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Abstract

We study the uncalibrated isometric Shape-from-
Template problem, that consists in estimating an isometric
deformation from a template shape to an input image whose
focal length is unknown.

Our method is the first that combines the following fea-
tures: solving for both the 3D deformation and the cam-
era’s focal length, involving only local analytical solutions
(there is no numerical optimization), being robust to mis-
matches, handling general surfaces and running extremely
fast. This was achieved through two key steps. First, an ‘un-
calibrated’ 3D deformation is computed thanks to a novel
piecewise weak-perspective projection model. Second, the
camera’s focal length is estimated and enables upgrading
the 3D deformation to metric. We use a variational frame-
work, implemented using a smooth function basis and sam-
pled local deformation models. The only degeneracy –
which we easily detect– for focal length estimation is a flat
and fronto-parallel surface.

Experimental results on simulated and real datasets
show that our method achieves a 3D shape accuracy
slightly below state of the art methods using a precalibrated
or the true focal length, and a focal length accuracy slightly
below static calibration methods.

1. Introduction
3D reconstruction from a single image and a template (a

known 3D view of the surface) has been researched actively

over the past decade. We here call this problem Shape-from-
Template (SfT). Recovering the 3D deformation is equiv-

alent to recovering the shape as seen in the input image.

Solving SfT requires one to constrain the space of possible

3D deformations between the template and the unknown

shape. An important instance of SfT is IsoSfT, where the

3D deformation is distance-preserving, in other words, an

isometry. IsoSfT has been the most studied instance of

SfT [2, 3, 4, 6, 8, 10] and was shown to generally admit

a unique solution [2]. Importantly, most previous work as-

sume known intrinsic camera calibration.

We are here interested in C-IsoSfT, the IsoSfT prob-

lem which takes an uncalibrated image as input and in-

cludes camera calibration as an unknown. We give a general

framework and a detailled solution to the most important

practical case where all camera parameters are known (the

principal point, aspect ratio and skew) but the focal length.

For most applications of SfT, being able to estimate the fo-

cal length online is the most important case since it allows

one to zoom in and out while filming the deformable sur-

face. More specifically, we contribute with the first robust

analytical solution to recover 3D shape and the camera’s fo-

cal length. We implemented our theory using putative key-

point correspondences as inputs. Our implementation dis-

cards erroneous correspondences and is entirely analytical

in that it does not involve numerical optimization. This is

important in two respects: ensuring that the solution is glob-

ally optimal and that it can be computed extremely fast.

There are two key differences between our framework

and state of the art: (i) most current approaches require

known camera parameters and (ii) most current approaches

involve numerical optimization, except [2, 4]. Our analyt-

ical solution is based on a variational problem formulation

with general template formulation. In a first step, we in-

stantiate it with a novel projection model we call Piecewise
Weak-Perspective (PWP). This allows us to derive an oper-

ator which locally maps an image warp to an uncalibrated

solution to 3D shape. In a second step, we robustly solve for

the focal length and upgrade 3D shape globally. Both steps

involve analytical solutions and are extremely fast to com-

pute. We believe that SfT is a local problem in nature. In

other words, correspondences do not contribute aways from

their local area of influence. There is however a trade-off

between locality and stability. Our implementation handles

this trade-off by constructing a multiple scale pool of local

image warps.

Notation. We use greek for functions (e.g. η), italic latin

for scalars (e.g. a), bold latin for vectors and matrices

(e.g. J) and double bars for domains (e.g. R). The iden-

tity matrix is written I. We define S
p as the space of sym-

metric positive matrices of size (p × p) and O as the space
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of column-orthonormal matrices. We write Cp(M1,M2)
the space of p times continuously differentiable functions

with domain M1 and codomain M2. We denote the

largest/smallest eigenvalue functions as λ1,2 ∈ C1(S2,R),
and define ε ∈ C0(S2,R2) as giving the principal vector of

a rank-1 matrix (i.e. ε(uu�) def
= u ∈ R

2).

2. State of the Art

Existing SfT methods can be broadly classified into three

categories: (C1) analytical solutions, (C2) convex optimiza-

tion and (C3) nonconvex optimization.

(C1). Both closest works to ours lie in (C1). They derive

variational solutions to SfT using perspective [2] and ortho-

graphic [4] projection, but do not address camera calibra-

tion. None of [2, 4] copes with mismatches, and none lends

itself to camera calibration (perspective projection does not

allow one to factor out the focal length, and thus to compute

an uncalibrated solution). A major advantage of variational

solutions is that they may be extremely fast to compute.

(C2). Because IsoSfT is in nature nonconvex, methods

in (C2) use a convex relaxation of the constraints. The

most successful relaxation is the so-called inextensibility,

which upper bounds the Euclidean distance between a pair

of points by its true geodesic distance computed from the

template [8]. With this relaxation, the cost is convex and

leads to an SOCP. However, a term that prevents the surface

from shrinking to the origin is required. This was imple-

mented by the maximum-depth heuristic [3, 10] and penal-

ized slack variables [6]. Mismatches may be handled by

an annealing process [10, 6], though this makes the overall

process nonconvex.

(C3). Methods in (C3) estimate a quasi-isometric defor-

mation, which is a nonconvex constraint, while minimizing

the reprojection error [3]. They may substantially improve

an initial 3D shape estimate provided by a (C1) or (C2) al-

gorithm [2].

Finally, a recent paper has also shown that the focal

length could be calibrated in SfT [1]. The key idea is to sam-

ple a set of admissible focal lengths, solve SfT for each of

them and keep the one minimizing some consistency mea-

sure.

In regards to state of the art, we present the first frame-

work with the following features: (i) to solve SfT and cam-

era focal length, (ii) to discard erroneous matches, (iii) to

run extremely fast, (iv) to use a generic problem formula-

tion independent of template parameterization, (v) to use a

multi-scale set of image warps and (vi) without numerical

optimization. This is achieved by first solving the problem

locally to get an initial uncalibrated shape and then estimat-

ing the focal length. At the heart of the first step lies the

Piecewise Weak-Perspective (PWP) projection model that

we are presenting.

3. Generic C-IsoSfT Problem Formulations
We first give C-IsoSfT’s 3D formulation, and then two

other formulations based on the embedding function. All

three formulations are equivalent. Each formulation has a

data constraint called the reprojection constraint and a prior

called the deformation constraint. Our goal is to arrive at

a formulation which is solvable locally. This fundamen-

tal property holds for our second embedding-based ‘point-

normal’ formulation. The problem setup is illustrated in

figure 1. Our three formulations hold as well for IsoSfT.

3.1. Modeling and 3D Formulation

In the SfT problem, one has a 3D shape template R ⊂
R
3 which may be represented as a parametric surface with

an embedding ζ ∈ C2(Ω,R3) from a parameterization

space Ω ⊂ R
2. Given one image of the deformed 3D

shape S, the unknowns are (i) the 3D deformation Ψ ∈
C2(R,R3) that brings R to S, and (ii) the camera projec-

tion functionΠ ∈ P . HereP is a space of ‘intrinsic’ camera

projection functions, which we keep abstract for now. Our

practical solution estimates solely the focal length which is

the most important intrinsic of the pinhole camera. The ex-

trinsic camera parameters are included in Ψ.

The data constraints in SfT are image matching con-

straints between the template and the input image. We

model them as an image warp η ∈ C2(Ω,R2), though they

may also be represented by keypoint matches [9]. In partic-

ular, our implementation relies on local image warps, and η
is thus not computed in practice.

Proposition 1 (3D Formulation of C-IsoSfT)

find
Ψ∈C2(R,R3),Π∈P

{
η = Π ◦Ψ ◦ ζ (reprojection) (1)

∇∇RΨ ∈ C1(R,O) (deformation) (2)

Proof of proposition 1. The reprojection constraint (1)

is obvious by construction (see figure 1). The deforma-

tion constraint (2) means that the Jacobian matrix of Ψ in

the tangent plane at any point of R has to be a column-

orthonormal matrix. This must hold for Ψ to represent an

isometric deformation of R. In this equation, ∇D stands

for the directional derivatives in the subspace D.

3.2. Embedding-based Point-Tangent Formulation

We define the deformed surface embedding function ϕ ∈
C2(Ω,R3) as:

ϕ
def
= Ψ ◦ ζ. (3)

We now give a formulation of C-IsoSfT that depends on

the embedding ϕ (the ‘point’) and its partial derivatives (the

‘tangent plane’). We define T as the operator that forms a

function’s metric tensor: T ϕ def
= ∇ϕ�∇ϕ.
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Figure 1. General modeling of the C-IsoSfT problem. The template shape may have an arbitrary topology and parameterization. A

similar modeling was used in the literature [2] which studies IsoSfT with a known projection operator Π.

Proposition 2 (Point-Tangent Formulation of C-IsoSfT)

find
ϕ∈C2(Ω,R3),Π∈P

{
η = Π ◦ ϕ (reprojection) (4)

T ϕ = T ζ (deformation) (5)

We observe that the result does not depend on the actual

template’s embedding but on its metric tensor only.

Proof of proposition 2. The reprojection constraint (4) is

obtained by substituting the definition (3) of ϕ in the re-

projection constraint (1). The deformation constraint (5) is

obtained by differentiating the definition (3) of ϕ, giving

∇ϕ = (∇Ψ ◦ ζ)∇ζ, and multiplying it by its transpose to

the left, eliminating Ψ using the deformation constraint (2).

3.3. Embedding-based Point-Normal Formulation

We now derive a formulation using μ(∇ϕ) (a vector col-

inear with the surface normal) but not the full tangent plane

∇ϕ. We define μ : R3×2 → R
3 as μ((u v))

def
= u× v.

Proposition 3 (Point-Normal Formulation of C-IsoSfT)

find
ϕ∈C2(Ω,R3),Π∈P

{
η = Π ◦ ϕ (reprojection) (6)

F [ϕ,Π] = 0 (deformation) (7)

with:

F [ϕ,Π]
def
= ∇η adj (T ζ)∇η�

+(∇Π ◦ ϕ)μ(∇ϕ)μ(∇ϕ)�(∇Π ◦ ϕ)�

− det(T ζ)(∇Π ◦ ϕ)(∇Π ◦ ϕ)�,

where adj is the adjugate matrix (the transpose of the co-
factor matrix, adj(A) = det(A)A−1).

Proof of proposition 3. The reprojection constraints (4)

and (6) are just the same. As for the deformation con-

straint (7), we invoke Cholesky decomposition of the metric

tensor T ζ. We define Γ ∈ C0(Ω,R2×2) as Γ�Γ def
= T ζ.

The deformation constraint (5) is thus transformed to:

(
T ϕ = T ζ = Γ�Γ

)
⇒

(
Γ−�∇ϕ�∇ϕΓ−1 = I

)
.
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We differentiate the reprojection constraint (6) and multiply

it to the right by Γ−1:

∇η Γ−1 = (∇Π ◦ ϕ)∇ϕΓ−1.
It can be easily shown that matrix (∇ϕΓ−1 μ(∇ϕΓ−1)) ∈
C0(Ω,O). We thus append μ(∇ϕΓ−1)) (which is the sur-

face normal) as a third column to the equation above:

(∇η Γ−1 (∇Π ◦ ϕ)μ(∇ϕΓ−1))
= (∇Π ◦ ϕ)(∇ϕΓ−1 μ(∇ϕΓ−1)).

We then multiply each side of the equation by its transpose

to the right, yielding:

(∇Π ◦ ϕ)(∇Π ◦ ϕ)� = ∇η Γ−1Γ−�∇η�

+(∇Π ◦ ϕ)μ(∇ϕΓ−1)μ(∇ϕΓ−1)�(∇Π ◦ ϕ)�.
Using μ(∇ϕΓ−1) = 1

det(Γ)μ(∇ϕ), multiplying by

det(T ζ) and simplifying, we arrive at equation (7). This

is the general equation of C-IsoSfT with general template
parameterization.

4. Local Uncalibrated Solution
We now derive a practical solution to uncalibrated recon-

struction which can be computed locally. We use a pinhole

camera with unknown focal length f ∈ R
+. We assume

that the other intrinsics (such as the principal point) were

‘undone’. We write the projection function as Πf to em-

phasize its dependency on f .

4.1. Piecewise Weak-Perspective

Full-Perspective (FP) projection is written Πf ◦ ϕ =
f
ϕZ

Sϕ, where ϕZ is the depth, given by the third compo-

nent of ϕ and S
def
= (I 0) ∈ R

2×3. The Jacobian matrix of

FP is spatially varying. IsoSfT can be solved in closed-form

with FP [2] but not C-IsoSfT. Weak-Perspective (WP) is a

zeroth order approximation of FP obtained by replacing the

depth ϕZ by some average d ∈ R
+, giving Πf ◦ ϕ ≈ aSϕ,

with a
def
= f

d the WP scale factor. One cannot solve for f
and d individually with WP in C-IsoSfT but only for their

ratio a. The Jacobian matrix of WP is constant and is given

by aS.

We here propose the Piecewise WP (PWP) model. The

idea is to define a local WP model at each point. In other

words, PWP reproduces exactly FP projection but approxi-

mates its Jacobian matrix:

Πf ◦ ϕ def
= αSϕ, α

def
=

f

ϕZ
and ∇Πf ◦ ϕ ≈ αSϕ

This is in practice a very good approximation of FP’s differ-

ential properties. Our method first solves for α as an uncal-

ibrated solution to C-IsoSfT, then calibrates f , and finally

returns ϕ. It can be used for IsoSfT by simply skipping the

second step.

4.2. Uncalibrated Solution of C-IsoSfT with PWP

We instantiate the point-normal formulation (proposi-

tion 3) with our PWP model. The reprojection constraint (6)

becomes η = αSϕ. It allows us to solve for ϕX = ηx

α and

ϕY =
ηy

α while the deformation constraint (7) allows us to

solve for α. Defining ν
def
= Sμ(∇ϕ) as the scaled normal’s

first two elements, this constraint becomes:

∇η adj (T ζ)∇η� + α2νν� − α2 det(T ζ)I = 0. (8)

Theorem 1 Equation (8) has a unique solution for α and
at most two solutions for ν, each of them corresponding to
a solution for the normal ξ, given by:

α =

√
λ1

(
(T η)(T ζ)−1

)
(9)

ν± = ±ε
(
det(T ζ)I− 1

α2
∇η adj (T ζ)∇η�

)
(10)

ξ± =
1

‖μ(∇ζ)‖2

(
ν±

−
√
‖μ(∇ζ)‖22 − ‖ν±‖22

)
(11)

Both solutions for the normal are front facing and cannot
be disambiguated at this stage. However, they collapse to
ξ± ∝ (0 0 1)� for frontoparallel patches.

We will use the normal as a clue to avoid local degeneracies

when estimating the focal length.

Lemma 1 Let A ∈ R
2×2. The eigenvalues of A−λj (A) I

are given by λi (A− λj (A) I) = λi(A) − λj(A), imply-
ing:⎧⎪⎪⎨

⎪⎪⎩

λ1 (A− λ1 (A) I) = 0
λ2 (A− λ1 (A) I) = λ2 (A)− λ1 (A) ≤ 0
λ1 (A− λ2 (A) I) = λ1 (A)− λ2 (A) ≥ 0
λ2 (A− λ2 (A) I) = 0.

Proof of lemma 1. We replace A by its eigendecomposi-

tion in A− λj(A)I:

A− λj(A)I = P diag(λ1(A), λ2(A)) P
� − λj(A)I.

Because PP� = I we factorize this equation as:

P diag(λ1(A)− λj(A), λ2(A)− λj(A)) P�,

from which we easily conclude.

Lemma 2 The image of μ(∇ϕ) is colinear with the nor-
mal. We also have μ(∇ϕ) = (∇Ψ ◦ ζ)μ(∇ζ), implying
‖μ(∇ϕ)‖2 = ‖μ(∇ζ)‖2.

Proof of Lemma 2. We substitute ∂ϕ
∂� = (∇Ψ ◦ ζ)∂ζ∂�

in μ(∇ϕ) = ∂ϕ
∂x ×

∂ϕ
∂y . We then use the general rule

(Ru)× (Rv) = det(R)R−�(u× v) and the deformation

constraint (2) to finalize the derivation.
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Proof of theorem 1. A key step in our proof is rewriting

equation (8) as:

νν� ∝ α2I−Θ with Θ
def
= ∇η(T ζ)−1∇η�,

where we simply divided by det(T ζ) > 0. Because νν� is

positive semi-definite or null, its singular values are respec-

tively not lower than zero and zero. This leads to:

λ1
(
Θ− α2I

)
= 0 (12)

λ2
(
Θ− α2I

)
≤ 0. (13)

Equation (12) implies det
(
Θ− α2I

)
= 0, which is the

characteristic polynomial of Θ. Therefore, ∃j ∈ {1, 2}
such that α2 = λj (Θ). Equation (13) then implies α2 =
λ1(Θ) using lemma 1. Using λj(AB) = λj(BA) we fi-

nally arrive at equation (9).

As for the normal’s solutions, we rearrange equation (8)

in:

νν� = det(T ζ)I− 1

α2
∇η adj (T ζ)∇η� ∝ Θ−α2I.

Because α2 = λ1(Θ), lemma 1 shows that the right hand

side’s image are symmetric rank-1 matrices. We thus obtain

ν up to sign as the singular vector associated to the non-zero

singular value using ε. We find the last element ξZ of the

scaled normal using ‖ν‖22 + ξ2Z = ‖ξ‖22 = ‖μ(∇ζ)‖22 from

lemma 2, and keep only the negative solution to ensure that

the recovered normal is front facing.

5. Focal Length Calibration
Our main result in this section is to compute the focal

length analytically from the uncalibrated solution α.

5.1. Basic Equations

Starting from the point-tangent formulation (proposi-

tion 2), we use the reprojection constraint (4) to establish:

ϕ =
1

α

(
η
f

)
and ∇ϕ = −

(
η
f

) ∇α
α2

+
1

α

(
∇η
0�

)
.

We use this to expand the metric tensor of the embedding:

T ϕ =
1

α4
∇α�

(
η�η + f2

)
∇α+ 1

α2
T η

− 1

α3
(
∇α�η�∇η +∇η�η∇α

)
.

Plugging this equation in the deformation constraint (5)

then leads to:

f2T α = α4T ζ − ‖η‖22T α− α2T η
−α

(
∇α�η�∇η +∇η�η∇α

)
.

(14)

The image of T α is the set of rank-1 matrices. Equa-

tion (14) thus carries two constraints but because one was

used to estimate α only one is independent. We multiply the

equation by∇α to the left and∇α� to the right. Given that

∇αT α∇α� = ‖∇α‖42 we obtain the following analytical

solution for f :

f2 =
α2

‖∇α‖42
∇α

(
α2T ζ − T η

)
∇α�

− α

‖∇α‖22
(
η�∇η∇α� +∇α∇η�η

)
− ‖η‖22.

(15)

5.2. Geometric Interpretation

Criterion (14) is derived from the isometric deforma-

tion constraint. It expresses the fact that at every point, the

length of an infinitesimal step in any direction is preserved.

To be more general, we can prove that it preserves the length

of every 2D curve lying on the template shape. For b ∈ R

and γ ∈ C1([0; 1],Ω) some 2D curve, we have that:∫
[0;1]

‖∇ϕ ◦ γ‖b2 dt =

∫
[0;1]

‖∇ζ ◦ γ‖b2 dt.

This is easily shown using the definition (3) of ϕ and the

deformation constraint (2): ‖∇ϕ ◦ γ‖b2 = ‖((∇ψ ◦ ζ)∇ζ) ◦
γ‖b2 = ‖∇ζ ◦ γ‖b2.

5.3. Degeneracies

Geometry. Degenerate cases arise when the focal length

cannot be estimated uniquely from the data. Inspecting cri-

terion (14), we can figure out that a point q ∈ Ω is in

a degenerate configuration if T α(q) = 0, equivalent to

∇α(q) = 0. In other words, a point is degenerate if the

local shape around it is fronto-parallel. Consequently, the

data is degenerate if T α = 0, that is to say if the shape is

flat and fronto-parallel. This was a known degenerate case

in plane-based camera calibration [11].

Detection. In practice, we require that the angle between

the normal ξ and z
def
= (0 0 1)� be greater than some min-

imal angle r ∈ R
+ for a point to stably contribute to focal

length estimation. This criterion is equivalent to:

‖ν±‖22
‖μ(∇ζ)‖22

≥ sin(r)2, (16)

which can be computed in spite of the two-way ambigu-

ity since ‖ν+‖2 = ‖ν−‖2. The equivalence is proved as

follows. Because |∠(ξ±, z)| ≤ π
2 , ∠(ξ±, z) > r is equiv-

alent to cos(∠(ξ±, z)) ≤ cos(r). Squaring and using the

dot product, this is rewritten as (ξ�±z)
2 ≤ cos(r)2. Using

the solution (11) for ξ± allows us to rewrite the left hand

side as:
‖μ(∇ζ)‖22−‖ν‖22
‖μ(∇ζ)‖22 = 1 − ‖ν‖22

‖μ(∇ζ)‖22 and to arrive at

criterion (16).
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6. Robust Implementation

We implemented a wide-baseline version of our method

using keypoints. Some preprocessing is done off-line on

the template, including acquiring its shape if necessary and

detecting SIFT keypoints [5]. We standardize the image co-

ordinates to [0; 1]2 in the parameterization space and in the

input image for numerical stability. Given an input image,

the following steps are then taken at runtime:

1. Putative matching. We detect SIFT keypoints and

match them with local consistency [9]. This results in a set

{qk ↔ pk} of putative matches with k = 1, . . . , Nputatives.

We compute the template’s metric tensor for every matched

keypoint as Lk
def
= (T ζ)(qk) and wk

def
= ‖μ(∇ζ)(qk)‖22.

2. Multi-scale local warps. We use every match to de-

fineNscales local warps (typicallyNscales = 10). For that, we

define a set of local scales {sh} evenly from 5% to 50% of

the template size with h = 1, . . . , Nscales. At local scale sh,

the support region Ω̄k,h ⊂ Ω is circular with diameter s and

centred on the template keypoint qk. The local scale trades-

off stability and deformation complexity: larger scale im-

proves stability but increase sensitivity to high-frequency

surface deformation. The local warp η̄k,h : C2(Ω̄k,h,R
2)

is estimated from all point matches lying in Ω̄k,h. Follow-

ing [9], we use a fixed number of 9 control centres and a

Thin-Plate Spline (TPS) to compute Jk,h
def
= (∇η̄k,h)(qk) ∈

R
2×2 and Hk,h

def
= J�k,hJk,h = (T η̄k,h)(qk) ∈ R

2×2 ana-

lytically. We end up with a pool of warps whose size is of

the order of NputativesNscales.

3. Uncalibrated shape and focal length. We estimate

the PWP scale factor ak,h and a focal length estimate fk,h
for every warp in the pool. The former is obtained through

equation (9) as:

ak,h =
√
λ1

(
Hk,hL

−1
k

)
.

The latter is computed through equation (14), which re-

quires an estimate of d�k,h
def
= (∇αk,h)(qk) ∈ R

1×2. This is

obtained by fitting a TPS to an estimate of αk,h at each key-

point in Ω̄k,h computed using the equation directly above.

We arrive at:

f2k,h =
a2k,h

‖dk,h‖42
d�k,h

(
a2k,hLk −Hk,h

)
dk,h

− ak,h
‖dk,h‖22

(
p�k Jk,hdk,h + d�k,hJ

�
k,hpk

)
− ‖pk‖22.

Noise makes the right-hand side negative for a few samples;

they are discarded.

4. Robust focal length. We have a large number of can-

didate focal length estimates. Our robust estimation strat-

egy is to select the f compatible with as many estimates as

possible by solving:

f̂ = arg max
f∈R+

Nputatives∑
k=1

Nscales∑
h=1

δk,hρg(f, fk,h)

where ρg is a step function of width g:

ρg(f, fk,h) = 1 if |f − fk,h| < g and 0 otherwise.

We typically use 1% of the image size for g, and solve the

problem by sampling focal length estimates. The indicator

δk,h test every estimate fk,h against local degeneracy by

implementing the test (16) with r = 5◦:

δk,h = 1 if ‖vk,h‖22 ≥ sin(r)2w2k and 0 otherwise,

with vk,h given by equation (10) as:

vk,h
def
= ε

(
det(Lk)I−

1

ak,h
∇η̄k,h adj(Lk)η̄

�
k,h

)
.

5. Local scale selection and erroneous match pruning.
For every putative feature match k, we select the largest lo-

cal scale sh whose local focal length estimate fk,h agrees

with the robust estimate f̂ by testing ρg(f̂ , fk,h). If no

scales pass the test, the match is discarded.

7. Experimental Results
7.1. Compared Methods and Measured Errors

We compared 7 methods built on 3 base methods from

the 3 categories outlined in §2: (C1) PWP (our proposed an-

alytical framework), (C2) SLZ (a convex method [10]) and

(C3) REF (iterative nonlinear refinement [3]). For a method,

the leading letter may be U or C: U means that the focal

length is estimated by our method or refined and C means

that the true focal length (for simulated data) or the focal

obtained by static calibration (for real data) is used. For

instance, U-PWP is the proposed method from §6, C-SLZ

is [10] and C-REF-SHAPE is the nonlinear method in [3].

We measured the average depth error in mm and the rela-

tive focal length error in %.

7.2. Simulated Data

We simulated 800 × 800 squared pixels images of sev-

eral deformable isometric surfaces [7] with no degenera-

cies. The default parameters were a focal length of 800

pixels, an image noise of 1.5 pixels and 200 point matches.

Each of these 3 parameters was varied on turn and errors

were measured over 50 runs for each configuration. The

results are shown in figure 2.

We observe in the first column of graphs that the focal

length error is always below 10% for the proposed analyt-

ical solution U-PWP. It increases with the noise, but de-

creases for larger numbers of point matches. It has a mini-

mum for a focal length of around 600 pixels. This may be
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Figure 2. Results on simulated data.

explained by the fact that for short focal lengths the PWP

approximation tends to be less accurate, while large focal

lengths tend to be ill-constrained since they cancel perspec-

tive. Shape and focal length refinement by U-REF-SHAPE-F

always improve on the results of U-PWP. This is because U-

REF-SHAPE-F uses the full-perspective model. It thus does

not suffer from the same approximation error. Moreover, it

minimizes the reprojection error, which is physically mean-

ingful.

We observe that the depth error of uncalibrated methods

increases with the focal length while the error of calibrated

methods is approximately steady or decreases. The noise

and number of points influence the depth error as expected.

All methods are sensitive to the focal length accuracy. We

observe that there are three groups of methods. The first one

is U-PWP, U-SLZ and U-REF-SHAPE, which use the focal

length estimated by U-PWP. They are outperformed by U-

REF-SHAPE-F which refines this focal length estimate, and

forms the second group. As expected, the third group, made

of calibrated methods C-PWP, C-SALZ and C-REF-SHAPE

performs better than the two others.

7.3. Real Data

Cushion. This dataset shows a cushion in two different

poses. One is used to build the template and the other one

to test the methods. The deformation magnitude is 52.27

mm. This dataset was used in figure 1, and more results are

shown in figures 3 and 4. We detected 2923 SIFT keypoints

in the template and 9472 in the input image, from which

we obtained 2923 putative matches, filtered down to 617

after spatial consistency was enforced. For the input image,

the groundtruth focal length was 2727.1 pixels. The his-

togram of local focal length estimates is shown in figure 3.

The focal length we estimated with U-PWP is 2668.1 pixels

and it is 2801.5 pixels with U-REF-SHAPE-F. This means

a relative error of 2.16% and 2.71% respectively. Once the

focal length was robustly estimated we took the number of

matches down to 612 by checking that their focal length es-

timate was correct at one scale at least. The selected scale

for each match is shown in figure 3. We observe that the

isolated matches which were kept have a large local scale,

while matches in dense keypoint areas may have a smaller

scale, especially if the deformation is important. The re-

constructed shape, as well as the groundtruth shape and a

color-coded comparison can be seen in figure 4. The av-

erage shape errors were (in mm) U-PWP: 16.94, U-SALZ:

15.45, C-PWP: 10.60, C-SALZ: 10.20, U-REF-SHAPE: 8.63,

C-REF-SHAPE and U-REF-SHAPE-F: 4.04.

5 % 50 % 

True focal length 

Focal length  
from U-PWP 

Histogram of local focal length estimates Selected local feature scales 

(in % of template size) 

Figure 3. Results on the Cushion dataset.

Paper. We tested the 7 methods on the CVLab’s paper

dataset. This shows a piece of paper being gently bent. The

groundtruth shape and constant focal length were provided.

We observe that for U-PWP the focal length error is gen-

erally below 10%, while for U-REF-SHAPE-F it is generally

below 5%. However, the error may be large at some frames

for both methods. These large errors are due to the shape

being approximately flat and fronto-parallel at these frames,

a degenerate configuration that we identified in §5.3. The

depth error is much lower for the calibrated methods than

for the uncalibrated methods. All three calibrated meth-

ods have the same order of errors. U-REF-SHAPE-F is the

best performing of the uncalibrated methods, reaching al-

most the same accuracy as the calibrated methods, except at

those frames where the pose is degenerate.
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Groundtruth Proposed analytical solution (U-PWP) Color-coded depth error in Ω 

Figure 4. Results on the Cushion dataset. The groundtruth was obtained using dense Rigid Structure-from-Motion.

90 60 

30 0 

groundtruth 

groundtruth 

U-PWP 

U-PWP 

groundtruth 

groundtruth 

U-PWP 

U-PWP 

Figure 5. Results on the CVLab’s paper sequence.

8. Conclusion

We have proposed the first method which solves the Iso-

metric Shape-from-Template problem analytically while re-

covering the camera’s focal length. The proposed method is

based on Piecewise Weak-Perspective (PWP), a projection

model which approximates perspective projection’s partial

derivatives with an infinitesimal weak-perspective model.

Our experimental results show that the method gives sen-

sible estimates: the focal length error was less than 10%

in most cases. We showed that using the true focal length

with our PWP model leads to a depth error comparable to

state of the art algorithms, including nonlinear refinement

of the reprojection error (we recall that the proposed method

does not use numerical optimization). The focal length esti-

mate is sensitive to noise in near degenerate configurations.

These configurations must be detected to ensure stability, by

means of testing a global plane homography, for instance.

Our current implementation has not been designed for real-

time performance. However, we believe that, being local,

our method can run extremely fast on parallel architectures

such as GPUs, and thus provide 3D shape in real-time for

environments in which the user may need to change the

camera’s zoom while filming.
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