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Abstract

The task of recognizing events in photo collections is
central for automatically organizing images. It is also very
challenging, because of the ambiguity of photos across dif-
ferent event classes and because many photos do not con-
vey enough relevant information. Unfortunately, the field
still lacks standard evaluation data sets to allow compar-
ison of different approaches. In this paper, we introduce
and release a novel data set of personal photo collections
containing more than 61,000 images in 807 collections, an-
notated with 14 diverse social event classes.

Casting collections as sequential data, we build upon re-
cent and state-of-the-art work in event recognition in videos
to propose a latent sub-event approach for event recogni-
tion in photo collections. However, photos in collections are
sparsely sampled over time and come in bursts from which
transpires the importance of specific moments for the pho-
tographers. Thus, we adapt a discriminative hidden Markov
model to allow the transitions between states to be a func-
tion of the time gap between consecutive images, which we
coin as Stopwatch Hidden Markov model (SHMM).

In our experiments, we show that our proposed model
outperforms approaches based only on feature pooling or a
classical hidden Markov model. With an average accuracy
of 56%, we also highlight the difficulty of the data set and
the need for future advances in event recognition in photo
collections.

1. Introduction

With the advent of digital photography, we have wit-
nessed the explosion of personal and professional photo col-
lections, both online and offline. The vast amount of pic-
tures that users accumulate raises the need for automatic
photo organization. This has initiated extensive research on
content-based image retrieval systems such as image index-
ing based on objects [22], faces [11] or tags [1]. In addition
to visual content, EXIF meta data [5], GPS tracks [29] and
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Figure 1: Eight examples of photo collections from four
event classes in our data set. The difficulty in predicting the
correct class comes from the sparse sampling of images in
time, shown with the histograms (number of images within
a small time frame), and from the high semantic ambiguity
of images (e.g., portraits appear in many event classes).

captions [3] provide excellent cues to reduce the complexity
of these tasks. However, these works seldomly exploit the
simple fact that online and offline images frequently come
in collections: People organize their personal photos in di-
rectories, either corresponding to particular contents (per-
sons, things of interest) or particular events. Online photo
sharing websites such as Flickr, Panoramio or Facebook
adopted this scheme and are organised in albums (examples
shown in in Fig. 1). The benefits from recognizing event
types are evident: Automatic organisation helps users keep
order in their photo collections and also enables the retrieval
of similar event types in large photo repositories.



Figure 2: Unordered samples from our data set, where each
row corresponds to a class. From top to bottom: Children’s
birthday, Easter, Christmas, Halloween, Hiking, Road Trip,
Skiing. Note the high intra and sometimes low inter class
variations.

Event and action classification has recently received a
lot of attention in the computer vision community when
it comes to video [10, 17, 25]. The availability of data
sets [17] and difficult challenges [21] explain such profu-
sion. As in videos, discriminative features in photo collec-
tion are often outnumbered by many diverse and semanti-
cally ambiguous frames that contribute little to the under-
standing of an event class: portraits, group photos and land-
scapes all occur in multiple types of events. In contrast
to videos where images are sampled at a fixed frame rate,
photo collections instead present a very sparse sampling of
visual data, such that relating consecutive images is typi-
cally a harder task, c.f. Fig. 1. A great benefit of photo
collections, however, is that the frequency of sampling is it-
self a measure of the relative importance of photos [8], and
that we can exploit this information to distinguish between
event classes.

Unfortunately, there are no standard benchmark data set
for studying the challenging problem of event recognition
for photo collections. In the literature on classifying photo
collections [18, 26, 29], only small and private data sets are
used. This eventually limits the possibilities to compare
different approaches and research new ideas. As a contri-
bution of this paper, we have collected a large data set of
more than 61,000 images in 807 collections from Flickr and
manually annotated it with 14 event classes as we describe
in Sect. 3. These collections correspond to real-world per-
sonal photo collections taken by individual photographers.
The diversity of depicted events is large: Birthday party,
Boat Cruise, Concert, etc. as shown in Fig. 2. This data
set is available for download with the intention to establish
a solid benchmark. As a second contribution, we propose
to modify a recent state-of-the-art model [25], initially de-
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signed for videos, for event recognition in photo collections.
This includes a proper multi-class formulation and a modi-
fied hidden Markov model where the transition probabilities
depend on observed temporal gaps between images. Hence,
we coin this model a Stopwatch Hidden Markov model. We
present it and show how to perform inference and learn-
ing in Sect. 4. Thirdly, we combine cues from multiple
modalities to form image-level and collection-level features
(Sect. 5). These cues include low-level visual channels and
temporal frequency, as well as higher-level visual informa-
tion such as scene and human attributes.

We show in our experiments (Sect. 6) that our model out-
performs alternative event classification schemes for photo
collections based on feature or score pooling or simple hid-
den Markov models and present our conclusions in Sect. 7.
We first discuss related work in Sect. 2 below.

2. Related Work

Our work is related to a large literature on the automatic
organization of images. For instance, from an unlabelled
set of images, various image similarity measures have been
proposed to clusters images based on the objects [27], peo-
ple [11] or sub-sequences [8] they contain. While these al-
gorithms focus on finding structure in unorganized data, our
goal is to exploit the collection structure that is often found
in personal and professional photo archives.

Cao et al. [6] exploit photo collections to reduce the
complexity of propagating labels between images by ob-
serving that images within a collection are more likely to
depict similar scenes. The authors use a data set of 100
collections and label each image with an event and a scene
label. [7] further extends this idea towards a hierarchical
model where a photo collection is split in a sub-sequence
of so-called “events”, composed of images from similar
scenes, and exploits additional information such as GPS
tracks. GPS tracks make it simpler to distinguish between
events such as backyard parties, hikes and road trips [29]
because of the difference of their geographical extent, but
are still not very common in photo collections. [18] pro-
poses a simple scheme to aggregate the SVM scores of each
photo in a collection, and use it for classification into 8 so-
cial classes.

Event classification has also been considered for single
static photos. For instance, the generative model in [16]
allows its authors to integrate cues such as scene, object
categories and people to segment and recover the event cat-
egory in a single image. However, because of the ambiguity
between events, a generative approach might not lead to op-
timal predictive performance. Experiments were performed
on a small-scale data set of 8 sport activities with up to 250
images each. Many other works also integrate additional
higher-level cues, most often for image classification in a
wider sense. [19] exploits user context, location and user-



provided tags and comments on a photo sharing website to
improve automatic image annotation.

The most related works to ours deal with event classifi-
cation in videos [12, 25]. Both works consider the use of
latent sub-events in a discriminative learning framework, to
maximize predictive performance. However, [12] relies on
known sub-events and uses them as an intermediate repre-
sentation of collections for event classification. Time infor-
mation is discarded in favor of co-occurrence of sub-events.
Instead, we build upon the recent work of [25] and treat
sub-events as unobserved latent variables. In [25], these
sub-events are associated with explicit durations, and tran-
sitions between sub-events can only occur when the previ-
ous sub-event has expired. This requires that sub-events and
the sub-event boundaries are fully observed. Because of the
sparsely sampled photos in our collections, we need to adapt
this model. Inspired by discretely observed Markov jump
processes [4], we propose a Markov model where transi-
tion probabilities are functions of the temporal gap between
images as if it were measured by a stopwatch (c.f. Sect. 4).

3. Data Set

In this section, we describe our efforts to collect and an-
notate a large data set of personal photo collections for use
as an event recognition benchmark.

We first defined event classes of interest by using the
most popular tags on Flickr and Picasa as well as Wikipedia
categories that correspond to social events. Because we did
not have direct access to large private photo collections we
formulated different keyword queries by using variations of
the event’s name or by adding year numbers to retrieve sin-
gle images from Flickr. If a returned image was contained
in a Flickr set and if we could access the original image and
its EXIF meta data, we downloaded the whole photo set. As
these sets only loosely correspond to collections, we man-
ually reviewed and discarded those sets that did not consist
of a personal album or one single event, had wrong or miss-
ing meta data or were heavily retouched. About 60% of the
downloaded photo sets had to be discarded.

This led to the choice of 14 event classes as shown
in Tab. 1, with in total 807 photo collections which together
contain 61,364 photos with EXIF data. We show examples
of the resulting data set in Fig. 1 and 2. The data set is avail-
able at nttp://www.vision.ee.ethz.ch/datasets/pec

4. The Stopwatch Hidden Markov Model

People usually do not take pictures at fixed intervals
when photographing at an event they attend. More often,
photos are taken when something interesting happens and
thus show a bursty distribution when looking at the time
domain. Secondly, events are often composed of different
sub-events: At Easter, eggs are hunted and there is often
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Class Collections Photos  Class Collections Photos
Birthday 60 3,227 Graduation 51 2,532
Children Birthday 64 3,714 Halloween 40 2,403
Christmas 75 4,118 Hiking 49 2,812
Concert 43 2,565 Road Trip 55 10,469
Boat Cruise 45 4,983  St. Patrick’s Day 55 5,082
Easter 84 3,962 Skiing 44 2,512
Exhibition 70 3,032 Wedding 69 9,953

Total 807 61,364

Table 1: Statistics of our data set. For each of the 14 classes,
we detail the number of photo collections and the total num-
ber of images that they contain.

also a joint meal. Weddings also often contain some sort
of meal and afterwards people might be dancing. Other
events might even expose a more subtle and thus latent sub-
structure. In this work, we assume that the photo bursts act
as a proxy for this sub-structure.

Since events of the same type show a very large variety
in their temporal composition, it can be difficult even for
humans to identify and thus annotate sub-events. This is
why we treat the sub-events as latent in this work and learn
them while training the event classifier.

Given a photo collection X = {zg,...,zp} of T + 1
time ordered images originating from a single event, our
goal is to predict the correct event class label y in a set ) of
K possible labels.

We cast this prediction task in the framework of
structured-output SVM with latent variables [20, 28], where
the output is a multi-class prediction y* parametrized by ©:

Y= fo(X) = argmaxmgx(@,q)(x,y, Z) ey (1)
y

and where the latent variables Z = {z, ..
associated with the images form a chain.

In the next sections, we first describe our model in de-
tail, explaining the factor graph of the prediction function
(Sect. 4.1). Then we discuss in Sect. 4.2 how the solution of
Eq. 1 can be efficiently inferred given known parameters ©.
In Sect. 4.3, we detail how we learn the parameters given a
set of training photo collections with manual annotations.

4.1. Model

., zr} that are

As visible in Fig. 1, events can be described as a series
of smaller (visually diverse) sub-events. In this work we
model these sub-events explicitly to improve the classifica-
tion performance. Our model for photo collection classifi-
cation is based on a hidden Markov model, as commonly
done for modelling sequences [14, 24, 25]. Each observed
image x; in the collection is associated with an unobserved
latent variable z; representing its state among S possible
ones. In the specific context of event recognition, those
latent states are often called sub-events, to stress their in-
tended semantics.



Figure 3: Factor graph corresponding to our photo collec-
tion event recognition model. Please refer to the text for
notations and explanations.

In our model, the prediction function decomposes as:

(67 @(X, Y, Z)) = <®97 D4 (X’ y)>

T
1
T a4 @ 7q> ) )
+T+1t=20( L@ (2, 2t,y))
1 T2
+ T Z Op,ze,ze 41,y * Pp(Tts Tet1, 2, 2e41,Y) (2
t=0

The feature map ®,(X, y) allows the integration of global
cues from the full sequence into the event prediction. The
maps D;(x¢, z¢,y) represent images z; and their assign-
ments to latent sub-events z; for a particular event class y.
Finally, the pairwise features ¢p(x¢, 441, 2¢, 2e41,Y) en-
code the sub-event transition costs between consecutive im-
ages. Denoting (0,4, ®,(X,y)) by ¢g4, (O1, (¢, 2¢,v))
by ¢;;: and ep,zt,thrl,y : ¢p($t, Ti41y 2ty 241, y) by
®p,t—t+1, Fig. 3 shows the factor graph corresponding to
a photo collection.

Unlike most previous modelling of sequential visual
data, all these terms depend on the unobserved variable y.
This allows to learn sub-events that help discriminate be-
tween events in a multi-class setting, whereas [25] only con-
siders binary CRFs. In essence, our CRFs are calibrated to
maximize multi-class prediction accuracy.

Note also how the pairwise terms depend on observed
data z; and x,y;. Indeed, inspired by Markov Jump
Processes [4], we use the observed time gap 0;—;11 =
7(x441) — 7(2¢) between two consecutive images x; and
Z;41 to influence the transition probabilities.

Our Stopwatch Hidden Markov model can model the in-
tuition that the transition matrices for short temporal gaps
should typically be close to the identity matrix (i.e., prefers
not to change state) while transition matrices for longer tem-
poral gaps should be more distributed as illustrated in Fig. 4.

The model seamlessly integrates the information of the
temporal gap 6;_,411 between two consecutive images by
making the energies for changing sub-event assignments de-
pendent on the probability, that an observed d;_,;41 origi-
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Figure 4: Illustration of our Stopwatch Hidden Markov
model. The transition matrix between two consecutive im-
ages depends on the temporal gap J;_,¢+1. This allows to
model bursts of photos and the typical durations of sub-
events.

nates from this class. In this particular work, we used
¢p($t,$t+1,zt,2t+1ay) = —log(p(dt—t41ly)) Lz #2041
3)

where p(d:—++1|y) is estimated by Kernel Density Estima-
tion using a Gaussian kernel. Intuitively, the model “trusts”
a transition more, if the observed time-gap is consistent with
time-gaps observed for class y.

Inference, i.e. estimating the event and sub-event label
can be simply done as shown in Sect. 4.2, using the forward-
backward algorithm. The learning of the parameters of the
structured output SVM with latent variables [28] resembles
the EM algorithm, alternating between assigning images to
sub-events (using fixed parameters) and optimizing the pa-
rameters (under fixed assignments) as we describe in the
subsequent Sect. 4.3.

4.2. Inference

Given a photo collection, inferring the event class label
and the latent sub-events means to jointly maximize over
the latent variables and the class labels as in Eq. 1.

This can be done efficiently by observing that, for a fixed
event label y, the problem of inferring over the latent vari-
ables Z, i.e. solving

ZZ = argrznax <@7 Q(Xv Y, Z)> ) 4)
consists of inferring a chain model. We show such a chain
in Fig. 5.

To perform inference in the full model, we therefore sim-
ply apply the Viterbi algorithm to infer the latent variables
ZZ for each choice of event label y, and then maximize the
corresponding prediction function over y:

y* = argmax (0, ®(X,y, ZZ)> . (5)
y

In essence, our model is therefore equivalent to having one

chain model per event class, and predicting the class with

highest confidence.
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Figure 5: Factor graph corresponding to our photo collec-
tion classification model when the event label y is fixed. As
the global term becomes constant, it is omitted. The su-
perscripts are added to acknowledge the dependency on y.
The Viterbi algorithm can be used directly to infer the latent
sub-event variables.

The Viterbi algorithm has a complexity of O(T'S?),
therefore the complexity of inferring our full model is
O(KTS?), i.e. linear in the number of event classes and
size of the photo collection, but quadratic in the number of
sub-events.

4.3. Training

In this section, we aim at learning the parameters © given
a training set D = {(Xo,%0), ..., (Xn,yn)} of N photo
collections X; with their class labels y; € ). We adopt
the Latent Structural SVM framework [28]. The objective
function is:

min % )& +é max (<@, (X, 9, Z)> + A(Uia@))

N
=D max (0, 8(X;,y:,Z:), (6)
i=0
where A is the 0/1 margin function that represents the mis-
classification cost (A(y,y’) = 1jy+,). Minimizing Eq. 6
consists of finding the best parameters © such that the cor-
rect class y; is the minimizer of the margin-augmented pre-
diction function. This is equivalent to wanting y; to have
the most confident score by a margin of 1.
Following [28], we apply the Concave-Convex Proce-
dure (CCCP) [30]. It iterates between the following two
optimization problems until convergence:

1. Infer the latent sub-event labels Z; for the ground-truth
labels y; for fixed parameters ©. This is precisely solv-
ing Eq. 4.

2. Solve the convex problem in Eq. 7 below which is
Eq. 6 with fixed latent sub-events Z.

m@%n% o] +§: max ((0,8(X,,5.2)) + Alyi.9))

i—0 92

N
=0

7
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We optimize the convex objective in Eq. 7 using the
Optimized Cutting Plane Algorithm as implemented in
the Dlib C++ Library [13]. This implies performing
margin-augmented inference which we do simply by adding
Al(y;,y) to Eq. 5.

4.4. Initial Sub-events

In this section, we describe how we initialize the sub-
event labels. We found this initialization to be much more
robust than initializing CCCP with random sub-event as-
signment. The key is to take again advantage of the photo
bursts in the time domain. In this way, we exploit the
relative importance given to those photos by the photog-
rapher. Our assumption is again that such bursts act as
a proxy to latent sub-events. To do so, we segment each
photo collection using Hierarchical Agglomerative Cluster-
ing using a Gaussian kernel in the time domain d(ty, ) =
exp (—(t1 — t2)?/(20?)).

For each event class, the averaged visual features of each
segment are then clustered using K-Means. We use the re-
sulting .S clusters as initial sub-event assignments.

5. Features and potentials

In this section, we provide specific details about the
global feature vectors ¢4 and the image-level ones ¢; that
we use later in our experiments. Global features are func-
tions of the whole photo collection and help capture holis-
tic properties. Sub-event features help capture properties of
single photos. Having access to EXIF-data, we also include
non-visual cues into our model.

Global Temporal Features. We define different cues
based on time and aggregate them over the photo collection
in different histograms. Those cues include time of day, day
of week, month and the duration to help recognize events
that show specific patterns in the time domain.

Low-level Visual Features. As visual features, we use
densely sampled SURF [2] descriptors and code them into
a Bag-of-Words representation using a vocabulary of 1024
words, which is then max pooled. The vocabulary is previ-
ously learned using K-Means.

Higher-level Visual Features. To obtain a richer rep-
resentation of images and improve the semantics of sub-
events, we use a number of attribute predictions which have
been shown to help classification (e.g., [16]). These at-
tributes consist of the type of scene and type of indoor scene,
the number of faces, whether the image is a portrait, and
a histogram of facial attributes over detected faces. To
compute the attributes, we pre-trained a set of classifiers
from external data. For scene and indoor attributes, a multi-
class SVM was trained on the 15 Scenes [15] and the MIT-
Indoor [23] data set, respectively. For facial detection and
attributes, we use the code of [9] to predict age, gender and
presence of sunglasses.



Method Avg. Acc. [%] Recall@2 [%] F1-Score
Aggregated SVM 4143 63.57 38.87
Bag of Sub-events 51.43 70.00 50.63
HMM 53.57 68.57 54.61
SHMM (this paper) 55.71 72.86 56.16

Table 2: Different performance measures for the evaluated
methods.

Reducing the dimensionality. The high-dimensional
BoW vectors are not directly used in the feature map in
Eq. 6, as this would make it prohibitively large. Instead we
use multi-class SVMs to linearly project the BoW to a space
of dimensionality equal to the number of sub-events. To fur-
ther improve the robustness of these intermediate features,
we add a negative sub-event containing random images
from other classes while training the multi-class SVMs.

6. Experiments

In this section, we evaluate our approach on our novel
data set. First we define the experimental protocol in
Sect. 6.1. Then we explain in Sect. 6.2 the different base-
lines and variants of our approach that we compare. In
Sect. 6.3, we report and analyze the results.

6.1. Protocol

We start by defining a training, a validation and a testing
set. Out of the pool of 807 photo collections, we randomly
selected 10 collections for each of the 14 classes as test
set, which we use to report our evaluations. We also sam-
pled 6 random collections per class to validate the hyper-
parameter. All the remaining collections can be used for
learning the parameters of the algorithms for event recogni-
tion. Each event class has at least 24 training collections.

We report different performance measures for the eval-
uated methods: Average accuracy, recall@K and the F;-
score to illustrate the precision/recall characteristics of the
evaluated methods. Recall@K is the fraction of test data
samples for which the correct class is among the top-K
scores.

In the experiments that we report below, we have bal-
anced our training data and used 24 random collections for
each event class. For mining the initial sub-events, we set
the smoothing window ¢ = 90 and clustered them into 5
sub-events for each class. In the subsequent iterations, sub-
events that are not assigned to any image are removed. We
used the validation data to set the number of outer iterations
in our training procedure (c.f. Sect. 4.3).

6.2. Approaches for Event Recognition

‘We now describe the different baselines and variants that
we have compared in our experiments.
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Figure 7: Recall of the different methods when looking at
the top K classification scores for each collection.

Aggregated Multi-class SVM: Here, we employ an ap-
proach inspired by [18]. We train a multi-class SVM to
recognize events in single images, based on visual features
alone. At test time, each image is classified on its own and
the confidence scores within each collection are averaged to
predict the class of the collection.

Bag of Sub-events: In this variant, we adopt a Bag of
Sub-events view and drop the pairwise connections of our
model. This way, the model has no information about tran-
sitions and ordering of the photos in the collection. Instead,
the latent sub-events are independently assigned to each im-
age to maximize the prediction on the training set. We use
the same procedure as described in Sect. 4.3 to learn ©. In
this model, inference becomes trivial.

Hidden Markov Model (HMM): To obtain a discrimi-
native HMM, we build on the previous approach and incor-
porate sub-event transitions. However, we adopt the classi-
cal definition of transition matrices in HMMs, which corre-
sponds to ¢ (s, Tit1, 2t 2t41,Y) = 1.

Stopwatch Hidden Markov Model (SHMM): We use
our full model as described in Sect. 4, including the time-
dependent sub-event transition features.

6.3. Results

In Tab. 2, we present the different performance measures
obtained on the test set by our four approaches. The cor-
responding confusion matrices are shown in Fig. 6. As we
see, the baseline method of Aggregated SVM scores reaches
an average accuracy of 41.43%. Note how events taking
place in different scene types can be discriminated prop-
erly, but events that have a similar scenery are confused (e.g.
Hiking vs. Skiing, Fig. 6a).

Switching to the Bag of Sub-events model leads to a
significant improvement: 51.43%. This demonstrates how
the latent sub-event model can handle the variability within
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Figure 6: Confusion matrices for the approaches we compare. For each confusion matrix we also show the average accuracy.
Please refer to the text for explanations.

single event classes much better than a single SVM. This
is also reflected in the F; scores, which increases in the
same order. The HMM learnt in a discriminative fashion
increases the average accuracy further to 53.57%. As transi-
tions between sub-events can be captured by the model, de-
pendencies between sub-events can be learnt, which helps
to recognize classes that failed before (e.g. Halloween or
Road Trip, see Fig. 6b and 6¢). (a) Graduation (b) Hiking (c) Christmas

Finally, our approach gives the best results both in terms
of accuracy and F; score. With 55.71% average accuracy,
it is 2.14% more accurate than HMMs, 4.28% better than
Bags of sub-events, and the performance is as much as
14.28% higher than Aggregated SVM scores. In terms of
F; scores, the improvements are 1.55%, 5.53% and 17.29%,
respectively. Accordingly, we see in Fig. 6d how the confu- (d) Concert (e) Easter (f) Exhibition
sion was reduced for most classes.

Figure 8: Average images corresponding to sub-events
learnt by our model for different classes (best viewed in
color on a computer screen).

The performances of the different methods as measured
by the recall@K are shown in Fig. 7. Our method consis-
tently performs as well as, or outperforms, all the other con-
sidered approaches. For instance, the correct event is among
the top two predictions for 72.86% of the collections. lights the difficulty of our new data set and the challenge it

Looking at the average of images assigned to sub-events represents for the future.
by our SHMM shown in Fig. 8, we can sometimes clearly

identify semantic concepts: outdoor view for the Hik- 7. Conclusion

ing class, a typical photo setting for Graduation, painting In this paper, we have introduced a novel data set for
frames for Exhibitions. This highlights the benefits of using event recognition in photo collections. We have proposed a
a latent model for event recognition, as it can provide some model based on hidden Markov models that takes into ac-
additional semantic knowledge that eventually increases the count the time gap between images to estimate the proba-
ability to automatically understand, organize and exploit bility to change state. Our model outperforms several ap-
images in photo collections. proached based on previously published works. The final
We also show in Fig. 9 some examples of photo col- accuracy of 56% highlights the sheer difficulty of the data
lections that our approach correctly and incorrectly classi- set, which we hope will foster research in this domain.
fied. As can be seen, visually and semantically very similar We believe that semantic hierarchies would help model
classes such as Birthday, Children’s Birthday, Graduation, events as well as complex sub-events, while scaling sub-
Halloween etc. are still confused to some extent. This high- linearly with the number of event classes and sub-events.

1199



o e .7.
"'a-*

v/ Children’s
birthday

-.éf G

“ v Christmas

v/ St. Patrick’s
Day

—

mE = -mm«m

m v'Wedding

v Concert

x Hiking
(Road Trip)

x Exhibition
(Christmas)

X Children’s
birthday
(Easter)
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