
model of the hand. The auxiliary models track the position
and orientation of the palm (6-DOF), and the joint angles
of the five fingers (4-DOF each). HMF estimates and prop-
agates the PDF of the posterior (unlike optimization tech-
niques that only look for the local optimum) thus it is more
robust to observation noise and it is more likely to recover
from a short track loss. A fast, robust, distance metric that
measures the discrepancy between the rendered model and
the RGB-D observations is proposed. The method is tested
qualitatively using real challenging sequences and quanti-
tatively using simulated data. As a baseline for the com-
parisons we use the method at [19]. The experiments show
clear benefit of the proposed approach in terms of speed, ac-
curacy, and robustness. We achieve tracking rates of 90fps
with average error less than 10mm using a GPU implemen-
tation. In summary, the main contributions of the paper are:

• The application of the Bayesian HMF framework to
the hand tracking problem. The followed methodology
is generic and can be applied in any articulated model.
As a PF variant the method estimates the posterior PDF
rather than the local optimum which increases the ro-
bustness to occlusions and can handle multimodal like-
lihoods.

• The achievement of a significantly faster performance
than the state of the art model based methods for the
same tracking accuracy.
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Figure 2. The employed 3D hand model: (a) hand geometry, (b)
hand kinematics.

2. Hierarchical Model Framework (HMF)

2.1. Hand model

The hand model consists of a palm and five fingers. Two
basic geometric primitives are used to build the hand model,
a sphere and a cylinder. The model is depicted in Fig. 2.
The kinematics of each finger are modeled using four pa-
rameters, two for the base angles and two for the remain-
ing joints. Bounds on the values of these parameters are
set based on anatomical studies [1]. The global position of
the hand is represented by a fixed point on the palm and
the global orientation by a quaternion representation. This
results to a 27 parameter representation that encodes the 26-
DOF.

2.2. HMF tracking algorithm

In the following we describe the HMF tracking frame-
work [17] and its adaptation to the hand tracking problem.
The HMF uses several auxiliary models that are able to pro-
vide information for the state of the main model which is to
be estimated. In the hand tracking problem the main model
is a full 26-DOF model of the hand configuration. Each
of the auxiliary models tracks a distinct part of the hand;
we use one for the palm with 6-DOF for its 3D position
and orientation and one for each finger with 4-DOF for the
joint angles (Fig. 2b). This selection of auxiliary mod-
els encodes certain design choises that are crucial in order
to build an efficient tracker. The first is the ability to cre-
ate meaningful likelihoods for each auxiliary model which
is satisfied by the current model selection since the state of
each one directly affects the position of an observable part
of the hand. The second concerns the expected computa-
tional gain from the dimensionality reduction. The auxil-
iary models that we selected have at most 6-DOF which is
much less than the original 26-DOF. Of course, the main
model still has 26-DOF but since it exploits the information
from the auxiliary models the search in its high dimensional
space is significantly narrowed. We define the full state xt
at a time step t as the concatenation of the sub-states that
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Figure 3. Dynamic Bayesian network of the proposed model de-
picting two auxiliary models j, i and the main model for the slices
t− 1 and t of the temporal dimension.

correspond to the M auxiliary models and the main model
x[0:M ]t. By zt we denote the measurements at time step, t.
The state decomposition and the independence assumptions
that we make are graphically represented using the dynamic
Bayesian model of Fig. 3. The observations at each time
step are independent from previous states and observations
given the current state. The state of the main model de-
pends on the states of the auxiliary models at a given time
step since they encode the pose of its parts. The state evo-
lution is modeled by linking the main model at t−1 (which
contains the most refined pose estimation for that time step)
with the auxiliary models at t.

The framework follows the Bayesian approach for track-
ing [3]. By x0:t we denote the state sequence {x0...xt} and
accordingly by z1:t the set of all measurements {z1...zt}
from time step 1 to t. The tracking consists of calculating
the posterior p(x0:t|z1:t) at every step, given the measure-
ments up to that step and a prior, p(x0). Using the state
decomposition the solution is expressed as:

p(x0:t|z1:t) ∝p(x0:t−1|z1:t−1)∏
i

p(zt|x[i]t)p(x[i]t|Pa(x[i]t)), (1)

where by Pa(x[i]t) we denote the parent nodes of x[i]t (see
Fig. 3). In (1) we make the approximation that the observa-
tion likelihood is proportional to the product of individual
model likelihoods:

p(zt|xt) ∝
∏
i

p(zt|x[i]t). (2)

To efficiently approximate the posterior given the above
state decomposition we use a particle filter that sequen-
tially updates the sub-states. The algorithm approximates
this posterior by propagating a set of hypotheses (particles)
based on the importance sampling method [3]. The particles
are drawn from the proposal distribution which is selected
as the product of the dynamics of the auxiliary and main
models:

q(x0:t|z1:t) = p(x0:t−1|z1:t−1)
∏
i

p(x[i]t|Pa(x[i]t)). (3)

Algorithm 1 The HMF algorithm for 3D hand tracking

Input: {x(n)
[0:M ]t−1,w

(n)
t−1}Nn=1, zt.

for each model i = 1 to M do
for each particle n = 1 to N do

Sample x(n)
[i]t from p(x[i]t|Pa(x[i]t)(n)).

Update its weight w(n)
t using p(zt|x(n)[i]t ).

end for
Normalize the particle weights.
Resample the particle set according to its weights.

end for
Output: {x(n)[0:M ]t,w

(n)
t }Nn=1.

The particles are then weighted by the importance weights:

wt =
p(x0:t|z1:t)
q(x0:t|z1:t)

= wt−1
∏
i

p(zt|x[i]t). (4)

Using these factorizations for the proposal distribution and
the weights, the algorithm can sequentially update the sub-
states by sampling from the factor of the proposal that cor-
responds to the i-th sub-state and subsequently updating the
weights with the i-th factor of the likelihood.

The steps to estimate the posterior at time t given the pre-
vious estimate are shown in Algorithm 1. The input of the
algorithm is the set of N weighted particles from the pre-
vious time step {x(n)[0:M ]t−1,w

(n)
t−1}Nn=1 and the current ob-

servations. The normalization step of the algorithm mod-
ifies the weights so as to sum up to one. The resampling
step randomly chooses particles according to their weights
so that particles with low weights are discarded and par-
ticles with high weights are selected multiple times. The
output of the algorithm is the current weighted particle set
{x(n)

[0:M ]t,w
(n)
t }Nn=1. This way, we replace the search in a

high dimensional space with a series of easier problems of
lower dimensionality. Additionally, the main model uses
a proposal distribution that depends on the previously up-
dated auxiliary models. Therefore, we exploit the current
observations to form the proposal and this guides the par-
ticles in high likelihood areas. Finally, the track estimate
of the algorithm at each step is the weighted average of the
main model particles.

2.3. Model dynamics

The state evolution for the main model exploits the state
of the updated auxiliary models:

p(x[M ]t|Pa(x[M ]t)) ≡ p(x[M ]t|x[0:M−1]t)
= N(x[M ]t; x[0:M−1]t,ΣM ),

(5)

where by N(y;m,Σ) we denote the normal distribution
over y with mean m and covariance matrix Σ. The above



distribution encodes the fact that the main model is expected
to be around the estimated position of its parts.

For the auxiliary models we define the state evolution
using the main model at the previous time step:

p(x[i]t|Pa(x[i]t)) ≡ p(x[i]t|x[M ]t−1)

= N(x[i]t; a(x[M ]t−1, i),Σi),
(6)

where the operator a(x[M ]t−1, i) gives the part of the state
of the main model x[M ]t−1 that corresponds to the i-th aux-
iliary model.

2.4. Observation likelihood

The observation likelihood measures the degree of
matching between a model pose and the observations. It
is based on the approach described in [20]. The input of
the method is an RGB-D image and a model pose. A pre-
processing step uses the estimated hand position in the pre-
vious frame as reference and keeps only the observations
that are within a predefined range around it. Within that
window, skin color is detected using the method described
in [2]. The observation consists of the resulting 2D depth
and skin color maps z = {zd, zs}. To calculate the likeli-
hood for a given hypothesis of an auxiliary or of the main
model we perform rendering given the camera calibration.
In the following we drop for clarity the state subscripts that
define the time and the model number. We thus refer to the
state of a hypothesis by x. This state contains the 27 pa-
rameters required to perform the rendering. The state of an
auxiliary model i has less than 27 parameters and thus to
render it we complete it by using the states of the already
updated auxiliary models (1 to i − 1) and the state of the
main model at t − 1. The result of rendering is a 2D depth
map and the corresponding skin color map {rd(x), rs(x)}.
Let Pi be the set of pixels that are labelled as skin in both the
observation and the hand model defined as Pi = {zs ∧ rs}
and Pu be the set of pixels that are labeled as skin in either
the hand model or the observation Pu = {zs ∨ rs}. We de-
note as λ the ratio of the number of elements of these two
sets: λ =| Pi | / | Pu |. The following function D(z, x) is
then used to evaluate the discrepancy between a hypothesis
x and the observation z:

D(z, x) = λ

∑
p∈Pi

min(|zd,p − rd,p|, dM )

dM | Pi |
+ (1− λ) .

(7)
This ranges from 0 for a perfect match to 1 for a mismatch.
The intuition for this definition is that we weigh by the
clamped depth difference the part of the pixels that overlap
in the model and observation (Pi) whereas the rest of the
pixels influence negatively the total distance. The clamp-
ing threshold dM is required so that a few pixels with big

depth differences should not influence an otherwise reason-
able fit. Pixels that have depth difference above dM are con-
sidered mis-matched. The definition for the distance guar-
antees that these mismatched pixels will penalize D(z, x)
with the maximum value thus in exactly the same way as
the pixels that are not in Pi. This is justified because in
both these cases the corresponding 3D observation and hand
model points are considered to be far from each other. Us-
ing D(z, x) the likelihood function is then given by:

p(z|x) = exp

{
−D

2(z, x)

2σ2
l

}
. (8)

3. Experiments
We performed extensive experiments to assess the per-

formance of the proposed approach and to compare it with
the approach of [19] as well as to PF variants. We used
real data obtained by RGB-D sensors to qualitatively evalu-
ate the methods. For quantitative evaluations we used syn-
thetic data since real world annotated data are difficult to
obtain. It should be noted that certain works (e.g., [22, 29])
have released datasets with ground truth. However, differ-
ent choices in the modeling of the hand affect the measured
ground truth. Furthermore, both of these works use bot-
tom up information which means that temporal continuity
is not required. Our approach requires temporal continuity
and ensures that this will always be the case by operating on
high framerates. Therefore those datasets are not relevant to
our work.

The focus of the experiments is on high accuracy (aver-
age error lower than 10mm) combined with real-time oper-
ation (framerates equal or higher than 30 fps). Both these
factors are crucial for most of the applications that rely on
3D hand tracking. New RGB-D sensors deliver high fram-
erates (e.g., 60 fps for Asus Xtion) so methods that can take
advantage of these rates are required. The methods that
have been included in our comparative evaluation are:

PSO The method of [19] using the PSO optimizer.

PFS The Sampling Importance Resampling algorithm [3].

PRT The partitioned samling filter described in [16] with
6 partitions that correspond to the parameters of the
palm and each of the five fingers.

HMF The proposed approach.

For all the methods we used the same distance metric
of (7) to link the model with the observations. It has been
confirmed experimentally that the performance of the meth-
ods using that metric is similar to the one achieved by using
the metric of [20]. However, for the latter metric this perfor-
mance is achieved only with the right value of the parameter
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Figure 4. Quantitative results obtained in off-line experiments.

that specifies the weights of its two terms i.e. the depth dif-
ference and the silhouette matching whereas the proposed
metric has no parameters. The methods were tested on a
computer equipped with an Intel i7-4770 CPU (quad-core
3.4GHz), and an Nvidia GTX 580 GPU.

The synthetic dataset that we used for the evaluation con-
sists of 700 frames of free hand movement. The initializa-
tion of the methods is performed using the grountruth po-
sition of the first frame. The comparison metric E mea-
sures the average distance between corresponding phalanx
endpoints over a sequence similarly to [12]. For each ex-
periment and for each method we perform thirty runs, so
we measure and report the mean error as well as its stan-
dard deviation in all runs. A high error standard deviation is
an indication that the method is not robust, and is typically
caused when it completely looses the target in some of the
runs. As an additional metric we also use the success rate C
which is the ratio of the frames of the sequence for which
the average error is below a threshold. Since we want to fo-
cus on high precision tracking we use as threshold the value
of 10mm which is approximately the diameter of a finger.

The most computationally demanding part of the meth-

ods is the likelihood evaluation (see (8)). Therefore a rea-
sonable criterion for quantifying the computational cost is
the total number of required such evaluations. In the follow-
ing we refer to this number as the computational budget. In
practice however, the speed of the methods for a given bud-
get varies significantly due to the parallel GPU implemen-
tation. In contemporary GPU architectures it is common
that computational throughput increases with the number of
parallel independent tasks. Therefore, for any fixed amount
of computations it is highly preferable to execute a few and
large batches rather than more and smaller ones. For the
PSO method the algorithm is such that the minimum num-
ber of batches is equal to the number of generations (28 in
our experiments). In contrast, all the PF variants require less
batches, 1, 6, and 7 for the PFS, PRT, and HMF, respec-
tively. This induces significant speed differences, in favor
of the PF variants, which only saturates as the amount of to-
tal computations becomes excessively high, in which case
computations are serialized.

We test the methods both off-line and on-line. During
the off-line experiments we provide each method with all
the frames of a sequence independently of its actual pro-
cessing framerate which may be much slower. In on-line
experiments the methods have to drop frames if the pro-
cessing framerate is lower than the image acquisition fram-
erate. Since we want to present results that are independent
of our current implementation/hardware we firstly compare
the methods with respect to the computational budget. Ad-
ditionally we present the speed in terms of processed frames
per second of the methods with respect to each budget.

3.1. Off-line experiments

The first series of quantitative experiments compare the
accuracy of the methods for different computational bud-
gets. The results are shown in Figs. 4a,4b. For each budget
we perform 30 runs for each method and we plot the av-
erage error and success rate as well as the error bars that
correspond to one standard deviation. It can be verified that
the proposed HMF approach results in significantly smaller
errors especially for lower budgets. For budgets larger than
800, HMF and PSO converge to around the same error
value (6mm) which is significantly lower than the error of
the other PF variants (9mm). From another viewpoint, the
accuracy achieved by PFS and PRT for a computational
budget of 2400, is achieved by HMF with almost one fourth
of that budget. This means that the PRT and PFS methods
do not achieve an acceptable error rate and are heavily out-
performed by the HMF and PSO methods even with ide-
alized simulated data. For this reason, for the rest of the
experimental evaluation we focus our attention to the HMF
and PSO methods.

Fig. 4d shows the processing framerates achieved by the
methods as a function of their computational budget. The



comparison is much more favourable for the HMF method
if we consider these processing framerates. For example,
for a budget of 800, HMF process at 60fps, while PSO
less than 40fps and they have the same average error. Ad-
ditionally, from Fig. 4c we note that while for a processing
framerate of 30fps PSO and HMF have about the same
error, for higher processing framerates the error of PSO is
significantly higher. As an example, to achieve an accept-
able average error of less than 10mm PSO cannot process
more than 40fps while for the same accuracy, HMF man-
ages to process at 90fps.

The next experiment that we performed was designed to
assess the methods in the presence of noisy observations.
We wanted to simulate the imperfect data that come from a
real depth sensor, imperfect skin color detection, and pos-
sible occlusions from unknown objects. To do so, we ran-
domly generate disk shaped regions. Inside each such re-
gion we either: (i) completely remove the depth and skin
observation; (ii) label the area as skin and give it a depth
value that is modeled by a Gaussian around the real average
depth. Fig. 5 shows some example frames from a sequence
with and without noise. This type of noise has the double
effect of removing useful data while introducing observa-
tions with depth values that are close to the actual depth
of the target. Thus, such artifacts cannot be discarded by
some type of pre-processing. We vary the ratio of the im-
age area that is replaced by noise and we plot the results in
Figs. 4e,4f. For this experiment we use the methods with
budget 800 since for that value both HMF and PSO fulfil
the requirements of high accuracy (E < 10mm) and real-
time speed (processing fps > 30). As we observe from
the figure both methods perform well when the noise ratio
is below 0.3. For larger amounts of noise contaminations
the accuracy of the methods is affected with the HMF be-
ing more robust and having an acceptable accuracy up to a
noise ratio of 0.5.

For HMF we observe that apart from the lower average
errorE, the error variance among different runs is lower, es-
pecially for high noise ratios. This is attributed to the algo-
rithm’s ability to model the PDF of the posterior which al-
lows it to recover from temporary track losses. PSO tracker
on the other hand cannot easily recover from such track
losses and this is reflected in the plots as larger error vari-
ances.

3.2. On-line experiments

Given our interest on real-time applications we also per-
formed on-line simulation experiments. A method that op-
erates in real time but cannot reach the sensor’s frame rate
will unavoidably drop frames. This is expected to have a
negative effect on the performance of the method since for
each dropped frame the search window around the previous
position should increase to compensate for the sparser tem-

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 5. Depth maps for 4 frames of a sequence without noise
(top row) and with noise ratio 0.4 (bottom row).
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Figure 7. On-line experiments (60fps sequence): Plot of error E
and success rate C (10mm threshold) for different noise ratios.
HMF is processing the input at 60fps while PSO at 30fps.

poral sampling and the decreased temporal continuity. We
perform the on-line experiments with a 60fps simulated se-
quence. We also add noise to the sequence to be as close as
possible to a real world scenario.

Using the results of the off-line experiments we chose
the suitable methods to track the sequences. More specifi-
cally, by combining the information of Fig.4d and Fig.4c we
see that the HMF method with a budget of 800, can process
the sequence at its original framerate (60fps) and results
in an error that is below the limit of 10mm. PSO cannot
reach this framerate with an acceptable error. Therefore, we
choose the best algorithm configuration with respect to error
which is that of a budget of 1200 that permits a processing
framerate of 30fps (i.e., dropping every second frame of
the original sequence). Fig. 7 shows the results of the sim-
ulation. Both the average error as well as the error variance
for different runs is much higher for PSO compared to the
respective values for the HMF method. This experiment
underlines the importance of having a fast method that can
on-line process the data at high framerates.

In Fig. 6, we plot the error as it evolves throughout the
sequence. We show 3 plots for low (0.1), mid (0.4), and
high (0.6) noise ratios. As it can be verified, PSO loses
the target for increasingly big intervals as the noise level
increases.

The proposed HMF method has also been qualitatively
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Figure 6. On-line Experiments: Plot of error E over the frames of the test sequence for different noise ratios (0.1, 0.4, and 0.6). HMF is
procesing the input at 60fps while PSO at 30fps. For each algorithm the run with the median average error was chosen as a representative
one. For clarity of the figure we clip the error at 38mm.

Figure 8. Sample tracked frames from a real world RGB-D se-
quence acquired at 60fps. Top row: HMF manages to process
the input at 60fps. Bottom row: PSO processes the input at
30fps and therefore has to drop half of the frames.

verified in several challenging real-world sequences. Fig. 8
shows comparative screenshots from on-line tracking on a
60fps sequence. The methods operate with the same bud-
gets as in the previous experiment and therefore process the
sequence at 60fps and 30fps respectively. The fast mo-
tion and hand rotation trap the slower PSO method to a
sub-optimal solution. A complete such run appears in the
supplementary video material accompanying this paper.

4. Conclusions

In this work we proposed a 3D hand tracking method that
is based on the well-established and solid framework of par-
ticle filtering. The presented method uses the Hierarchical

Model Fusion (HMF) approach which decomposes the orig-
inal, high dimensional problem into a number of smaller,
manageable ones. HMF is shown to cope effectively and
efficiently with the high dimensionality of the 3D articula-
tions tracking problem where other PF variants are shown
to fail. The required likelihood function employs rendering
of the 3D hand model thus the problem of self-occlusions
is naturally addressed. Additionally, the performed experi-
ments show a clear benefit of the proposed approach com-
pared to the state of the art Particle Swarm Optimization
method, both in terms of speed and robustness. Accurate
hand tracking is achieved on challenging sequences at a rate
of 90fps. The method’s increased robustness that trans-
lates to more stable operation is mainly due to the fact that
the HMF can better cope with multi-modality since it main-
tains an estimate of the posterior PDF rather than a single
maximum. The achieved result with respect to the accu-
racy/computational performance trade off is very important
as it enables the deployment of the proposed method in real
world applications that involve fast motions of human hands
observed at cameras with high acquisition frame rate.
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