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Abstract

Of increasing interest to the computer vision community
is to recognize egocentric actions. Conceptually, an egocen-
tric action is largely identifiable by the states of hands and
objects. For example, “drinking soda” is essentially com-
posed of two sequential states where one first “takes up the
soda can”, then “drinks from the soda can”. While existing
algorithms commonly use manually defined states to train
action classifiers, we present a novel model that automati-
cally mines discriminative states for recognizing egocentric
actions. To mine discriminative states, we propose a novel
kernel function and formulate a Multiple Kernel Learn-
ing based framework to learn adaptive weights for differ-
ent states. Experiments on three benchmark datasets, i.e.,
RGBD-Ego, ADL, and GTEA, clearly show that our recog-
nition algorithm outperforms state-of-the-art algorithms.

1. Introduction

Human action recognition has been an active area of re-
search for the past several decades and has wide applica-
tions in surveilence and robotics. State-of-the-art recogni-
tion algorithms have achieved successful performance on
realistic actions collected from movies [15, 21], web videos
[28, 19], and TV shows [26]. On the other hand, due to the
recent widespread use of wearable cameras, an increasing
amount of research interest has been directed at egocentric
actions that involve hand-object interactions.

Whereas traditional third-person action recognition com-
monly uses the bag-of-features model [5, 14] for capturing
salient motion patterns of body parts or joints, representa-
tions that encode the states of hands and objects have been
proven more effective for recognizing hand-object interac-
tions in egocentric videos. For example, “drinking soda”
is essentially composed of two sequential states where one
first “takes up the soda can”, then “drinks from the soda
can”. Several methods have been proposed that aim to rep-
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resent egocentric actions with state-specific hand and object
features (clenched hands and tilted soda can); notably, they
have found that coupled with discriminative state-specific
detectors, state-of-the-art action recognition performance
can be achieved [23, 7, 6, 27].

However, all previous works train action classifiers based
on manually defined states, and little is understood as to
their optimality. For example, a two-state action classifier
is learned in [7] where the object appearance changes in the
starting and ending frames are used to recognize an action.
An adaptive approach to defining states of hands and objects
comes from the idea of spatial pyramids [16], where regu-
lar spatial grids of increasing granularity are used to pool
local features. Similarly, temporal pyramids can provide a
reasonable cover over the state space with variable scales.

Based on the temporal pyramids approach, we specifi-
cally aim to answer the following question: Which is the
optimal weight of each state for egocentric action recog-
nition? While temporal pyramids succeed in dividing an
action into increasingly finer states, one can reasonably ex-
pect that some states are more discriminative than others
and should be weighted more by the recognition algorithm.

Instead of manually tuning the state weights, we aim
to explicitly learn the state weights for action recognition.
Specifically, we adopt the idea of using kernel functions for
measuring state similarity and show that the state weights
can be efficiently optimized in the Multiple Kernel Learn-
ing [9] framework; in addition, by discarding those non-
discriminative states, we significantly reduce the computa-
tional cost while maintaining high recognition accuracy in
our experiments.

As a byproduct of our work, we contribute a large-
scale RGBD egocentric action dataset, which features typi-
cal hand-object interactions in our daily life. By exploiting
color and depth cues, we show that accurate hand and object
masks can be computed. Beyond understanding algorithms
for egocentric action recognition, our dataset can also serve
to research fields of hand detection and object recognition.

The rest of this paper is structured as follows. Related
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Figure 1. We mount the Creative Senz3D camera on a user’s head to record RGBD egocentric actions. Our dataset contains 40 actions
collected from 20 subjects. Pixel-level hand and object masks are available for each frame.

work is briefly reviewed in Section 2. In Section 3, we
provide details on our egocentric action dataset. In Sec-
tion 4, we describe how the hand and object features are
extracted in this work. Our approach to mining discrimi-
native states of hands and objects is described in Section 5.
Various experimental results are presented in Section 6. The
entire dataset and relevant code will be available online at
http://xxXxxX.XXX.XXXXX.edu/XXXXXX/.

2. Related Work

Egocentric actions usually involve complex hand-object
interactions. Wu et al. [32] demonstrated the effective-
ness of object-centric representations for egocentric action
recognition by recording the interacted objects using RFID
tags attached to objects. [0, 10, 22] demonstrated improved
recognition performance by jointly modeling hands and ob-
jects. In order to better discriminate between actions that in-
volve the same object, e.g., “opening jar” v.s. “closing jar”,
[25, 7, 27, 23] used state-specific hand/object detectors to
acquire cause-and-effect relationship in egocentric actions.
However, these approaches were largely impacted by inac-
curate hand/object detection results due to the significantly
varied appearance of hands and objects under occlusion and
viewpoint changes.

Recent work have demonstrated robust recognition per-
formance when aggregating visual information from a set
of frames that cover different pose and occlusion [20, 13,

, 17]. Inspired by this idea, we model each state of hands
and objects using a set of consecutive frames within a video
and propose a novel kernel function for comparing set sim-
ilarity. We show that our state kernel is robust to intra-state
variations due to occlusion and viewpoint changes.

The idea of using temporal pyramids to model the tem-
poral structure of an action has been addressed in a num-
ber of works [15, 34, 23, 27], all using a predefined set of
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Figure 2. Activities categories in our dataset. The number in the
parentheses denotes the number of actions making up the activity.

weights for individual temporal grids. We instead aim to
learn the optimal weight for each temporal grid. Learn-
ing weights has the benefit of removing redundancy and
increasing discriminativeness, thus improving the perfor-
mance of the egocentric action recognition.

3. RGBD Egocentric Action Dataset

We used the Creative Senz3d camera to collect our
RGBD egocentric action dataset. Creative Senz3d is a com-
pact sized camera that records synchronized color and depth
video at up to 30fps. The color video has a resolution of
640 x 480, and the depth video has a resolution of 320 x 240
with an effective range of 0.15 m to 0.99 m. We mount the
camera on the user’s head such that it covers the area in
front of the user’s eyes.

We put together a list of 18 daily activities, and asked
20 subjects to perform each activity twice in their own style
in order to collect realistic and varied data. All the activ-
ities involve complex hand-object interactions, including 7
household activities (e.g., washing dishes), and 11 recre-
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ational activities (e.g., playing ping-pong), see Figure 2.
Note that some activities may display a large amount of
ego-motion in the recorded videos. For instance, in the
case of “playing ping-pong”, the field of view of the camera
changes significantly as a result of the user hitting the ball.

Some activities in our dateset are characterized by a com-
plex temporal composition of sub-activities. For example,
“wash hands” can be divided into 5 sub-activities, i.e., “wet
hands under water”, “use soap”, “rub hands to make bub-
bles”, “rinse hands”, and “dry hands using towel”. In this
work, we use the term “actions” to refer to sub-activities
that constitute the complex activities. We manually segment
each activity into actions in time such that the first and last
frame roughly correspond to the start and end of an action,
resulting in 40 unique actions.

Both the RGB and depth frames were calibrated using a
set of checkerboard images in conjunction with the calibra-
tion tool of Burrus [3]. This also provided the homography
between the two cameras, allowing us to obtain precise spa-
tial alignment between the RGB and depth frames.

4. Hand and Object Features

In this section, we first describe an effective RGBD-
based hand and object segmentation algorithm (Sec-
tion 4.1). Then we present the hand and object features that
will be used for egocentric action recognition (Section 4.2).

4.1. Hand and Object Segmentation

In order to extract features that are truly representative
of hands and objects, it is necessary to accurately segment
hands and objects in each frame. Our segmentation pipeline
consists of two steps, foreground segmentation and skin de-
tection.

Foreground Segmentation We segment a scene into
foreground and background based on the observation that
hands and objects which constitute the foreground are at a
closer distance to the first-person than to the background.
This suggests that a thresholding operation on the depth
frame can help segment the scene into foreground and back-
ground.

Figure 3 shows the histogram of a depth frame from “lift-
ing weight”. Note the gap in the histogram that separates the
scene into foreground and background. An extensive anal-
ysis of the egocentric actions in our dataset shows that the
exact position of the separation gap may vary from action
to action and there can be “deceptive” gaps due to artifacts
in depth frames.

In order to account for the varied statistics of depth
frames, we first convert the histogram of each depth frame
into a non-parametric probability density distribution us-
ing a Gaussian kernel function. This helps smooth the his-
togram and remove deceptive gaps. To identify the ideal
threshold for segmenting the scene, we then seek the left-
most minimum of the histogram curve. Finally, a fore-
ground mask is obtained by thresholding the depth frame
using the previously selected threshold. Empirically we find
that a histogram of k£ = 1000 bins smoothed by a Gaussian
kernel of variance 02 = 5 gives good segmentation results.

Skin Detection We perform skin detection to further
segment the foreground into hands and objects. Our skin
detector combines color and texture analysis. In color anal-
ysis, a bi-threshold classifier is used to label each pixel
as skin given its RGB value. That is, pixels which are
above the high threshold are classified as skin. Then, pix-
els which are above the low threshold are also classified
as skin if they are spatial neighbors of a pixel above the
high threshold (these thresholds are determined by cross-
validation on groundtruth segmentation). The skin likeli-
hood of a pixel given its RGB value is determined from a
pre-trained lookup table [12].

Simply applying color analysis gives good skin detec-
tion results for many videos in the dataset, but is still prob-
lematic when the object has skin-like color (e.g., an orange
ping-pong ball). Therefore, we also perform texture analy-
sis to improve the skin detection accuracy. In particular, we
apply a Gabor feature based texture classifier on the output
of color analysis in order to distinguish between genuine
and fake skin pixels [18].

Combining color and texture analysis provides high-
quality skin detection, and given the detected skin, all the
remaining pixels in the foreground are classified as belong-
ing to the object.

4.2. Hand and Object Features

Our hand and object features build on existing feature
descriptors and go a step further by incorporating the depth
information. The details are described as follows.

4.2.1 Hand Features

We extract dense optical flow from the hand region to char-
acterize hand motion in the current frame. Utilizing depth
data, we describe an effective way of computing 3D optical
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flow. In particular, we first compute the 2D dense optical
flow field (ut,v:) in RGB frame ¢. Each point (z¢,y:) in
RGB frame ¢ is tracked to the next frame ¢ + 1 using the 2D
flow vector at (x¢, y¢)

(xt+1>yt+1) = (xhyt) + (utvvt)‘(muyt) (0

Assuming the RGB and depth frames have been accurately
registered, the 3D flow vector at (¢, y¢, 2¢) can thus be writ-
ten as (Us, Ve, We)|(zy,y,,20)» WheTe Wl (a, vy, z,) = Ze41— 2t
z¢ is the depth value at (x, y;) in depth frame ¢. As optical
flow is subpixel accurate, (z;41,y:+1) Will usually end up
between pixels. We thus use bilinear interpolation to infer
Zt+1-

To quantize the orientation of a 3D optical flow vector,
we use an icosahedron (i.e., a regular polyhedron with 20
faces), where each face of the polyhedron corresponds to
a histogram bin. We construct Histogram-of-Optical Flow
(HOF) features from the 3D flow vectors. With an addi-
tional bin for zero flow, the resulting HOF feature has a
dimension of 21. [ly-normalization is applied to the HOF
feature.

4.2.2 Object Features

As object features we extract HOG within the rectangular
region containing the segmented object. The rectangular
region is first divided in 88 non-overlapping cells. For
each cell, we accumulate a histogram of oriented gradients
with 9 orientation bins. Finally, the histogram of each cell
is normalized with respect to the gradient energy in a neigh-
borhood around it. The HOG features from RGBD image
pair are concatenated to describe the object appearance in
the current RGBD image pair.

5. Modeling States of Hands and Objects

Modeling states of hands and objects is key to captur-
ing the cause-and-effect relationships in egocentric actions,
which is especially critical to discriminating between ac-
tions involving the same objects. Previous work mainly fo-
cused on improving the accuracy and scalability of state-
specific object detectors [7, 27, 23], and do not generalize
well to model gradual state transitions.

Inspired by the adaptivity of spatial pyramids [16], we
propose to use temporal pyramids to combine states of arbi-
trary temporal scales. Without any prior knowledge of the
intrinsic structure of action, a natural extension from spatial
pyramids is to partition a full-length video into increasingly
shorter segments and represent a state using the correspond-
ing segment. In particular, given a video X*, we construct
a temporal pyramid, where the top level I = 0 is the full-
length video, the next level [ = 1 contains two segments
obtained by temporally splitting the segment on level [ = 0

in two, and so on. Let X}, denote the k™ segment on level
.

Assuming  some  appropriate  kernel  function
k(X},,Xj,) for measuring state similarity, a binary
SVM classification scheme for recognizing a novel
egocentric video X can be written as

N
F(X) =sign(>_ aiyiK(X*, X) +b) )

i=1

where y; € {—1,1} is the label for X*, (X% X) =
S USSRk - (X, Xux) is a compound kernel con-
structed from a weighted sum of x(-,-), px = 1/257¢ as-
signs a small weight to state kernels on coarse temporal
scales.

Eq. 2 provides a general definition that embraces existing
egocentric action state models. For example, using a linear
kernel and representing each state using a histogram of de-
tected objects corresponds to the object-centric approaches
in [23, 27].

5.1. A Novel State Kernel Function

While representing a state using the feature from a sin-
gle frame is largely affected by intra-state variations due
to viewpoint change and hand occlusion, we propose to
aggregate features from a set of frames to cover potential
variations within a state. In particular, we write X ;k =
[1,To, -, 2, € RP, where z,,, € R, 1 < m < p,
is the feature capturing hand and object information in the
m® frame of X/,. Given two states, X}, € RY*P and
X ljk € R4, we define our state kernel based on the no-
tion of affine hull.

Mathematically, the affine hull of a set S is the set of
all affine combinations of elements of S, i.e. aff(S) =
{3, Bisilsi € S,>,B; = 1}. It provides a unified ex-
pression for “unseen” elements of S. Cevikalp ef al. [4]
proposed to define the distance between two sets as the min-
imum distance between elements from the affine hulls, i.e.,

D(X,, XJ,) = Jiy, IX08' — X56715 G

p q
st. > B, =1and » pl=1 (3b)
m=1 n=1

where 3 € R? and 37 € R? are the affine coefficients for
X}, and X7, , respectively. However, the affine hull may
turn out to be an overestimate of the extent of a set, espe-
cially when it comes to visual recognition problems[ ! 1].
Motivated by the recent success of sparse representation
techniques [3 1], we introduce sparsity regularization terms
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on affine coefficients, i.e.,
{8',87} « arg min | X/,8" - X[,8 |15+
AB1 + AlB )y (4a)

p q
d Bi=1and > Bl =1 (4b)
m=1 n=1

where | - |; denotes the /;-norm of a vector and is known
for its sparsity-inducing properties. Under /;-norm penalty,
the unseen feature is restricted to be a weighted sum of a
few existing features; this sparse representation is supported
by the fact that the varied appearance of hand and object
in a specific state lies in a low-dimensional subspace [!].
Eq. 4 is jointly convex with respect to 3 and (37, and the
global solution can be efficiently solved by the Alternating
Direction Method of Multipliers (ADMM) algorithm [2],
see the supplementary material for details.
The state kernel function is defined as

Do 1o o

where D(Xjy, X3,) = | XjxB8' — Xi,87||3, and v is the
mean value of D(X/,, X7, ) in the training examples.

5.2. Mining Discriminative States

One practical issue with the classifier defined in Eq. 2 is
that, using a predefined set of weights {y} for different
hand and object states may not be optimal, as various states
contribute differently to classifying an action. To mine dis-
criminative states, we adopt the idea of Multiple Kernel
Learning (MKL) [9], and jointly learn the state weights and
other SVM parameters by solving

1 K N
SO mkllwinll2)® +C Y& (6a)

Hiks wlk7£L7b

=1 k=1 1=1
L K
sty prwipd(Xi) +b) > 1 - & (6b)
= =1
L K
Zka — 1 and >0, Vk, 1 (6¢)
=1 k=1
& >0, vi (6d)

where ¢(X},) is the mapping function satisfying
kK(Xh, X5) = o(X))Té(X}),). The algorithm from
[29] is used to optimize the parameters. To perform
multi-class classification, we learn class-specific param-
eters {puf,, wp,, &, b°} for the c-th action class using the
one-versus-all approach.

| FG H/O-1 H/O-2
precision 0.949 0923 00911
recall 0978 0953 0.944
F1 score 0.963 0.938 0.927
time (sec/frame) || 0.025 0.274  0.282

Table 1. The performance of foreground segmentation and
hand/object segmentation. FG: foreground segmentation. H/O-
1: hand/object segmentation given the groundtruth foreground.
H/O-2: hand/object segmentation given the foreground produced
by FG.

6. Experiments

In this section, we first experimentally verify the accu-
racy of the hand/object segmentation pipeline. We then ex-
tensively evaluate the proposed egocentric action recogni-
tion algorithm on 3 benchmark datasets. We show that sig-
nificant performance improvement over the state-of-the-art
algorithms is achieved by mining discriminative states of
hands and objects.

6.1. Hand and Object Segmentation

Hand and object segmentation serves an important role
in extracting features only from interest regions. In this sec-
tion, we evaluate the efficiency and accuracy of the pro-
posed hand/object segmentation method. To this end, we
randomly select a set of RGBD images (10 RGB images and
10 depth images for each action class, 800 images in total)
as our validation set. Groundtruth hand and object masks
are obtained by means of manual annotation. We perform 3
independent experiments: 1) FG: foreground segmentation;
2) H/O-1: hand/object segmentation given the groundtruth
foreground; 3) H/O-2: hand/object segmentation given the
foreground produced by FG. All experiments are run on a
standard PC with 3.40 GHz Intel Core I7 processors and 8
GB RAM.

Table 1 gives the results. For foreground segmentation,
FG gives an F1 score of as high as 96.3% while being
extremely efficient (0.025 sec/frame, or 40.0 frame/sec).
As for hand/object segmentation, H/O-2 performs approx-
imately the same as H/O-1, indicating that skin detection
is not affected much by the errors introduced in automatic
foreground segmentation. A close look at the hand/object
segmentation results reveals that illumination affects the
skin detection more than any other factors. For example,
our skin detector tends to give a low recall in environments
such as a dark stairway. As part of the future work, we ex-
pect to improve the skin detection by explicitly modeling
illumination changes.
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activity  action
(1) principal angles [30] 0.578 0.469
(2) KL-Divergence [24] 0.553 0.472
(3) convex hull [4] 0.643 0.522
(4) affine hull [4] 0.664 0.563
(5) bag-of-active-objs [27]  0.547 0.423
(6) sparse affine hull (ours) 0.721 0.663

Table 2. The activity and action recognition accuracy on the
RGBD-Ego dataset using different state kernels.
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Figure 4. The action recognition accuracy on the RGBD-Ego
dataset in 3 settings: (1) without mining states, (2) mining states,
(3) mining states and discarding trivial states. The number of pyra-
mid levels L is varied from O to 6.
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Figure 5. The weights of states learned for two actions: (a) cutting
cucumber and (b) drinking wine. The x-axis tick label [_k denotes
the k-th state on the [-th level. States on the same level [ are plotted
in the same color.

6.2. Evaluating the Egocentric Action Recognition
Algorithm

In this section, we present various experimental re-
sults on three egocentric video datasets, RGBD-Ego (our
dataset), Activities of Daily Living (ADL) [27], and Geor-
gia Tech Egocentric Activities (GTEA) [8].

6.2.1 Results on the RGBD-Ego Dataset

The RGBD-Ego dataset provides video annotation on two
levels, (1) 18-class activities characterized by long-duration
hand-object interations, and (2) 40-class actions character-
ized by short-duration hand-object interations. It is interest-
ing to see how well our state model performs at the activity-
level and the action-level. We thus perform two groups of
experiments, that is, 18-class activity recognition and 40-
class action recognition. For both groups, we use 10-fold
cross-validation while ensuring that activities/actions per-
formed by the same person do not appear across both train-
ing and testing data. The average recognition accuracy is
computed by averaging the diagonal of the confusion ma-
trix.

The State Kernel Function

The proposed kernel function k(-, -) is defined based on
calculating the distance between two sets using sparse affine
hulls. There exist several other definitions of distance be-
tween two sets. We thus implement D(-,-) by different
set-distance definitions: (1) principal angles [30], (2) KL-
divergence [24], (3) convex hull [4], and (4) affine hull [4].
We also test the (5) bag-of-active-objs kernel proposed in
[27]. For all tests, the number of pyramid levels L is set to
3. Results are given in Table 2.

As can be seen, the (5) bag-of-active-objs kernel gives
a relatively low performance. This is mainly due to the
limited accuracy of object detectors (with groundtruth ob-
ject information, accuracy is improved to 0.674 and 0.589
for activity and action recognition, respectively). Other set-
distance based kernels (1)~(4) and (6) give much higher
accuracy. Our kernel gives the highest accuracy, indicating
the effectiveness of /;-norm regularization on the affine hull
of a set.

Also note that the accuracy of activity recognition is con-
sistently higher than action recognition across different ker-
nels mainly because a) the number of activity classes is less
than the number of action classes and b) similar objects tend
to increase the confusion among different actions.

Mining Discriminative States

Using temporal pyramids to combine increasingly finer
states of hands and objects, there are effectively two pos-
sible directions to improve the performance: to increase
the number of pyramid levels L and to mine discrimina-
tive states. We argue that these two directions are comple-
mentary: the performance gain from mining discriminative
states could not be simply replaced by increasing the num-
ber of pyramid levels. In fact, as the number of levels grows,
the performance may drop due to feature variation and mis-
matching on fine temporal scales, while one can still obtain
gains by mining discriminative states and discarding those
that are not performance-enhancing.

To empirically justify this argument, we perform exper-
iments by varying the number of pyramid levels L, and
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BoW (HOF+HOG) [15] 0.235

Pirsiavash et al. [27] 0.369
McCandless et al. [23] 0.387
Mining States, Obj 0.458

Mining States, Hand+Obj 0.513

Table 3. The activity recognition accuracy on the ADL dataset.

activity  action
BoW (HOF+HOG) [15] 0.571 0.213
Fathi et al. [0] 0.857 0.230
Fathi et al. [7] n/a 0.397
Mining States, Obj 0.857 0.459
Mining States, Hand+Obj || 1.000 0.525

Table 4. The recognition accuracy on the GTEA dataset.

comparing the recognition accuracy with and without min-
ing states. The accuracy of action recognition is given in
Figure 4. As can be seen, the performance without mining
reaches the highest at L = 3 and significantly drops from
beyond L = 4, while mining states always brings additional
performance gains. The accuracy for activity recognition
is interpreted similarly to action recogniton, and is omitted
due to space limitations.

Furthermore, the importance of mining states lies in re-
dundancy removal. Figure 5 plots the state weights of two
actions learned from our algorithm when L = 3. As can
be seen, many states have very small weights and are neg-
ligible to egocentric action recognition. In fact, we are able
to maintain satisfactory performance when only using states
whose weights are greater than 0.05 - maxy,{ s}, see the
blue curve in Figure 4. On average, this effectively removes
85% states from the temporal pyramid, and is particularly
valuable to time-bounded applications.

6.2.2 Results on the ADL Dataset
ADL is an RGB egocentric video dataset of 18 differ-

ent daily living activities, such as “making tea”, “washing
dishes”, and “using computer”. These activities are each
performed by 20 subjects in an uncontrolled manner. Note
that no action-level video annotation is available for this
dataset. For this dataset, only activity recognition is con-
sidered.

Pirsiavash et al. [27] demonstrated relatively successful
recognition performance using the Bag-of-Active-Objects
approach, where a state is represented by a histogram of in-
teracted objects. McCandless et al. [23] achieved further
performance improvement by adaptively learning spatial-
temporal binning schemes. In this experiment, we include
BoW (Bag-of-Words) as a baseline where HOF and HOG
features are densely extracted and concatenated to represent
egocentric actions [ 5].

For consistency, the same evaluation protocol as in
[27, 23] is used. That is, we use leave-one-out cross-
validation, where we ensure that activities of the same per-
son does not appear across both training and testing data.
We compute the overall recognition rate by averaging the
diagonal of the confusion matrix. We obtain hand and ob-
ject regions using the method in [8]. The pyramid level L =
is set to 3. Since no depth data is available, we simply ex-
tract 2D HOF and HOG features to characterize the state of
hands and objects. Two versions of our algorithm are tested,
MiningState-Obj, where only object features are used to en-
sure a fair comparison with object-centric approaches, and
MiningState-Hand+Obj, where hand and object features are
combined.

Table 3 lists the recognition accuracy of various meth-
ods. BoW, being unable to encode the states of hands
and objects, achieves the lowest accuracy among all com-
pared methods. While Pirsiavash ef al. [27] and McCand-
less et al. [23] represent videos using detected objects and
achieve significantly higher accuracy than BoW, they are
inherently limited by the spurious output of object detec-
tors. Our algorithm achieves the highest accuracy (0.458
and 0.513), demonstrating the effectiveness of the proposed
kernel function and the state mining algorithm.

6.2.3 Results on the GTEA Dataset

The GTEA dataset [8] is an RGB egocentric video dataset
that contains 7 food/drink preparation activities performed
by 4 subjects, such as “making cheese sandwich” and “mak-
ing coffee”. These 7 activities are further segmented into
a total number of 61 actions. Pixel-wise hand and object
masks are provided with the dataset.

Fathi et al. [6] built a graphical model for jointly learn-
ing activities, actions, hands, and objects, and demonstrated
promising performance. Fathi ef al. [7] improved the per-
formance of action recognition using state-specific object
detectors.

We perform activity and action recognition using our
state model. As in [0, 7], we use the videos by subjects
1, 3 and 4 for training, and use the videos by subject 2 for
testing. We compute the overall recognition rate by aver-
aging the diagonal of the confusion matrix. The number of
pyramid levels L is set to 3. 2D HOF and HOG features
are extracted to characterize the states of hands and objects,
respectively. The results are given in Table 4.

Our state model significantly outperforms previous
methods for both activity and action recognition. It is worth
noting that our model gives 100% accuracy for activity
recognition on the GTEA dataset when combining states of
hands and objects.
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7. Conclusion

Modeling the state of hands and objects is critical to rec-
ognizing egocentric actions. In this paper, we presented a
novel approach to mining discriminative states of different
action classes. Our results showed that the significance of
each state is vastly different across the action classes, and
optimizing their respective weights is capable of achieving
dramatically improved accuracy on 3 benchmark datasets.
We also proposed a novel kernel function for calculating the
similarity between two states. Our kernel function is capa-
ble of covering complex hand and object variations during
a hand-object interaction task, thus greatly improving the
robustness of our recognition algorithm.

In our current work, the use of temporal pyramid restricts
each state to be temporally aligned with the grid of the pyra-
mid. To allow more flexible state definitions, our future
work consists of mining discriminative states that may be
of arbitrary time-shift and length.
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