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Abstract

How do you tell a blackbird from a crow? There has been

great progress toward automatic methods for visual recog-

nition, including fine-grained visual categorization in which

the classes to be distinguished are very similar. In a task

such as bird species recognition, automatic recognition sys-

tems can now exceed the performance of non-experts – most

people are challenged to name a couple dozen bird species,

let alone identify them. This leads us to the question, “Can

a recognition system show humans what to look for when

identifying classes (in this case birds)?” In the context of

fine-grained visual categorization, we show that we can au-

tomatically determine which classes are most visually sim-

ilar, discover what visual features distinguish very similar

classes, and illustrate the key features in a way meaning-

ful to humans. Running these methods on a dataset of bird

images, we can generate a visual field guide to birds which

includes a tree of similarity that displays the similarity re-

lations between all species, pages for each species showing

the most similar other species, and pages for each pair of

similar species illustrating their differences.

1. Introduction
How do you tell a blackbird from a crow? To answer

this question, we may consult a guidebook (e.g., [22, 23]).
The best of these guides, products of great expertise and

effort, include multiple drawings or paintings (in different

poses and plumages) of each species, text descriptions of

key features, and notes on behavior, range, and voice.

From a computer vision standpoint, this is in the domain

of fine-grained visual categorization, in which we must rec-

ognize a set of similar classes and distinguish them from

each other. To contrast this with general object recognition,

we must distinguish blackbirds from crows rather than birds

from bicycles. There is good, recent progress on this prob-

lem, including work on bird species identification in partic-

ular (e.g., [1, 29]). These methods learn classifiers which

can (to some standard of accuracy) recognize bird species

but do not explicitly tell us what to look for to recognize
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Figure 1. (a) For any bird species (here the red-winged blackbird,

at center), we display the other species with most similar appear-

ance. More similar species are shown with wider spokes. (b)

For each similar species (here the American crow), we generate

a “visual field guide” page highlighting differences between the

species.
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Figure 2. A similarity tree of bird species, built from our visual similarity matrix using the neighbor-joining method of [20]. Species

visually similar to the red-winged blackbird (see Figure 1) are in blue, and those similar to the Kentucky warbler (see Figure 4) are in red.

bird species on our own.

In this paper, we consider the problem not of performing

fine-grained categorization by computer, but of using com-

puter vision techniques to show a human how to perform

the categorization. We do this by learning which classes

appear similar, discovering features that discriminate be-

tween similar classes, and illustrating these features with a

series of carefully chosen sample images annotated to indi-

cate the relevant features. We can assemble these visualiza-

tions into an automatically-generated digital field guide to

birds, showing which species are similar and what a birder

should look for to tell them apart. Example figures from a

page we have generated for such a guide are shown in Fig-

ure 1.

In addition to the visualizations in these figures, we bor-

row a technique from phylogenetics, the study of the evo-

lutionary relations between species, to generate a tree of

visual similarity. Arranged in a wheel, as shown in Fig-

ure 2, this tree is suitable as a browsing interface for the field

guide, allowing a user to quickly see each species and all

the species similar to it. We compare our similarity-based

tree with the phylogenetic “tree of life,” which describes the

evolutionary relations between bird species. Places where

the trees are not in agreement – pairs of species that are

close in the similarity tree but far in the evolutionary tree –

are of special interest, as these may be examples of conver-

gent evolution [11], where similar traits arise independently

in species that are not closely related.

We base our similarity calculations on the “part-based

one-vs-one features” (POOFs) of [1], for two reasons. First

is the POOFs’ strong performance on fine-grained catego-

rization; in particular they have done well on bird species

recognition. Second is their part-based nature. Fine-

grained classification encourages part-based approaches be-

cause the classes under consideration have many of the

same parts (for birds, every species has a beak, wings, legs,

and eyes) so it is possible to distinguish classes by the ap-

pearance of corresponding parts. Experiments by Tversky

and Hemenway [24] suggest that people also use proper-

ties of parts to distinguish similar classes, and bird guides

often describe species in terms of their parts, as shown in

Figure 3. All this suggests that part-based features may be

the best way to show humans the key features. POOFs have

the additional advantage of being easy to illustrate; each is

associated with a learned support region that can be high-

lighted in our visualizations.

This paper makes the following contributions:

1. We propose and explore a new problem: using com-

10



Figure 3. A picture of the red-winged blackbird from the Sibley

Guide [22] shows part-based features that distinguish this species.

puter vision techniques, in particular methods of fine-

grained visual categorization, to illustrate the differ-

ences between similar classes. The goal is not to per-

form identification, but to see if we can show a human

what to look for when performing identification.

2. We propose an approach to this problem. We demon-

strate a fully automatic method for choosing, from a

large set of part-based features, those that best show

the difference between two similar classes, choosing

sample images that exemplify the difference, and an-

notating the images to show the distinguishing feature.

3. We explore the relation between visual similarity and

phylogeny in bird species. Species which are visually

similar but not close in the evolutionary “tree of life”

may be examples of convergent evolution.

2. Related Work
There is a good deal of recent work on fine-grained cat-

egorization, much of it dealing with species or breed recog-

nition of e.g., trees [13], flowers [16], butterflies [8, 27],

dogs [15, 18, 19], and birds [1, 6, 8, 9, 29, 30]. All of

this work uses part-based features in one way or another,

although it is mostly concerned with performing recogni-

tion rather than explaining how to perform recognition. We

use the POOFs of [1] for reasons discussed in Section 1.

Work on fine-grained visual categorization with “hu-

mans in the loop” [3, 25], proposes a model in which a

person answers questions to assist a recognition system that

makes a final identification. Our proposal is conceptually

opposite: the recognition system shows what features to

look for, which will help a person to perform identification.

Our goal is not classification itself, but an understand-

ing of what features are most relevant and understandable.

A similar task is set by Doersch et al. [7], who discover

the architectural features best suited to recognizing the city

in which a street scene was photographed. With a much

smaller dataset and a much larger number of classes, we

take a careful approach based on labeled parts rather than

their random image patches. Shrivastava et al. [21] weight

regions in an image by their distinctiveness for purposes of

cross-domain similar image search. This is similar to our

method for finding regions to annotate in our illustrative

images, but they work with a single image to find its dis-

tinctive regions, while we work with two classes of image

to find the most discriminative regions. Both [7] and [21]

deal with image rather than object classification, so use un-

aligned image patches rather than our part-based features.

Deng et al. [6] found discriminative regions in bird by ex-

plicit human labeling in the guise of a game.

Although we take a part-based approach to allow us to

annotate our images, there is also non-part-based work that

attempts to describe the features of a class. Parikh and

Grauman [17] discover discriminative image attributes and

ask users to name them. Yanai and Barnard [28] consider

the opposite problem, starting with a named concept and

learning whether or not it is a visual attribute, while Berg

et al. [2] discover attribute names and classifiers from web

data. This could be used to provide supplementary, non-

part-based text descriptions of species differences in our vi-

sual field guide.

3. Visual Similarity

Our goal is, in a set of visually similar classes, to de-

termine which classes are most similar to each other, and

among those most similar classes, to understand and visu-

alize what it is that still distinguishes them.

To make this concrete, we consider the problem of

bird species recognition, using the Caltech-UCSD Birds

200 dataset (CUBS-200) [26]. We use the 2011 version

of the dataset, which includes 11,788 images of 200 bird

species, annotated with the locations of 15 parts (beak, fore-

head, crown, throat, breast, belly, nape, back, tail, and

left and right eyes, wings, and legs). The dataset is di-

vided into training and test sets of roughly equal size. With

many examples of species with similar appearance, and also

many species with widely varying appearance, the dataset

presents a difficult recognition task.

3.1. A Vocabulary of Part-based One-vs-One Fea-
tures (POOFs)

The first step toward our goal is to construct a vocabulary

of features suitable for differentiating among classes in our

domain. For this we use a collection of POOFs [1], which

we describe briefly here.

Each POOF is defined by the choice of two classes, two

parts (a “feature part” and an “alignment part”), and a base

feature, in our case either a color histogram or a histogram

of oriented gradients (HOG) [5]. For example, a POOF

may discriminate between the red-winged blackbird and the

rusty blackbird, based on color histograms at the wing after

alignment by the wing and the eye.

To build a POOF, all the training images of the two

classes are rotated and scaled to put the two chosen parts

in fixed locations. Each image is then cropped to a fixed-

size rectangle enclosing the two parts, and the cropped im-

age partitioned into a grid of square tiles. We extract the

base feature from each tile, concatenate these features to

get a feature vector for the image, and train a linear SVM

11



to distinguish the two classes. Tiles with low SVM weights

are discarded, and a connected component of the remaining

tiles about the feature part is taken as the support region for

the POOF. The SVM is retrained using the base feature on

just this region to get the final classifier. We use the parame-

ter settings from [1] unaltered: images are aligned to put the

two parts on a horizontal line with 64 pixels between them,

the crop is 128 pixels wide and 64 pixels tall, and we use

two grids, of 8 x 8 and 16 x 16 pixel tiles. The output of the

POOF is the signed distance from the decision boundary of

the classifier, and while each POOF is trained on just two

classes, [1] show that a collection of these POOF outputs

is an effective feature vector for distinguishing other sub-

classes of the same basic class (e.g., other species of birds).

With 200 classes, fifteen parts, and two base features, we

can train millions of POOFs, although in practice we will

always use a subset.

POOFs are suited to our task for two reasons. First of

all, they have been shown to be effective at fine-grained

categorization. Second, and of special importance to us,

POOFs are relatively easy to interpret. If we discover that

two bird species are well-separated by a color histogram-

based POOF aligned by the beak and the back, and the SVM

weights are large at the grid cells around the beak, we can

interpret this as “These two species are differentiated by the

color of the beak.” This kind of understanding is our goal.

3.2. Finding Similar Classes

Few would confuse a cardinal and a pelican. It would

be difficult and not useful to describe the particular features

that distinguish them; any feature you care to look at will

suffice. The interesting problem is to find what details dis-

tinguish classes of similar appearance. To do this we must

first determine which classes are similar to each other.

Our starting point is our vocabulary of POOFs. For ef-

ficiency we take a subset of 5000 POOFs, so each image

is describe by the 5000-dimensional vector of their outputs.

An L1 or L2 distance-based similarity in this space is ap-

pealing for its simplicity, but considers all features to be

equally important, which is unlikely to be a good idea. The

POOFs are based on random classes and parts. Some of

these choices will be good, looking at two species that differ

in a clear way at the parts being considered. Others will look

at parts that are not informative about those two classes. We

wish to downweight features that are not discriminative, and

emphasize those that are. A standard tool for this is linear

discriminant analysis (LDA) [10], which, from a labeled set

of samples with n classes, learns a projection to an n − 1
dimensional space that minimizes the ratio of within-class

variance to between-class variance. We apply LDA, and use

the negative L1 distance in the resulting 199-dimensional

space as a similarity measure.

By applying this image similarity measure to mean fea-

ture vectors over all the images in a class, we obtain a sim-

ilarity measure between classes, with which we can deter-

mine the most similar class to any given class. The red-

winged blackbird and its five most similar species are shown

at the top of Figure 1.

3.3. Choosing Discriminative Features

Given a pair of very similar classes, we are now inter-

ested in discovering what features can be used to tell them

apart. We consider as candidates all the features from our

vocabulary that are based on this pair of classes. With the

birds dataset, with twelve parts and two low-level features,

there are 264 candidate features. We rank the features by

their discriminativeness, defining the discriminativeness of

feature f as

df =
(μ2 − μ1)

2

σ1σ2

, (1)

where μ1 and μ2 are the mean feature values for the two

classes, and σ1 and σ2 are the corresponding standard devi-

ations. Maximizing discriminativeness is similar in spirit to

the optimization performed by LDA, which maximizes in-

terclass variation and minimizes intraclass variation. Here

we seek a individual score for each feature rather than a

projection of the feature space, as it allows us to report par-

ticular features as “most discriminative.”

3.4. Visualizing the Features

Once we have determined which features are most useful

to distinguish between a pair of classes, we would like to

present this information in a format that will help a viewer

understand what he should look for. We present each feature

as a pair of illustrative images, one from each species, with

the region of interest indicated in the two images.

The first step is to choose the illustrative images. In do-

ing this, we have several goals:

1. The images should exemplify the difference they are

intended to illustrate. If the feature is beak color,

where one class has a yellow beak and the other gray,

then the images must have the beak clearly visible,

with the beak distinctly yellow in one and gray in the

other.

2. The images should minimize differences other than

the one they are intended to illustrate. If the yel-

low and gray-beaked species above can both be either

brown or black, it is misleading to show one brown

and one black, as this difference does not distinguish

the classes.

3. To facilitate direct comparison of the feature, the two

samples should have their parts in similar configura-

tions, i.e., the birds should be in the same pose.

We translate these three goals directly into three objec-

tive expressions to be minimized. For the first, we take the

view that the images should be somewhat farther from the

decision boundary than average for their class, but not too

12



far. This corresponds to the feature being somewhat ex-

aggerated, but avoids extreme values from the POOF which

may be outliers or particularly unusual in some way. Taking

c1 and c2 as the classes associated with positive and nega-

tive feature values respectively, let b1 be the 75th percentile

of feature values on c1, and let b2 be the 25th percentile of

feature values on c2. We take these exaggerated, but not

extreme feature values as “best,” and attempt to minimize

F (I1, I2) = (1 + |f(I1)− b1|) (1 + |f(I2)− b2|) , (2)

where I1 and I2 are the candidate illustrative images from

classes c1 and c2, and f() is the feature to be illustrated.

To achieve the second goal, we consider an additional set

of features, based on POOFs trained on classes other than

c1 and c2. We use the 5000 POOFs used to determine in-

terclass similarity in Section 3.2, less those with the same

feature part as the POOF to be illustrated, and attempt to

minimize the L1 distance between the resulting “other fea-

ture” vectors g(I1) and g(I2).

G(I1, I2) = ||g(I1)− g(I2)||1 (3)

To achieve the third goal, we consider the part locations

in the two images. We resize the images so that in each,

the mean squared distance between parts is 1, then find the

best fit similarity transformation from the scaled locations

x1 in image I1 to the scaled locations x2 in image I2. We

minimize the squared error of the transformation, which we

denote H(I1, I2). Overall, we choose the image pair that

minimizes

kFF (I1, I2) + kGG(I1, I2) + kHH(I1, I2), (4)

where coefficients kF , kG, and kH determine the impor-

tance of each objective. To make them equally important,

we set each to the multiplicative inverse of the standard de-

viation of its term, i.e., kF = 1

σF
, kG = 1

σG
, and kH = 1

σH
.

The second step in visualizing the features is annotating

the chosen images to indicate the feature in question. Recall

that the feature is the output of a POOF, which at its core is

a vector of weights to be applied to a base feature extracted

over a spatial grid. By taking the norm of the sub-vector of

weights corresponding to each grid cell, we obtain a mea-

sure of the importance of each cell. An ellipse fit to the grid

cells with weight above a small threshold then illustrates the

feature.

4. A Visual Field Guide to Birds

As a direct application of the techniques in Section 3, we

can construct a visual field guide to birds. While this guide

will not have the notes on habitat and behavior of a tradi-

tional guide, it will have a couple advantages. First, it is

automatically generated, and so could easily be built for an-

other domain where guides may not be available. Second,

it can be in some sense more comprehensive. While a tra-

ditional, hand-assembled guide will have an entry for each
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Figure 6. Similarity matrices. (a) Visual similarity. (b) Phyloge-

netic similarity. In both, rows/columns are in order of a depth-

first traversal of the evolutionary tree, ensuring a clear structure in

(b). The large dashed black box corresponds to the passerine birds

(“perching birds,” mostly songbirds), while the small solid black

box holds similarities between crows and ravens on the y-axis and

blackbirds and cowbirds on the x-axis.

species, it is not combinatorially feasible to produce an en-

try on the differences between every pair of species. For an

automatically-generated, digital guide, this is not an issue.

We envision our field guide with a main entry for each

species. Examples are shown in Figures 1 (a) and 4 (a). The

main entry shows the species in question, and the top k most

similar other species (we use k = 5) as determined by the

method of Section 3.2. Selecting one of the similar species

will lead to a pair entry illustrating the differences between

the two species as described in Sections 3.3 and 3.4. Fig-

ures 1 (b) and 4 (b) and (c) show examples of pair entries.

We find that many of the highlighted features, including the

dark auriculars (feather below and behind the eye) of the

Kentucky warbler, the black “necklace” of the Canada war-

bler, and the white “spectacles” of the yellow-breasted chat

(all shown in Figure 4), correspond to features mentioned

in bird guides (all included in the Sibley Guide [22]).

4.1. A Tree of Visual Similarity

Visual similarity as estimated from the POOFs is the ba-

sis for our visual field guide. In similarity estimation, unlike

straight classification, there is no obvious ground truth. If

we say a blackbird is more like a crow than like a raven,

who can say we are wrong? One way to get a ground truth

for similarity is to consider the evolutionary “tree of life,”

the tree with a root representing the origin of life, a leaf for

every extant species or evolutionary dead end, and a branch

for every speciation event, with edge lengths representing

time between speciations. Species close to each other in the

tree of life are in a sense “more similar” than species that

are not close, although this will not necessarily correspond

to visual similarity.

The scientific community has not reached consensus on

the complete structure of the tree of life, or even the sub-

tree containing just the birds in CUBS-200. However there

is progress in that direction. Recently Jetz et al. [12] pro-

posed the first complete tree of life for all 9993 extant bird
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Figure 4. Visual field guide pages for the Kentucky warbler.
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Figure 5. The phylogenetic “tree of life” representing evolutionary history. As in Figure 2, species visually similar to the red-winged

blackbird are in blue, and those similar to the Kentucky warbler are in red. Although the American crow and common raven are visually

similar to blackbirds, they are not close in terms of evolution.

Rank Species Pair

1 Gadwall vs Pacific Loon

2 Hooded Merganser vs Pigeon Guillemot

6 Red-breasted Merganser vs Eared Grebe

11 Least Auklet vs Whip poor Will

16 Black billed Cuckoo vs Mockingbird

Table 1. Species pairs with high visual and low phylogenetic sim-

ilarity.

species, complete with estimated dates for all splits, based

on a combination of the fossil evidence, morphology, and

genetic data. Pruning this tree to include only the species

in CUBS-200 yields the tree shown in Figure 5 (produced

in part with code from [14]). This tree shows the overall

phylogenetic similarity relations between bird species.

As a browsing interface to our digital field guide, we pro-

pose a similar tree, in the same circular format. This tree,

however, is based on visual similarity rather than phyloge-

netic similarity. Producing a tree from a similarity matrix

is a basic operation in the study of phylogeny, for which

standard methods exist (note the tree of life in Figure 5 is

based on more advanced techniques that use additional data

beyond a similarity matrix). We calculate the full similar-

Figure 7. The gadwall (left) and the pacific loon (right) have simi-

lar overall appearance but are not closely related.

ity matrix of the bird species using the POOFs, then apply

one of these standard methods, Saitou and Nei’s “neighbor-

joining” [20], to get a tree based not on evolutionary history

but on visual similarity. This tree is shown in Figure 2. In

an interactive form, it will allow a user to scroll through the

birds in an order that respects similarity and shows a hierar-

chy of groups of similar birds.

We can compare the similarity-based tree in Figure 2

with the evolutionary tree in Figure 5. They generally agree

as to which species are similar, but there are exceptions. For

example, crows are close to blackbirds in the similarity tree,

but the evolutionary tree shows that they are not closely re-

lated. Such cases may be examples of convergent evolution,

in which two species independently develop similar traits.
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We can find such species pairs, with high visual simi-

larity and low phylogenetic similarity, in a systematic way.

The phylogenetic similarity between two species can be

quantified as the length of shared evolutionary history, i.e.,

the path length, in years, from the root of the evolution-

ary tree to the species’ most recent common ancestor (tech-

niques such as the neighbor-joining algorithm [20] also use

this as a similarity measure). Figure 6 (a) shows a similar-

ity matrix calculated in this way for the 200 bird species,

with the corresponding matrix based on visual similarity as

Figure 6 (b). Potential examples of convergent evolution

correspond to high values in (a) and relatively low values in

(b). The blackbirds-crows region is marked as an example.

We rank all
(
200

2

)
species pairs by visual similarity (most

similar first) and by phylogenetic difference (least similar

first). We then list all species pairs in order of the sum of

these ranks.Table 1 shows the top five pairs, excluding pairs

where one of the species has already appeared on the list to

avoid excessive repetition (as the pacific loon scores highly

when paired with the gadwall, it will also score highly with

all near relatives of the gadwall). The top ranked pair is a

duck and a loon, two species the author had mistakenly as-

sumed were closely related based on their visual similarity.

Figure 7 shows samples of these two species. Space pre-

cludes including images of the other pairs in Table 1, but

images can be viewed on Cornell’s All About Birds site [4].

5. Conclusions
Recognition techniques, in particular methods of esti-

mating visual similarity, can be used for more than just iden-

tification and image search. Here we exploit a setting in

which computers can do better than typical humans – fine-

grained categorization in a specialized domain – to show

how progress in computer vision can be turned to helping

humans understand the relations between the categories.
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